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Preface

This book is about the Java™ language and programming environment. If you've been at all
active on the Internet in the past few years, you've heard a lot about Java. It's one of the most
exciting developments in the history of the Internet, rivaling the creation of the World Wide Web.
Java became the darling of the Internet programming community as soon as the alpha version
was released. Immediately, thousands of people were writing Java applets to add to their web
pages. Interest in Java only grew with time, and support for Java in Netscape Navigator
guaranteed it would be a permanent part of the Net scene.

What, then, is Java? Java is a network programming language that was developed by Sun
Microsystems. It's already in widespread use for creating animated and interactive web pages.
However, this is only the start. The Java language and environment are rich enough to support
entirely new kinds of applications, like dynamically extensible browsers and mobile agents. There
are entirely new kinds of computer platforms being developed around Java (handheld devices
and network computers) that download all their software over the network. In the coming years,
we'll see what Java is capable of doing; fancy web pages are fun and interesting, but they
certainly aren't the end of the story. If Java is successful (and that isn't a foregone conclusion), it
could change the way we think about computing in fundamental ways.

This book gives you a head start on a lot of Java fundamentals. Learning Java attempts to live up
to its name by mapping out the Java language, its class libraries, programming techniques, and
idioms. We'll dig deep into interesting areas and at least scratch the surface of the rest. Other
titles in the O'Reilly & Associates Java Series will pick up where we leave off and provide more
comprehensive information on specific areas and applications of Java.

Whenever possible, we'll provide meaningful, realistic examples and avoid cataloging features.
The examples are simple but hint at what can be done. We won't be developing the next great
"killer app" in these pages, but we hope to give you a starting point for many hours of
experimentation and tinkering that will lead you to learn more on your own.

New Developments

This book, Learning Java, is actually the third edition—reworked and retitled—of O'Reilly's
popular Exploring Java. We've de-emphasized web-page applets this time around, reflecting their
diminishing role over the past couple of years in creating "smart" web pages. Other technologies
have filled in the gap: JavaScript on the client side, and Java servlets and Active Server Pages on
the server side.

We cover the most interesting features of Sun's newest release of Java, officially called Java 2
SDK Version 1.3. (In the old days, it would have been called "JDK," for "Java development kit;"
we use the newer, officially blessed "SDK," for "software development kit," throughout this book.)
These features include servlets, the Java Media Framework ( JMF), timers, the collections, 2D
graphics, and image-processing APIs, using the Java security manager, and using Java 2 signed
applets.

Another important change, though not as recent as SDK 1.3, is the ascendancy of Java Swing as
the main API for graphical user interface programming. Much of the material relating to AWT,
Java's original GUI programming interface, has been recast and updated to use Swing facilities.

Audience



This book is for computer professionals, students, technical people, and Finnish hackers. It's for
everyone who has a need for hands-on experience with the Java language with an eye toward
building real applications. This book could also be considered a crash course in object-oriented
programming; as you learn about Java, you'll also learn a powerful and practical approach to
object-oriented software development.

Superficially, Java looks like C or C++, so you'll be in the best position to use this book if you've
some experience with one of these languages. If you do not, you might want to refer to books like
O'Reilly's Practical C Programming for a more thorough treatment of basic C syntax. However,
don't make too much of the syntactic similarities between Java and C or C++. In many respects,
Java acts like more dynamic languages such as Smalltalk and Lisp. Knowledge of another object-
oriented programming language should certainly help, although you may have to change some
ideas and unlearn a few habits. Java is considerably simpler than languages like C++ and
Smalltalk.

Although we encourage you to take a broad view, you would have every right to be disappointed
if we ignored the Web. A substantial part of this book does discuss Java as a language for World
Wide Web applications, so you should be familiar with the basic ideas behind web browsers,
servers, and web documents.

Using This Book

This book is organized roughly as follows:

Chapter 1 and Chapter 2 provide a basic introduction to Java concepts and a tutorial to
give you a jump start on Java programming.

Chapter 3 discusses tools for developing with Java (the compiler, the interpreter, the
JAR file package). It also covers important concepts such as embedding Java code in
HTML support and object signing.

Chapter 4 through Chapter 8 describe the Java language itself. Chapter 8 covers the
language's thread facilities, which should be of particular interest to advanced
programmers.

Chapter 9 and Chapter 10 cover much of the core API. Chapter 9 describes basic
utilities, and Chapter 10 covers I/O facilities.

Chapter 11 and Chapter 12 cover Java networking, including sockets, URLs, and
remote method invocation (RMI).

Chapter 13 through Chapter 18 cover the Abstract Window Toolkit (AWT) and Swing,
which provide graphical user interface (GUI) and image support.

Chapter 19 covers the JavaBeans™ component architecture.

Chapter 20 covers applets, the area in which Java saw its initial success.

If you're like us, you don't read books from front to back. If you're really like us, you usually don't
read the preface at all. However, on the off chance that you will see this in time, here are a few
suggestions.

If you are an experienced programmer who has to learn Java in the next five minutes, you are
probably looking for the examples. You might want to start by glancing at the tutorial in Chapter
2. If that doesn't float your boat, you should at least look at the information in Chapter 3, which
tells you how to use the compiler and interpreter, and gives you the basics of a standalone Java
application. This should get you started.

Chapter 11 and Chapter 12 are essential if you are interested in writing advanced networked
applications. This is probably the most interesting and important part of Java.




Chapter 13 though Chapter 19 discuss Java's graphics features and component architecture.
You should read this carefully if you are interested in Java applications for the Web.

Getting Wired

There are many online sources for information about Java. Sun Microsystem's official web site for
Java topics is http://java.sun.com; look here for the latest news, updates, and Java releases.
This is where you'll find the Java Software Development Kit (SDK), which includes the compiler,
the interpreter, and other tools. Another good source of Java information, including free applets,
utility classes, and applications, is the Gamelan site, run by EarthWeb; its URL is
http://www.gamelan.com.

You should also visit O'Reilly & Associates' Java site at http://java.oreilly.com. There you'll
find information about other books in O'Reilly's Java Series, and a pointer to the home page for
Learning Java, http://www.oreilly.com/catalog/learnjava/, where you'll find the source
code examples for this book.

The comp.lang.java newsgroup can be a good source of information and announcements, and a
place to ask intelligent questions.

Conventions Used in This Book

The font conventions used in this book are quite simple.

Italic is used for:

Unix pathnames, filenames, and program names
Internet addresses, such as domain names and URLs
New terms where they are defined

Boldface is used for:

Names of GUI buttons and menus

Constant width is used for:

Anything that might appear in a Java program, including method names, variable
names, and class names

Command lines and options that should be typed verbatim on the screen

Tags that might appear in an HTML document

Constant wi dth bold
is used for:

In code examples, text that is typed by the user

In the main body of text, we always use a pair of empty parentheses after a method name to
distinguish methods from variables and other creatures.

In the Java source listings, we follow the coding conventions most frequently used in the Java
community. Class names begin with capital letters; variable and method names begin with



lowercase. All the letters in the names of constants are capitalized. We don't use underscores to
separate words in a long name; following common practice, we capitalize individual words (after
the first) and run the words together. For example: t hi sl sAVari abl e, t hi sl sAMet hod( ),
Thi sl sAC ass, and THI SI SACONSTANT.

How to Contact Us

We have tested and verified all the information in this book to the best of our abilities, but you
may find that features have changed or that we have let errors slip through the production of the
book. Please let us know of any errors that you find, as well as suggestions for future editions, by
writing to:

O'Reilly & Associates, Inc.

101 Morris St.

Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (fax)

You can also send messages electronically. To be put on our mailing list or to request a catalog,
send email to:

info@oreilly.com

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future
editions. You can access this page at:

http://www.oreilly.com/catalog/learnjava/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com




Chapter 1. Yet Another Language?

The greatest challenges and most exciting opportunities for software developers today lie in
harnessing the power of networks. Applications created today, whatever their intended scope or
audience, will almost certainly be run on machines linked by a global network of computing
resources. The increasing importance of networks is placing new demands on existing tools and
fueling the demand for a rapidly growing list of completely new kinds of applications.

We want software that works—consistently, anywhere, on any platform—and that plays well with
other applications. We want dynamic applications that take advantage of a connected world,
capable of accessing disparate and distributed information sources. We want truly distributed
software that can be extended and upgraded seamlessly. We want intelligent applications—like
autonomous agents that can roam the Net for us, ferreting out information and serving as
electronic emissaries. We know, to some extent, what we want. So why don't we have it?

The problem has been that the tools for building these applications have fallen short. The
requirements of speed and portability have been, for the most part, mutually exclusive, and
security has been largely ignored or misunderstood. There are truly portable languages, but they
are mostly bulky, interpreted, and slow. These languages are popular as much for their high-level
functionality as for their portability. And there are fast languages, but they usually provide speed
by binding themselves to particular platforms, so they can meet the portability issue only halfway.
There are even a few recent safe languages, but they are primarily offshoots of the portable
languages and suffer from the same problems.

1.1 Enter Java

The Java™ programming language, developed at Sun Microsystems under the guidance of Net
luminaries James Gosling and Bill Joy, is desighed to be a machine-independent programming
language that is both safe enough to traverse networks and powerful enough to replace native
executable code. Java addresses the issues raised here and may help us start building the kinds
of applications we want.

Initially, most of the enthusiasm for Java centered around its capabilities for building embedded
applications for the World Wide Web; these applications are called applets. Applets could be
independent programs in themselves, or sophisticated frontends to programs running on a server.
More recently, interest has shifted to other areas. With Java 2, Java has the most sophisticated
toolkit for building graphical user interfaces; this development has allowed Java to become a
popular platform for developing traditional application software. Java has also become an
important platform for server-side applications, using the servlet interface, and for enterprise
applications using technologies like Enterprise JavaBeans™. And Java is the platform of choice
for modern distributed applications.

This book shows you how to use Java to accomplish real programming tasks, such as building
networked applications and creating functional user interfaces. There's still a chapter devoted to
applets; they may become more important again when the Java 2 (and subsequent) versions of
the Java platform are more widely distributed in web browsers.

1.1.1 Java's Origins

The seeds of Java were planted in 1990 by Sun Microsystems patriarch and chief researcher, Bill
Joy. Since Sun's inception in the early '80s, it has steadily pushed one idea: "The network is the
computer.” At the time though, Sun was competing in a relatively small workstation market, while



Microsoft was beginning its domination of the more mainstream, Intel-based PC world. When Sun
missed the boat on the PC revolution, Joy retreated to Aspen, Colorado, to work on advanced
research. He was committed to accomplishing complex tasks with simple software, and founded
the aptly named Sun Aspen Smallworks.

Of the original members of the small team of programmers assembled in Aspen, James Gosling
is the one who will be remembered as the father of Java. Gosling first made a name for himself in
the early '80s as the author of Gosling Emacs, the first version of the popular Emacs editor that
was written in C and ran under Unix. Gosling Emacs became popular, but was soon eclipsed by a
free version, GNU Emacs, written by Emacs's original designer. By that time, Gosling had moved
on to design Sun's NeWS window system, which briefly contended with the X Window System for
control of the Unix graphical user interface (GUI) desktop in 1987. While some people would
argue that NeWS was superior to X, NeWS lost out because Sun kept it proprietary and didn't
publish source code, while the primary developers of X formed the X Consortium and took the
opposite approach.

Designing NeWS taught Gosling the power of integrating an expressive language with a network-
aware windowing GUI. It also taught Sun that the Internet programming community will refuse to
accept proprietary standards, no matter how good they may be. The seeds of Java's remarkably
permissive licensing scheme were sown by NeWS's failure. Gosling brought what he had learned
to Bill Joy's nascent Aspen project, and in 1992, work on the project led to the founding of the
Sun subsidiary, FirstPerson, Inc. Its mission was to lead Sun into the world of consumer
electronics.

The FirstPerson team worked on developing software for information appliances, such as cellular
phones and personal digital assistants (PDAs). The goal was to enable the transfer of information
and real-time applications over cheap infrared and packet-based networks. Memory and
bandwidth limitations dictated small and efficient code. The nature of the applications also
demanded they be safe and robust. Gosling and his teammates began programming in C++, but
they soon found themselves confounded by a language that was too complex, unwieldy, and
insecure for the task. They decided to start from scratch, and Gosling began working on
something he dubbed "C++ minus minus."

With the foundering of the Apple Newton, it became apparent that the PDA's ship had not yet
come in, so Sun shifted FirstPerson's efforts to interactive TV (ITV). The programming language
of choice for ITV set-top boxes was the near ancestor of Java, a language called Oak. Even with
its elegance and ability to provide safe interactivity, Oak could not salvage the lost cause of ITV.
Customers didn't want it, and Sun soon abandoned the concept.

At that time, Joy and Gosling got together to decide on a new strategy for their language. It was
1993, and the explosion of interest in the Internet, and the World Wide Web in particular,
presented a new opportunity. Oak was small, robust, architecture-independent, and object-
oriented. As it happens, these are also the requirements for a universal, network-savvy
programming language. Sun quickly changed focus, and with a little retooling, Oak became Java.

1.1.2 Future Buzz?

It would not be overdoing it to say that Java has caught on like wildfire. Even before its first official
release, while Java was still a non-product, nearly every major industry player jumped on the
Java bandwagon. Java licensees included Microsoft, Intel, IBM, and virtually all major hardware
and software vendors. (That's not to say that everything has been coming up roses. Even with all
of this support Java has taken a lot of knocks and had some growing pains during its first few
years.)



As we begin looking at the Java architecture, you'll see that much of what is exciting about Java
comes from the self-contained, virtual machine environment in which Java applications run. Java
has been carefully designed so that this supporting architecture can be implemented either in
software, for existing computer platforms, or in customized hardware, for new kinds of devices.
Sun and other industry giants are producing fast Java chips and microprocessors tailored to run
media-rich Java applications. Hardware implementations of Java could power inexpensive
network terminals, PDAs, and other information appliances, to take advantage of transportable
Java applications. Software implementations of Java are available now for portable computing
devices like the popular Palm™ PDA.

Many people see Java as part of a trend toward cheap, Internet-based, "operating system-less”
appliances that will weave the Net into more and more consumer-related areas. The first attempts
at marketing "network computers" as alternatives to the standard PC have not gone very well.
(The combination of Windows and cheap PC hardware form a formidable barrier.) But the
desktop is only one corner of the network. Only time will tell what people will do with Java, but it's
probably worth at least a passing thought that the applet you write today might well be running on
someone's wristwatch tomorrow. If that seems too futuristic, remember that you can already get
"smart cards" and "wearable" devices like rings and dog tags that have Java interpreters
embedded in them. These devices are capable of doing everything from financial transactions
(paying a hotel bill) to unlocking a door (the door to your hotel room) to rerouting phone calls (so
your hotel room receives your business calls). The hardware is already here; it can't be long
before the rest of the software infrastructure begins to take advantage of it. A Java wristwatch is
not a silly notion.

1.2 A Virtual Machine

Java is both a compiled and an interpreted language. Java source code is turned into simple
binary instructions, much like ordinary microprocessor machine code. However, whereas C or
C++ source is refined to native instructions for a particular model of processor, Java source is
compiled into a universal format—instructions for a virtual machine.

Compiled Java byte-code, also called J-code, is executed by a Java runtime interpreter. The
runtime system performs all the normal activities of a real processor, but it does so in a safe,
virtual environment. It executes the stack-based instruction set and manages a storage heap. It
creates and manipulates primitive datatypes, and loads and invokes newly referenced blocks of
code. Most importantly, it does all this in accordance with a strictly defined open specification that
can be implemented by anyone who wants to produce a Java-compliant virtual machine.
Together, the virtual machine and language definition provide a complete specification. There are
no features of Java left undefined or implementation-dependent. For example, Java specifies the
sizes of all its primitive data types, rather than leave it up to each implementation.

The Java interpreter is relatively lightweight and small; it can be implemented in whatever form is
desirable for a particular platform. On most systems, the interpreter is written in a fast, natively
compiled language like C or C++. The interpreter can be run as a separate application, or it can
be embedded in another piece of software, such as a web browser.

All of this means that Java code is implicitly portable. The same Java application byte-code can
run on any platform that provides a Java runtime environment, as shown in Figure 1.1. You
don't have to produce alternative versions of your application for different platforms, and you don't
have to distribute source code to end users.

Figure 1.1. The Java runtime environment
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The fundamental unit of Java code is the class. As in other object-oriented languages, classes
are application components that hold executable code and data. Compiled Java classes are
distributed in a universal binary format that contains Java byte-code and other class information.
Classes can be maintained discretely and stored in files or archives on a local system or on a
network server. Classes are located and loaded dynamically at runtime, as they are needed by an
application.

In addition to the platform-specific runtime system, Java has a number of fundamental classes
that contain architecture-dependent methods. These native methods serve as the gateway
between the Java virtual machine and the real world. They are implemented in a natively
compiled language on the host platform. They provide access to resources such as the network,
the windowing system, and the host filesystem. The rest of Java is written entirely in Java, and is
therefore portable. This includes fundamental Java utilities like the Java compiler and Sun's
HotJava web browser, which are also Java applications and are therefore available on all Java
platforms.

Historically, interpreters have been considered slow, but because the Java interpreter runs
compiled byte-code, Java is a relatively fast interpreted language. More importantly, Java has
also been designed so that software implementations of the runtime system can optimize their
performance by compiling byte-code to native machine code on the fly. This is called just-in-time
compilation. Sun claims that with just-in-time compilation, Java code can execute nearly as fast
as native compiled code and maintain its transportability and security. There is only one true
performance hit that compiled Java code will always suffer for the sake of security — array
bounds checking. But on the other hand, some of the basic design features of Java place more
information in the hands of the compiler, which allows for certain kinds of optimizations not
possible in C or C++.

The latest twist in compilation techniques is a new virtual machine that Sun calls HotSpot. The
problem with a traditional just-in-time compilation is that optimizing code takes time, and is
extremely important for good performance on modern computer hardware. So a just-in-time
compiler can produce decent results, but can never afford to take the time necessary to do a
good job of optimization. HotSpot uses a trick called "adaptive compilation” to solve this problem.
If you look at what programs actually spend their time doing, it turns out that they spend almost all



of their time executing a relatively small part of the code again and again. The chunk of code that
is executed repeatedly may only be a small percent of the total program, but its behavior
determines the program's overall performance.

To take advantage of this fact, HotSpot starts out as a normal Java byte code interpreter, but with
a difference: it measures (profiles) the code as it is executing, to see what parts are being
executed repeatedly. Once it knows which parts of the code are crucial to the performance,
HotSpot compiles those sections—and only those sections—into true machine code. Since it only
compiles a small portion of the program into machine code, it can afford to take the time
necessary to optimize those portions. The rest of the program may not need to be compiled at
all—just interpreted—saving memory and time.

The technology for doing this is very complex, but the idea is essentially simple: optimize the
parts of the program that need to go fast, and don't worry about the rest. Another advantage of
using an adaptive compiler at runtime is that it can make novel kinds of optimizations that a static
(compile time only) compiler cannot dream of.

1.3 Java Compared with Other Languages

Java is a new language, but it draws on many years of programming experience with other
languages in its choice of features. So a lot can be said in comparing and contrasting Java with
other languages. There are at least three pillars necessary to support a universal language for
network programming today: portability, speed, and security. Figure 1.2 shows how Java
compares to other languages.

Figure 1.2. Programming languages compared
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You may have heard that Java is a lot like C or C++, but that's really not true, except at a
superficial level. When you first look at Java code, you'll see that the basic syntax looks a lot like
C or C++. But that's where the similarities end. Java is by no means a direct descendant of C or a
next-generation C++. If you compare language features, you'll see that Java actually has more in
common with languages like Smalltalk and Lisp. In fact, Java's implementation is about as far
from native C as you can imagine.

The surface-level similarities to C and C++ are worth noting, however. Java borrows heavily from
C and C++ syntax, so you'll see lots of familiar language constructs, including an abundance of
curly braces and semicolons. Java also subscribes to the C philosophy that a good language
should be compact; in other words, it should be sufficiently small and regular so a programmer
can hold all the language's capabilities in his or her head at once. Just as C is extensible with
libraries, packages of Java classes can be added to the core language components.



C has been successful because it provides a reasonably featureful programming environment,
with high performance and an acceptable degree of portability. Java also tries to balance
functionality, speed, and portability, but it does so in a very different way. C trades functionality for
portability; Java trades speed for portability. Java also addresses security issues, while C doesn't.

Java is an interpreted language, so it won't be as fast as a compiled language like C. But Java is
fast enough, especially for interactive, network-based applications, where the application is often
idle, waiting for the user to do something or waiting for data from the network. For situations
where speed is critical, a Java implementation can optimize performance with just-in-time
compilation to byte-code, as previously discussed.

Scripting languages, like Perl, Python, Tcl/Tk, and Wksh, are becoming very popular, and for
good reason. There's no reason a scripting language could not be suitable for safe, networked
applications (e.g., Safe Tcl), but most scripting languages are not designed for serious, large-
scale programming. The attraction to scripting languages is that they are dynamic; they are
powerful tools for rapid prototyping. Some scripting languages, like awk and Perl, also provide
powerful tools for text-processing tasks that more general-purpose languages find unwieldy.
Scripting languages are also highly portable.

One problem with scripting languages, however, is that they are rather casual about program
structure and data typing. Most scripting languages (with a hesitant exception for Perl 5.0 and
Python) are not object-oriented. They also have vastly simplified type systems and generally don't
provide for sophisticated scoping of variables and functions. These characteristics make them
unsuitable for building large, modular applications. Speed is another problem with scripting
languages; the high-level, fully interpreted nature of these languages often makes them quite
slow.

Java offers some of the essential advantages of a scripting language, along with the added
benefits of a lower-level language.

Incremental development with object-oriented components, combined with Java's simplicity,
make it possible to develop applications rapidly and change them easily, with a short concept-to-
implementation time. Java also comes with a large base of core classes for common tasks such
as building GUIs and doing network communications. But along with these features, Java has the
scalability and software-engineering advantages of more static languages. It provides a safe
structure on which to build higher-level networked tools and languages.

However, don't confuse Java with JavaScript! JavaScript is an object-based scripting language
being developed by Netscape and others. It serves as a glue and an "in the document" language
for dynamic, interactive HTML-based applications. JavaScript draws its name from its intended
integration with Java. You can currently interact with Java applets embedded in HTML using
JavaScript. There have been a few portable implementations of JavaScript that would promote it
to the level of a general scripting language. For more information on JavaScript, check out
Netscape's web site (http://home.netscape.com).

As we've already said, Java is similar in design to languages like Smalltalk and Lisp. However,
these languages are currently used mostly as research vehicles, rather than for developing large-
scale systems. One reason is that they never developed a standard portable binding to operating-
system services, like the C standard library or the Java core classes. Smalltalk is compiled to an
interpreted byte-code format, and it can be dynamically compiled to native code on the fly, just
like Java. But Java improves on the design by using a byte-code verifier to ensure the
correctness of compiled Java code. This verifier gives Java a performance advantage over
Smalltalk because Java code requires fewer runtime checks. Java's byte-code verifier also helps



with security issues, something that Smalltalk doesn't address. Smalltalk is a mature language,
though, and Java's designers took lessons from many of its features.

Throughout the rest of this chapter, we'll present a bird's-eye view of the Java language. We'll
explain what's new and what's not-so-new about Java, how it differs from other languages, and
why.

1.4 Safety of Design

You have no doubt heard a lot about the fact that Java is designed to be a safe language. But
what do we mean by safe? Safe from what or whom? The security features that attract the most
attention for Java are those features that make possible new types of dynamically portable
software. Java provides several layers of protection from dangerously flawed code, as well as
more mischievous things like viruses and Trojan horses. In the next section, we'll take a look at
how the Java virtual machine architecture assesses the safety of code before it's run, and how
the Java class loader (the byte-code loading mechanism of the Java interpreter) builds a wall
around untrusted classes. These features provide the foundation for high-level security policies
that allow or disallow various kinds of activities on an application-by-application basis.

In this section, though, we'll look at some general features of the Java programming language.
Perhaps more important than the specific security features, although often overlooked in the
security din, is the safety that Java provides by addressing common design and programming
problems. Java is intended to be as safe as possible from the simple mistakes we make
ourselves, as well as those we inherit from contractors and third-party software vendors. The goal
with Java has been to keep the language simple, provide tools that have demonstrated their
usefulness, and let users build more complicated facilities on top of the language when needed.

1.4.1 Syntactic Sweet 'n' Low

Java is parsimonious in its features; simplicity rules. Compared to C, Java uses few automatic
type coercions, and the ones that remain are simple and well-defined. Unlike C++, Java doesn't
allow programmer-defined operator overloading. The string concatenation operator + is the only
system-defined, overloaded operator in Java. All methods in Java are like C++ virtual methods,
so overridden methods are dynamically selected at runtime.

Java doesn't have a preprocessor, so it doesn't have macros, #def i ne statements, or
conditional source compilation. These constructs exist in other languages primarily to support
platform dependencies, so in that sense they should not be needed in Java. Conditional
compilation is also commonly used for debugging purposes. Debugging code can be included
directly in your Java source code by making it conditional on a constant (in Java, a variable
declared to be st at i c and f i nal ). The Java compiler is smart enough to remove this code
when it determines that it won't be called.

Java provides a well-defined package structure for organizing class files. The package system
allows the compiler to handle most of the functionality of the make utility (a sophisticated tool for
building executables from source code). The compiler also works with compiled Java classes,
because all type information is preserved; there is no need for header files. All of this means that
Java code requires little context to read. Indeed, you may sometimes find it faster to look at the
Java source code than to refer to class documentation.

Java replaces some features that have been troublesome in other languages. For example, Java
supports only a single inheritance class hierarchy, but allows multiple inheritance of interfaces. An
interface, like an abstract class in C++, specifies some of the behavior of an object without



defining its implementation, a powerful mechanism borrowed from Objective C. It allows a class
to implement the behavior of the interface, without needing to be a subclass of anything in
particular. Interfaces in Java eliminate the need for multiple inheritance of classes, without
causing the problems associated with multiple inheritance. As you'll see in Chapter 4, Java is a
simple, yet elegant, programming language.

1.4.2 Type Safety and Method Binding

One attribute of a language is the kind of type checking it uses. When we categorize a language
as static or dynamic we are referring to the amount of information about variable types that is
known at compile time versus what is determined while the application is running.

In a strictly statically typed language like C or C++, data types are etched in stone when the
source code is compiled. The compiler benefits from having enough information to enforce usage
rules, so that it can catch many kinds of errors before the code is executed, such as storing a
floating-point value in an integer variable. The code doesn't require runtime type checking, so it
can be compiled to be small and fast. But statically typed languages are inflexible. They don't
support high-level constructs like lists and collections as naturally as languages with dynamic
type checking, and they make it impossible for an application to safely import new data types
while it's running.

In contrast, a dynamic language such as Smalltalk or Lisp has a runtime system that manages
the types of objects and performs necessary type checking while an application is executing.
These kinds of languages allow for more complex behavior, and are in many respects more
powerful. However, they are also generally slower, less safe, and harder to debug.

The differences in languages have been likened to the differences among kinds of automobiles.t™
Statically typed languages like C++ are analogous to a sports car—reasonably safe and fast—but
useful only if you're driving on a nicely paved road. Highly dynamic languages like Smalltalk are
more like an offroad vehicle: they afford you more freedom, but can be somewhat unwieldy. It can
be fun (and sometimes faster) to go roaring through the back woods, but you might also get stuck
in a ditch or mauled by bears.

1 The credit for the car analogy goes to Marshall P. Cline, author of the C++ FAQ.

Another attribute of a language is the way it binds method calls to their definitions. In an early-
binding language like C or C++, the definitions of methods are normally bound at compile time,
unless the programmer specifies otherwise. Smalltalk, on the other hand, is a late-binding
language because it locates the definitions of methods dynamically at runtime. Early-binding is
important for performance reasons; an application can run without the overhead incurred by
searching method tables at runtime. But late-binding is more flexible. It's also necessary in an
object-oriented language, where a subclass can override methods in its superclass, and only the
runtime system can determine which method to run.

Java provides some of the benefits of both C++ and Smalltalk; it's a statically typed, late-binding

language. Every object in Java has a well-defined type that is known at compile time. This means
the Java compiler can do the same kind of static type checking and usage analysis as C++. As a
result, you can't assign an object to the wrong type of variable or call nonexistent methods on an

object. The Java compiler goes even further and prevents you from messing up and trying to use
uninitialized variables.

However, Java is fully runtime typed as well. The Java runtime system keeps track of all objects
and makes it possible to determine their types and relationships during execution. This means
you can inspect an object at runtime to determine what it is. Unlike C or C++, casts from one type



of object to another are checked by the runtime system, and it's even possible to use completely
new kinds of dynamically loaded objects with a level of type safety.

Since Java is a late-binding language, all methods are like virtual methods in C++. This makes it
possible for a subclass to override methods in its superclass. But Java also allows you to gain the
performance benefits of early-binding by explicitly declaring (with the f i nal modifier) that certain
methods can't be overridden by subclassing, removing the need for runtime lookup. (Adaptive
runtime compilers like HotSpot may be able to eliminate the need for you to worry about this
though, as they can detect usage patterns and improve performance automatically, where
possible.)

1.4.3 Incremental Development

Java carries all data-type and method-signature information with it from its source code to its
compiled byte-code form. This means that Java classes can be developed incrementally. Your
own Java classes can also be used safely with classes from other sources your compiler has
never seen. In other words, you can write new code that references binary class files, without
losing the type safety you gain from having the source code. The Java runtime system can load
new classes while an application is running, thus providing the capabilities of a dynamic linker.

A common irritation with C++ is the "fragile base class" problem. In C++, the implementation of a
base class can be effectively frozen by the fact that it has many derived classes; changing the
base class may require recompilation of the derived classes. This is an especially difficult
problem for developers of class libraries. Java avoids this problem by dynamically locating fields
within classes. As long as a class maintains a valid form of its original structure, it can evolve
without breaking other classes that are derived from it or that make use of it.

1.4.4 Dynamic Memory Management

Some of the most important differences between Java and C or C++ involve how Java manages
memory. Java eliminates ad hoc pointers and adds garbage collection and true arrays to the
language. These features eliminate many otherwise insurmountable problems with safety,
portability, and optimization.

Garbage collection alone should save countless programmers from the single largest source of
programming errors in C or C++: explicit memory allocation and deallocation. In addition to
maintaining objects in memory, the Java runtime system keeps track of all references to those
objects. When an object is no longer in use, Java automatically removes it from memory. You can
simply ignore objects you no longer use, with confidence that the interpreter will clean them up at
an appropriate time.

Sun's current implementation of Java uses a conservative mark-and-sweep garbage collector that
runs intermittently in the background, which means that most garbage collecting takes place
between 1/0O pauses, mouse clicks, and keyboard hits. Next generation runtime systems like
HotSpot have more advanced garbage collection that can even differentiate the usage patterns of
objects (such as short-lived versus long-lived) and optimize their collection. Once you get used to
garbage collection, you won't go back. Being able to write air-tight C code that juggles memory
without dropping any on the floor is an important skill, but once you become addicted to Java you
can "realloc" some of those brain cells to new tasks.

You may hear people say that Java doesn't have pointers. Strictly speaking, this statement is
true, but it's also misleading. What Java provides are references—a safe kind of pointer—and
Java is rife with them. A reference is a strongly typed handle for an object. All objects in Java,
with the exception of primitive numeric types, are accessed through references. If necessary, you



can use references to build all the normal kinds of data structures you're accustomed to building
with pointers, such as linked lists, trees, and so forth. The only difference is that with references
you have to do so in a type-safe way.

Another important difference between a reference and a pointer is that you can't do pointer
arithmetic with references (they can only point to specific objects or elements of an array). A
reference is an atomic thing; you can't manipulate the value of a reference except by assigning it
to an object. References are passed by value, and you can't reference an object through more
than a single level of indirection. The protection of references is one of the most fundamental
aspects of Java security. It means that Java code has to play by the rules; it can't peek into
places it shouldn't.

Unlike C or C++ pointers, Java references can point only to class types. There are no pointers to
methods. People often complain about this missing feature, but you will find that most tasks that
call for pointers to methods, such as callbacks, can be accomplished using interfaces and
anonymous adapter classes instead. (We will discuss these in Chapter 6, and in the Swing-
related chapters; they are heavily used in tying together graphical user interface components).

21 As of Java 1.1, there is a Method class, which lets you have a reference to a method. This is part of the
Java reflection API. You can use a Method object to construct a callback, but it's not the normal way of doing
things.

Finally, arrays in Java are true, first-class objects. They can be dynamically allocated and
assigned like other objects. Arrays know their own size and type, and although you can't directly
define or subclass array classes, they do have a well-defined inheritance relationship based on
the relationship of their base types. Having true arrays in the language alleviates much of the
need for pointer arithmetic like that in C or C++.

1.4.5 Error Handling

Java's roots are in networked devices and embedded systems. For these applications, it's
important to have robust and intelligent error management. Java has a powerful exception-
handling mechanism, somewhat like that in newer implementations of C++. Exceptions provide a
more natural and elegant way to handle errors. Exceptions allow you to separate error-handling
code from normal code, which makes for cleaner, more readable applications.

When an exception occurs, it causes the flow of program execution to be transferred to a
predesignated "catcher" block of code. The exception carries with it an object that contains
information about the situation that caused the exception. The Java compiler requires that a
method either declare the exceptions it can generate or catch and deal with them itself. This
promotes error information to the same level of importance as argument and return typing. As a
Java programmer, you know precisely what exceptional conditions you must deal with, and you
have help from the compiler in writing correct software that doesn't leave them unhandled.

1.4.6 Multithreading

Applications today require a high degree of parallelism. Even a very single- minded application
can have a complex user interface—which requires concurrent activities. As machines get faster,
users become more sensitive to waiting for unrelated tasks that seize control of their time.
Threads provide efficient multiprocessing and distribution of tasks for both client and server
applications. Java makes threads easy to use because support for them is built into the language.

Concurrency is nice, but there's more to programming with threads than just performing multiple
tasks simultaneously. In many cases, threads need to be synchronized, which can be tricky



without explicit language support. Java supports synchronization based on the monitor and
condition model developed by C.A.R. Hoare—a sort of lock and key system for accessing
resources. The keyword synchr oni zed designates methods for safe, serialized access within
an object. Only one synchronized method within the object may run at a given time. There are
also simple, primitive methods for explicit waiting and signaling between threads interested in the
same object.

Learning to program with threads is an important part of learning to program in Java. See
Chapter 8, for a discussion of this topic. For complete coverage of threads, refer to Java
Threads, by Scott Oaks and Henry Wong (O'Reilly & Associates).

1.4.7 Scalability

At the lowest level, Java programs consist of classes. Classes are intended to be small, modular
components. They can be separated physically on different systems, retrieved dynamically,
stored in a compressed format, and even cached in various distribution schemes. Over classes,
Java provides packages, a layer of structure that groups classes into functional units. Packages
provide a naming convention for organizing classes and a second level of organizational control
over the visibility of variables and methods in Java applications.

Within a package, a class is either publicly visible or protected from outside access. Packages
form another type of scope that is closer to the application level. This lends itself to building
reusable components that work together in a system. Packages also help in designing a scalable
application that can grow without becoming a bird's nest of tightly coupled code dependency.

1.5 Safety of Implementation

It's one thing to create a language that prevents you from shooting yourself in the foot; it's quite
another to create one that prevents others from shooting you in the foot.

Encapsulation is a technique for hiding data and behavior within a class; it's an important part of
object-oriented design. It helps you write clean, modular software. In most languages, however,
the visibility of data items is simply part of the relationship between the programmer and the
compiler. It's a matter of semantics, not an assertion about the actual security of the data in the
context of the running program's environment.

When Bjarne Stroustrup chose the keyword pri vat e to designate hidden members of classes in
C++, he was probably thinking about shielding you from the messy details of a class developer's
code, not the issues of shielding that developer's classes and objects from the onslaught of
someone else's viruses and Trojan horses. Arbitrary casting and pointer arithmetic in C or C++
make it trivial to violate access permissions on classes without breaking the rules of the
language. Consider the following code:

/'l C++ code
cl ass Finances {
privat e:
char creditCardNunber|[ 16];

}

mai n( ) {
Fi nances fi nances;



/'l Forge a pointer to peek inside the class
char *cardno = (char *)&fi nances;
printf("Card Nunber = %\ n", cardno);

In this little C++ drama, we have written some code that violates the encapsulation of the

Fi nances class and pulls out some secret information. This sort of shenanigan—abusing an
untyped pointer—is not possible in Java. If this example seems unrealistic, consider how
important it is to protect the foundation (system) classes of the runtime environment from similar
kinds of attacks. If untrusted code can corrupt the components that provide access to real
resources, such as the filesystem, the network, or the windowing system, it certainly has a
chance at stealing your credit card numbers.

In Visual BASIC, it's also possible to compromise the system by peeking, poking, and, under
DOS, installing interrupt handlers. Even some recent languages that have some commonalties
with Java lack important security features. For example, the Apple Newton uses an object-
oriented language called NewtonScript that is compiled into an interpreted byte-code format.
However, NewtonScript has no concept of public and private members, so a Newton application
has free reign to access any information it finds. General Magic's Telescript language is another
example of a device-independent language that does not fully address security concerns. The list
goes on ...

If a Java application is to dynamically download code from an untrusted source on the Internet
and run it alongside applications that might contain confidential information, protection has to
extend very deep. The Java security model wraps three layers of protection around imported
classes, as shown in Figure 1.3.

Figure 1.3. The Java security model
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At the outside, application-level security decisions are made by a security manager. A security
manager controls access to system resources like the filesystem, network ports, and the
windowing environment. A security manager relies on the ability of a class loader to protect basic
system classes. A class loader handles loading classes from the network. At the inner level, all
system security ultimately rests on the Java verifier, which guarantees the integrity of incoming
classes.

The Java byte-code verifier is a fixed part of the Java runtime system. Class loaders and the
security managers (or security policies to be more precise), however, are components that may
be implemented differently by different applications that load byte-code, such as applet viewers
and web browsers. All three of these pieces need to be functioning properly to ensure security in
the Java environment.®!



31 you may have seen reports about various security flaws in Java. While these weaknesses are real, it's
important to realize that they have been found in the implementations of various components, namely Sun's
byte-code verifier and Netscape's class loader and security manager, not in the basic security model itself.
One of the reasons Sun has released the source code for Java is to encourage people to search for
weaknesses, so they can be removed.

1.5.1 The Verifier

Java's first line of defense is the byte-code verifier. The verifier reads byte-code modules before
they are run and makes sure they are well-behaved and obey the basic rules of the Java
language. A trusted Java compiler won't produce code that does otherwise. However, it's possible
for a mischievous person to deliberately assemble bad code. It's the verifier's job to detect this.

Once code has been verified, it's considered safe from certain inadvertent or malicious errors. For
example, verified code can't forge references or violate access permissions on objects. It can't
perform illegal casts or use objects in unintended ways. It can't even cause certain types of
internal errors, such as overflowing or underflowing the operand stack. These fundamental
guarantees underlie all of Java's security.

You might be wondering, isn't this kind of safety implicit in lots of interpreted languages? Well,
while it's true that you shouldn't be able to corrupt the interpreter with bogus BASIC code,
remember that the protection in most interpreted languages happens at a higher level. Those
languages are likely to have heavyweight interpreters that do a great deal of runtime work, so
they are necessarily slower and more cumbersome.

By comparison, Java byte-code is a relatively light, low-level instruction set. The ability to
statically verify the Java byte-code before execution lets the Java interpreter run at full speed with
full safety, without expensive runtime checks. Of course, you are always going to pay the price of
running an interpreter, but that's not a serious problem with the speed of modern CPUs. Java
byte-code can also be compiled on the fly to native machine code, which has even less runtime
overhead.

The verifier is a type of theorem prover. It steps through the Java byte-code and applies simple,
inductive rules to determine certain aspects of how the byte-code will behave. This kind of
analysis is possible because compiled Java byte-code contains a lot more type information than
the object code of other languages of this kind. The byte-code also has to obey a few extra rules
that simplify its behavior. First, most byte-code instructions operate only on individual data types.
For example, with stack operations, there are separate instructions for object references and for
each of the numeric types in Java. Similarly, there is a different instruction for moving each type
of value into and out of a local variable.

Second, the type of object resulting from any operation is always known in advance. There are no
byte-code operations that consume values and produce more than one possible type of value as
output. As a result, it's always possible to look at the next instruction and its operands, and know
the type of value that will result.

Because an operation always produces a known type, by looking at the starting state, it's possible
to determine the types of all items on the stack and in local variables at any point in the future.
The collection of all this type information at any given time is called the type state of the stack;
this is what Java tries to analyze before it runs an application. Java doesn't know anything about
the actual values of stack and variable items at this time, just what kind of items they are.
However, this is enough information to enforce the security rules and to ensure that objects are
not manipulated illegally.



To make it feasible to analyze the type state of the stack, Java places an additional restriction on
how Java byte-code instructions are executed: all paths to the same point in the code have to
arrive with exactly the same type state.™ This restriction makes it possible for the verifier to trace
each branch of the code just once and still know the type state at all points. Thus, the verifier can
insure that instruction types and stack value types always correspond, without actually following
the execution of the code. For a more thorough explanation of all of this, see The Java Virtual
Machine, by Jon Meyer and Troy Downing (O'Reilly & Associates).

I The implications of this rule are of interest mainly to compiler writers. The rule means that Java byte-
code can't perform certain types of iterative actions within a single frame of execution. A common example
would be looping and pushing values onto the stack. This is not allowed because the path of execution
would return to the top of the loop with a potentially different type state on each pass, and there is no way
that a static analysis of the code can determine whether it obeys the security rules.

1.5.2 Class Loaders

Java adds a second layer of security with a class loader. A class loader is responsible for bringing
the byte-code for one or more Java classes into the interpreter. Every application that loads
classes from the network must use a class loader to handle this task.

After a class has been loaded and passed through the verifier, it remains associated with its class
loader. As a result, classes are effectively partitioned into separate namespaces based on their
origin. When a loaded class references another class name, the location of the new class is
provided by the original class loader. This means that classes retrieved from a specific source
can be restricted to interact only with other classes retrieved from that same location. For
example, a Java-enabled web browser can use a class loader to build a separate space for all the
classes loaded from a given uniform resource locator (URL).

The search for classes always begins with the built-in Java system classes. These classes are
loaded from the locations specified by the Java interpreter's class path (see Chapter 3). Classes
in the class path are loaded by the system only once and can't be replaced. This means that it's
impossible for an applet to replace fundamental system classes with its own versions that change
their functionality.

1.5.3 Security Managers

Finally, a security manager is responsible for making application-level security decisions. A
security manager is an object that can be installed by an application to restrict access to system
resources. The security manager is consulted every time the application tries to access items like
the filesystem, network ports, external processes, and the windowing environment, so the
security manager can allow or deny the request.

A security manager is most useful for applications that run untrusted code as part of their normal
operation. Since a Java-enabled web browser can run applets that may be retrieved from
untrusted sources on the Net, such a browser needs to install a security manager as one of its
first actions. This security manager then restricts the kinds of access allowed after that point. This
lets the application impose an effective level of trust before running an arbitrary piece of code.
And once a security manager is installed, it can't be replaced.

In Java 2, the security manager works in conjunction with an access controller that lets you
implement security policies by editing a file. Access policies can be as simple or complex as a
particular application warrants. Sometimes it's sufficient simply to deny access to all resources or
to general categories of services such as the filesystem or network. But it's also possible to make
sophisticated decisions based on high-level information. For example, a Java-enabled web
browser could use an access policy that lets users specify how much an applet is to be trusted or



that allows or denies access to specific resources on a case-by-case basis. Of course, this
assumes that the browser can determine which applets it ought to trust. We'll see how this
problem is solved shortly.

The integrity of a security manager is based on the protection afforded by the lower levels of the
Java security model. Without the guarantees provided by the verifier and the class loader, high-
level assertions about the safety of system resources are meaningless. The safety provided by
the Java byte-code verifier means that the interpreter can't be corrupted or subverted, and that
Java code has to use components as they are intended. This, in turn, means that a class loader
can guarantee that an application is using the core Java system classes and that these classes
are the only means of accessing basic system resources. With these restrictions in place, it's
possible to centralize control over those resources with a security manager.

1.6 Application and User-Level Security

There's a fine line between having enough power to do something useful and having all the
power to do anything you want. Java provides the foundation for a secure environment in which
untrusted code can be quarantined, managed, and safely executed. However, unless you are
content with keeping that code in a little black box and running it just for its own benefit, you will
have to grant it access to at least some system resources so that it can be useful. Every kind of
access carries with it certain risks and benefits. The advantages of granting an untrusted applet
access to your windowing system, for example, are that it can display information and let you
interact in a useful way. The associated risks are that the applet may instead display something
worthless, annoying, or offensive. Since most people can accept that level of risk, graphical
applets and the World Wide Web in general are possible.

At one extreme, the simple act of running an application gives it a resource, computation time,
that it may put to good use or burn frivolously. It's difficult to prevent an untrusted application from
wasting your time, or even attempting a "denial of service" attack. At the other extreme, a
powerful, trusted application may justifiably deserve access to all sorts of system resources (e.qg.,
the filesystem, process creation, network interfaces); a malicious application could wreak havoc
with these resources. The message here is that important and sometimes complex security
issues have to be addressed.

In some situations, it may be acceptable to simply ask the user to "okay" requests. Sun's HotJava
web browser can pop up a dialog box and ask the user's permission for an applet to access an
otherwise restricted file. However, we can put only so much burden on our users. An experienced
person will quickly grow tired of answering questions; an inexperienced user may not be able to
answer the questions correctly. Is it okay for me to grant an applet access to something if | don't
understand what that is?

Making decisions about what is dangerous and what is not can be difficult. Even ostensibly
harmless access, like displaying a window, can become a threat when paired with the ability for
an untrusted application to communicate from your host. The Java Security Manager provides an
option to flag windows created by an untrusted application with a special, recognizable border to
prevent it from impersonating another application and perhaps tricking you into revealing your
password or your secret recipe collection. There is also a grey area, in which an application can
do devious things that aren't quite destructive. An applet that can mail a bug report can also mail-
bomb your boss. The Java language provides the tools to implement whatever security policies
you want. However, what these policies will be ultimately depends on who you are, what you are
doing, and where you are doing it.

1.6.1 Signing Classes



Web browsers such as HotJava start by defining a few rules and some coarse levels of security
that restrict where applets may come from and what system resources they may access. These
rules are sufficient to keep the waving Duke applet from clutching your password file, but they
aren't sufficient for applications you'd like to trust with sensitive information. To fully exploit the
power of Java, we need to have some nontechnical basis on which to make reasonable decisions
about what a program can be allowed to do. This nontechnical basis is trust; basically, you trust
certain entities not to do anything that's harmful to you. For a home user, this may mean that you
trust the "Bank of Boofa" to distribute applets that let you transfer funds between your accounts,
or you may trust L.L. Bean to distribute an applet that debits your Visa account. For a company,
that may mean that you trust applets originating behind your firewall, or perhaps applets from a
few high-priority customers, to modify internal databases. In all of these cases, you don't need to
know in detail what the program is going to do and give it permission for each operation. You only
need to know that you trust your local bank.

This doesn't mean that there isn't a technical aspect to the problem of trust. Trusting your local
bank when you walk up to the ATM means one thing; trusting some web page that claims to
come from your local bank means something else entirely. It would be very difficult to
impersonate the ATM two blocks down the street (though it has been known to happen), but,
depending on your position on the Net, it's not all that difficult to impersonate a web site, or to
intercept data coming from a legitimate web site and substitute your own.

That's where cryptography comes in. Digital signatures, together with certificates, are techniques
for verifying that data truly comes from the source it claims to have come from and hasn't been
modified en route. If the Bank of Boofa signs its checkbook applet, your browser can verify that
the applet actually came from the bank, not an imposter, and hasn't been modified. Therefore,
you can tell your browser to trust applets that have the Bank of Boofa's signature. Java supports
digital signatures; the details are covered in .

1.7 Java and the World Wide Web

The application-level safety features of Java make it possible to develop new kinds of
applications that were infeasible before now. A web browser that implements the Java runtime
system can incorporate Java applets as executable content inside of documents. This means that
web pages can contain not only static hypertext information but also full-fledged interactive
applications. The added potential for use of the Web is enormous. A user can retrieve and use
software simply by navigating with a web browser. Formerly static information can be paired with
portable software for interpreting and using the information. Instead of just providing some data
for a spreadsheet, for example, a web document might contain a fully functional spreadsheet
application embedded within it that allows users to view and manipulate the information.

1.7.1 Applets

The term "applet” is used to mean a small, subordinate, or embeddable application. By
"embeddable,” we mean it's designed to be run and used within the context of a larger system. In
that sense, most programs are embedded within a computer's operating system. An operating
system manages its native applications in a variety of ways: it starts, stops, suspends, and
synchronizes applications; it provides them with certain standard resources; and it protects them
from one another by partitioning their environments.

As far as the web browser model is concerned, an applet is just another type of object to display;
it's embedded into an HTML page with a special tag. Browsers make a distinction between items
presented inline and items anchored via hypertext links and made available by external means,
such as a viewer or helper application. If you download an MPEG video clip, for instance, and
your browser doesn't natively understand MPEG, it will look for a helper application (an MPEG



player) to pass the information to. Java-enabled web browsers generally execute applets inline, in
the context of a particular document, as shown in Figure 1.4. However, less capable browsers
could initially provide some support for Java applets through an external viewer.

Figure 1.4. Applets in a web document

Wb Browser .

.
-
i t Bromisr

HTML

| a2y Securwat-Dora. =T

A Java applet is a compiled Java program, composed of classes just like any Java program.
While a simple applet may consist of only a single class, most large applets should be broken into
many classes. Each class is stored in a separate class file. The class files for an applet are
retrieved from the network as they are needed. A large applet doesn't need to retrieve all its parts
or all its data before beginning to interact with the user. Well-designed applets can take
advantage of multithreading to wait for certain resources in the background, while performing
other activities.

An applet has a four-part life cycle. When an applet is initially loaded by a web browser, it's asked
to initialize itself. The applet is then informed each time it's displayed and each time it's no longer
visible to the user. Finally, the applet is told when it's no longer needed, so that it can clean up
after itself. During its lifetime, an applet may start and suspend itself, do work, communicate with
other applications, and interact with the Web browser.

Applets are autonomous programs, but they are confined within the walls of a web browser or
applet viewer, and have to play by its rules. We'll be discussing the details of what applets can
and can't do as we explore features of the Java language. However, under the most conservative
security policies, an applet can interact only with the user and can communicate only over the
network with the host from which it originated. Other types of activities, like accessing files or
interacting directly with outside applications, are typically prevented by the security manager that
is part of the web browser or applet viewer. But aside from these restrictions, there is no
fundamental difference between a Java applet and a standalone Java application.

1.7.2 New Kinds of Media

When it was first released, Java quickly achieved a reputation for multimedia capabilities. Frankly,
this wasn't really deserved. At that point, Java provided facilities for doing simple animations and
playing audio. You could animate and play audio simultaneously, though you couldn't



synchronize the two. Still, this was a significant advance for the Web, and people thought it was
pretty impressive.

Java's multimedia capabilities have now taken shape. Java now has CD-quality sound, 3D
animation, media players that synchronize audio and video, speech synthesis and recognition,
and more. The Java Media Framework now supports most common audio and video file formats;
The Java Sound API (part of the core classes) has the ability to record sound from a computer's
microphone.

1.7.3 New Software Development Models

For some time now, people have been using visual development environments to develop user

interfaces. These environments let you generate applications by moving components around on
the screen, connecting components to each other, and so on. In short, designing a user interface
is a lot more like drawing a picture than like writing code.

For visual development environments to work well, you need to be able to create reusable
software components. That's what the JavaBeans architecture is all about: it defines a way to
package software as reusable building blocks. A graphical development tool can figure out a
component's capabilities, customize the component, and connect it to other components to build
applications. JavaBeans takes the idea of graphical development a step further. JavaBeans
components, called Beans, aren't limited to visible, user interface components: you can have
Beans that are entirely invisible and whose job is purely computational. For example, you could
have a Bean that does database access; you could connect this to a Bean that lets the user
request information from the database; and you could use another Bean to display the result. Or
you could have a set of Beans that implement the functions in a mathematical library; you could
then do numerical analysis by connecting different functions to each other. In either case, you
could "write" programs without writing a single line of code. Granted, someone would have to
write the Beans in the first place; but that's a much smaller task, and we expect markets to
develop for "off the shelf " Bean collections.

Before it can use a Bean, an application builder must find out the Bean's capabilities. There are a
few ways it can do this; the simplest is called reflection. To write a Bean that uses reflection, all
you need to do is follow some well-defined conventions (design patterns) that let the graphical
interface builder (or any other tool that wants to do the work) analyze the Bean.

If they need to, Beans can provide additional information using a process called introspection. But
even without introspection, a graphical development tool can analyze a Bean, figure out what it
can do, and let a user change the Bean's properties without writing any code.

Of course, once a development tool has customized a Bean and connected it to other Beans, it
needs a way to save the result. A process called serialization lets a tool save the Bean's current
state, along with any extra code it has written to stitch Beans together in an application.

Visual development tools that support Java Beans include IBM's VisualAge, Inprise's JBuilder
(http://www.inprise.com), WebGain's Visual Cafe (http://www.webgain.com), and Sun's
Forte for Java. By using a "bridge,” Java Beans can function inside ActiveX.

1.8 Java as a General Application Language

The Java applet APl is a framework that allows Java-enabled web browsers to manage and
display embedded Java applications within web documents. However, Java is more than just a
tool for building transportable multimedia applications. Java is a powerful, general-purpose



programming language that just happens to be safe and architecture-independent. Standalone
Java applications are not subject to the restrictions placed on applets; they can perform the same
jobs as programs written in languages like C and C++ do.

Any software that implements the Java runtime system can run Java applications. Applications
written in Java can be large or small, standalone or component-like, as in other languages. Java
applets are different from other Java applications only in that they expect to be managed by a
larger application. They are normally considered untrusted code. In this book, we will build
examples of both applets and standalone Java applications. With the exception of the few things
untrusted applets can't do, such as access files, all of the tools we examine in this book apply to
both applets and standalone Java applications.

1.9 A Java Road Map

With everything that's going on, it's hard to keep track of what's available now, what's promised,
and what has been around for some time. Here's a road map that imposes some order on Java's
past, present, and future.

1.9.1 The Past: Java 1.0 and Java 1.1

Java 1.0 provided the basic framework for Java development: the language itself plus packages
that let you write applets and simple applications. Although Java 1.0 is officially obsolete, it will be
some time before vendors catch up with the newer releases.

Java 1.1 superseded Java 1.0. It incorporated major improvements in the AWT package ( Java's
original GUI facility) and many new features. Java 1.1 remains important, because it is supported
natively by both the Netscape Navigator and Microsoft Internet Explorer browsers. For various
political reasons, the future of the browser world is uncertain; to execute applets using any
features of Java 2, you need to use the Java plug-in, which allows Netscape and IE to execute
Java 2 code.

1.9.2 The Present: Java 2

Java 2 was released in December 1998, providing many improvements and additions. The most
notable addition is Swing, which is a new user interface toolkit with capabilities far exceeding
AWT's. (Swing, AWT, and some other packages are now called the JFC, or Java Foundation
Classes.) Here's a brief overview of the most important features of the core Java 2 API:

JDBC (Java Database Connectivity)
A general facility for interacting with databases. (Introduced with Java 1.1.)
RMI (Remote Method Invocation)

Java's distributed objects system. RMI lets you call methods on objects hosted by a
server running somewhere else on the network. (Introduced with Java 1.1.)

Java Security

A facility for controlling access to system resources, combined with a uniform interface to
cryptography. Java Security is the basis for signed classes, which were discussed earlier.



JFC (Java Foundation Classes)

A catch-all for a number of new features, including the Swing user interface components;
"pluggable look-and-feel," which means the ability of the user interface to adapt itself to
the "look-and-feel" of the platform you're using; drag and drop; and accessibility, which
means the ability to integrate with special software and hardware for people with
disabilities.

Java 2D
Part of JFC; enables high-quality graphics, font manipulation, and printing.
Internationalization

The ability to write programs that adapt themselves to the language the user wants to
use; the program automatically displays text in the appropriate language. (Introduced with
Java 1.1.)

The following features aren't part of the core Java 2 definition; you may have to download them
separately. Most of them are what Sun calls "standard extensions™:

JNDI (Java Naming and Directory Interface)

A very general service for looking up resources. JNDI unifies access to directory services
like LDAP, Novell's NDS, and others.

JavaMail

A uniform API for writing email software.
Java 3D

A facility for developing applications with 3D graphics.
Java Media

Another catch-all that includes Java 2D, Java 3D, the Java Media Framework (a
framework for coordinating the display of many different kinds of media), Java Speech
(for speech recognition and synthesis), Java Sound (high-quality audio), Java TV (for
interactive television and similar applications), and others.

Java Servlets

A facility that lets you write custom Internet servers. It is most frequently used to write
web server applications, but it's much more general.

Java Cryptography

Actual implementations of cryptographic algorithms. (This package was separated from
Java Security for legal reasons.)

JavaHelp



A facility for writing help systems and incorporating them in Java programs.

Enterprise JavaBeans

A component architecture for building distributed server-side applications.

Jini
An extremely interesting catch-all that is designed to enable massively distributed
computing, including computing on common household appliances. In a few years, your
stereo may be able to execute Java programs.

Java Card

A version of Java for very small (i.e., credit card-sized) devices, which have severe
limitations on speed and memory.

In this book, we'll try to give you a taste of as many features as possible; unfortunately for us (but
fortunately for Java software developers), the Java environment has become so rich that it's
impossible to cover everything in a single book.

1.9.3 The Future

You can think of the first four years of Java development as a "big bang," followed by an

"inflationary” phase as Sun added new features, and improved old features, at an incredible rate.
Things seem to be slowing down now: new APIs aren't being announced as often, and those that
are announced tend to be more specialized. At least for the moment, the Java world is stabilizing.

But it's important to look into the new areas into which Java is headed. The most interesting of
these is consumer devices. An interesting game to play is thinking of what an everyday appliance
might be able to do if it had a Java processor in it. A common bread maker could download
"breadlets” (applets that implement bread recipes) from the Internet; your stereo wouldn't just
play CDs—it could find music sources on the Internet and perhaps even facilitate live, distributed
jam sessions using technologies like Java Sound. These devices could probably be built without
Java, but that's not saying much: after all, no software has yet been written that couldn't (in
theory) be hand-coded in assembly language. More to the point, Java (and especially Jini) make
it much easier to develop these kinds of applications in reliable, safe ways.

Until now, discussion of Java on consumer devices has been limited to visionary, hypothetical
talk. However, this is changing. There is already a version of the Java Virtual Machine that runs
on 3Com's Palm devices; JVMs for cell phones, pagers, and other personal communication
devices are on the way. While this book can't go into the details of development for such devices,
it's important to realize that the vision is becoming reality. The step from a Palm hand-held
computer to a cell phone to your VCR or television is extremely small—much smaller than the
leap from a personal computer to the Palm.

1.9.4 Availability

By the time you read this book, you should have several choices for Java development
environments and runtime systems. Sun's Java 2 SDKP! is available for Solaris, Linux, and
Windows. Visit Sun's Java web site at http://java.sun.com for more information about the Java
2 SDK. There are also Java ports for other platforms, including NetWare, HP-UX, OSF/1
(including Digital Unix), Silicon Graphics' IRIX, and various IBM operating systems (including AlX




and 0OS2). For more information, see the web pages maintained by the vendor you're interested
in. Sun maintains a web page summarizing porting efforts at http://java.sun.com/cqi-
bin/java-ports.cqi. Another good source for current information is the Java FAQ from the
comp.lang.java newsgroup.

51 The Java 2 SDK used to be called the JDK. Sun's marketing group has an unfortunate tendency to
change terminology for reasons that are no doubt clear to them, but only introduce confusion for everyone
else. In this book, we'll use SDK, even for older versions of Java that were distributed as the JDK.

There are efforts under way to produce a free clone of Java, redistributable in source form. The
Java Open Language Toolkit ( JOLT) Project is working to assemble a high-quality Java
implementation that will pass Sun's validation tests and earn a Java stamp. The JOLT Project
web page is accessible from http://www.redhat.com.

Netscape Navigator and Microsoft Internet Explorer both come with their own Java runtime
system that runs Java applets and supports SDK 1.1. Neither supports Java 2 at present,
although the newest release of Navigator (6.0) is supposed to support Java 2 and future versions
through a new "open Java" API. To ameliorate the problem in general, Sun has released a Java
plug-in that supports Java 2; it is distributed with the Java SDK for Windows.



Chapter 2. A First Application

Before getting into the details of the Java language, let's jump right into some working code. In
this chapter, we'll build a friendly little application that illustrates a number of techniques we use
throughout the book. We'll take this opportunity to introduce general features of the Java
language and of Java applications. However, many details won't be fleshed out here, but in
subsequent chapters.

This chapter also serves as a brief introduction to the object-oriented and multithreaded features
of Java. If these concepts are new to you, you can take comfort in the knowledge that
encountering them for the first time in Java should be a straightforward and pleasant experience.
If you have worked with another object-oriented or multithreaded programming environment, clear
your mind; you will especially appreciate Java's simplicity and elegance.

We can't stress enough the importance of experimentation as you learn new concepts. Don't just
examine the examples—run them. Copy the source code from the accompanying CD-ROM, or
from our web site at http://www.oreilly.com/catalog/learnjava. Compile the programs on
your machine, and run them.

If you follow along with the online examples, be sure to take some time and compile them locally.
Then, turn our examples into your example: play with them; change their behavior, break them,
fix them, and, as Java architect Arthur van Hoff would say: "Have fun!"

2.1 HelloJaval

In the tradition of introductory programming texts, we begin with Java's equivalent of the
archetypal "Hello World" application. In the spirit of our new world, we'll call it HelloJava.

We'll take four passes at this example (HelloJaval, HelloJava2, etc.), adding features and
introducing new concepts along the way. Here's a minimalist version:™!

[T All of the ready-to-run examples in this book are included on the accompanying CD-ROM. The comment
line//file: ... indicates the name of the source file.

/1file: HelloJdaval.java
public class HelloJaval extends javax.sw ng. JConponent {

public static void main(String[] args) {
j avax. swi ng. JFrame f = new j avax.sw ng. JFrane("Hel | oJaval");
f.setSize(300, 300);
f. get Cont ent Pane() . add( new Hel | oJaval( ));
f.setVisible(true);

}

public voi d pai nt Conponent (j ava. awmt . Graphics g) {
g.drawstring("Hello, Javal!", 125, 95);
}
}

Place this text in a file called HelloJaval.java. Now compile this source:

% j avac Hel | oJaval.java



This produces the Java byte-code binary class file HelloJaval.class.

You can run the application by starting the Java runtime system, specifying the class name (not
the filename) as an argument:

% j ava Hel | oJaval
(The name of the Java interpreter varies among implementations. Microsoft's is named | vi ew,

not | ava.) You should see the proclamation shown in Figure 2.1. Now congratulate yourself:
you have written your first application! Take a moment to bask in the glow of your monitor.

Figure 2.1. The HelloJaval application
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When you click on the window's close box, the window goes away, but your program will still be
running. To stop the runtime system and return control to your command-line interpreter, type
Ctrl-C or whatever key sequence stops a running application on your platform. We'll remedy this
shortcoming in a later version of the example.

HelloJaval may be a small program, but there is actually quite a bit going on behind the scenes.
Those few lines represent the tip of an iceberg. What lies under the surface are layers of
functionality provided by the Java language and its foundation class libraries. In this chapter, we'll
cover a lot of ground quickly in an effort to show you the big picture. We'll try to offer enough
detail for a firm understanding of what is happening in each example, deferring full explanations
until the appropriate chapters. This holds for both elements of the Java language and the object-
oriented concepts that apply to them. Later chapters will provide more detailed cataloging of
Java's syntax, components, and object-oriented features.

Salutations, Javal

There are many ways to say "Hello, Java!" The simplest command-line version of
Hel | oJava looks like this:

public class Hell oJavaComrandLi ne {
public static void main(String[] args) {
Systemout.println("Hello, Javal");
}
}

Weighing in at just five lines, this program uses the Syst emclass to write some text to




the console. The Hel | oJava examples in this chapter are a little lengthier; they are
structured to show off Java's user interface toolkit, Swing, and to provide a quick fly-
through of the Java language and libraries.

If we weren't concerned about the tutorial, we could create a graphic example that's just
as pithy as the command-line version, using the JOpt i onPane class:

public class Hell oJdavaSi nple {
public static void main(String[] args) {
j avax. swi ng. JOpt i onPane. showMessageDi al og(null, "Hell o,
Javal ") ;

}
}

2.1.1 Classes

The previous example defines a class named Hel | oJaval. Classes are the fundamental
building blocks of most object-oriented languages. A class in Java is very much like a class in
C++, and somewhat like a st r uct in C. It's a group of data items, with associated functions that
perform operations on this data. The data items in a class are called fields or variables; the
functions are called methods . A class might represent something concrete, like a button on a
screen or the information in a spreadsheet, or it could be something more abstract, such as a
sorting algorithm or possibly the sense of ennui in your MUD character. A hypothetical
spreadsheet class might, for example, have variables that represent the values of its individual
cells and methods that perform operations on those cells, such as "clear a row" or "compute
values." We'll talk more about this in a little while.

Our Hel | oJaval class contains an entire Java application. It holds two general types of
variables and methods: those we need for our specific application's tasks and some special
predesignated ones we provide to interact with the outside world. The Java runtime system, in
this case the | ava command-line tool, calls methods in Hel | oJaval to pass us information and
prod us to perform actions. Our simple Hel | oJaval class implements two important methods.
The first, mai n( ), is called when the application is first started. We'll talk more about it in the
next section. The second method, pai nt Conponent (), is called by Java when it's time for our
application to draw itself on the screen.

2.1.2 The main( ) Method

When you run our example, what really happens? The java command looks in the Hel | oJaval
class to see if it contains a special method called nai n( ). If it does, this method is run. The
mai n( ) method is simply an entry point for an application. It's a piece of code that you want to
be run when the application first starts.

The mai n( ) method sets up a window (a JFr ane) that will contain the visual output of the

Hel | oJaval class. What really interests us here is not the nmai n( ) method but the rest of the
class. We'll go through several incarnations of this class, adding features and methods. But the

mai n( ) method will remain largely unchanged, keeping its basic function of creating a window
that holds the HelloJava example.

Let's quickly walk through the mai n( ) method, just so you know what it does. First, mai n( )
creates a JFr ane, a window that will hold our example:



j avax. swi ng. JFrame f = new j avax.sw ng. JFrane("Hel | oJaval");

The newword in this line of code is tremendously important: | avax. swi ng. JFr anme (just
JFrane for short) is the name of a class that represents a window you can see on your screen.
The class itself is just a template, like a building plan. The new keyword tells Java to allocate
memory and initialize a new JFr ane object.

When frame windows are first created, they are very small. Our next task is to set the size to
something reasonable:

f.setSize(300, 300);

Then we create our actual example and put it inside the frame window:

f. get Cont ent Pane() . add( new Hel | oJaval( ));

Here, we're actually creating a new Hel | oJaval object and placing it inside the JFr ane we just
created.

mai n( ) 's final task is to show the frame window and its contents, which otherwise would be
invisible. An invisible window makes for a pretty boring application.

f.setVisible(true);

That's the whole nai n( ) method. As we progress through the examples in this chapter, it will
remain mostly unchanged as the Hel | oJava class evolves around it. Let's get started!

2.1.3 Classes and Objects

A class is a blueprint for a part of an application; it lists methods and variables that go into making
up that part. Many individual working copies of a given class can exist while an application is
active. These individual incarnations are called instances of the class, or objects. Two instances
of a given class may contain different data, but they always have the same methods.

As an example, consider a But t on class. There is only one But t on class, but an application can
create many different But t on objects, each one an instance of the same class. Furthermore, two
But t on instances might contain different data, perhaps giving each a different appearance and
performing a different action. In this sense, a class can be considered a mold for making the
object it represents: something like a cookie cutter stamping out working instances of itself in the
memory of the computer. As you'll see later, there's a bit more to it than that—a class can in fact
share information among its instances—nbut this explanation suffices for now. Chapter 5, has the
whole story on classes and objects.

The term object is very general and in some other contexts is used almost interchangeably with
class. Objects are the abstract entities all object-oriented languages refer to in one form or
another. We will use object as a generic term for an instance of a class. We might, therefore,
refer to an instance of the But t on class as a Button, a But t on object, or, indiscriminately, as an
object.

The mai n( ) method in the previous example creates a single instance of the Hel | oJaval
class and shows it in an instance of the JFr ane class. You could modify mai n( ) to create
many instances of Hel | oJaval, perhaps each in a separate window.



2.1.4 Variables and Class Types

In Java, every class defines a new type (data type). A variable can be of this type and then hold
instances of that class. A variable could, for example, be of type But t on and hold an instance of
the But t on class, or of type Spr eadSheet Cel | and hold a Spr eadSheet Cel | object, just as
it could be any of the more familiar types such as i nt orf | oat .

Ignoring the mai n( ) method for the moment, there is only one variable in our simple HelloJava
example. It's found in the declaration of the pai nt Conponent () method:

public voi d pai nt Conponent (java. awmt. Graphics g) {...}

Just like functions in C (and many other languages), a method in Java declares a list of variables
that hold its arguments, and it specifies the types of those arguments. Our pai nt Conponent ()
method takes one argument named (somewhat tersely) g, which is of type G aphi cs. When the
pai nt Conponent () method is invoked, a G aphi cs object is assigned to g, which we use in

the body of the method. We'll say more about pai nt Conponent () and the G aphi cs class in
a moment.

But first, a few words about variables. We have loosely referred to variables as holding objects. In
reality, variables that have class types don't so much contain objects as point to them. Class-type
variables are references to objects. A reference is a pointer to or a name for an object.

If you declare a class-type variable without assigning it to an object, it doesn't point to anything.
It's assigned the default value of nul | , meaning "no value." If you try to use a variable with a null
value as if it were pointing to a real object, a runtime error (Nul | Poi nt er Except i on) occurs.

Where do you get an instance of a class to assign to a variable in the first place? The answer is
through the use of the new operator. We'll examine object creation a little later in the chapter.

2.1.5 Inheritance

Java classes are arranged in a parent-child hierarchy, in which the parent and child are known as
the superclass and subclass, respectively. We'll explore these concepts fully in Chapter 6. In
Java, every class has exactly one superclass (a single parent), but possibly many subclasses.
The only exception to this rule is the Obj ect class, which sits atop the entire class hierarchy; it
has no superclass.

The declaration of our class in the previous example uses the keyword ext ends to specify that
Hel | oJaval is a subclass of the JConponent class:

public class Hell oJaval extends javax.sw ng. JConponent {...}

A subclass may be allowed to inherit some or all of the variables and methods of its superclass.
Through inheritance, the subclass can use those variables and methods as if it has declared
them itself. A subclass can add variables and methods of its own, and it can also override the
meaning of inherited variables and methods. When we use a subclass, overridden variables and
methods are hidden (replaced) by the subclass's own versions of them. In this way, inheritance
provides a powerful mechanism whereby a subclass can refine or extend its superclass.

For example, the hypothetical spreadsheet class might be subclassed to produce a new scientific
spreadsheet class with extra mathematical functions and special built-in constants. In this case,



the source code for the scientific spreadsheet might declare methods for the added mathematical
functions and variables for the special constants, but the new class automatically has all the
variables and methods that constitute the normal functionality of a spreadsheet; they are inherited
from the parent spreadsheet class. This means the scientific spreadsheet maintains its identity as
a spreadsheet, and we can use it anywhere the simpler spreadsheet is used.

Our Hel | oJaval class is a subclass of the JConponent class and inherits many variables and
methods not explicitly declared in our source code. These members operate in the same way as
the ones we add or override.

2.1.6 The JComponent Class

The JConponent class provides the framework for building user interface components (called
controls or widgets in other windowing systems). Particular components, such as buttons, labels,
and list boxes, are implemented as subclasses of JConponent .

We override methods in such a subclass to implement the behavior of our particular component.
This may sound restrictive, as if we are limited to some predefined set of routines, but that is not
the case at all. Keep in mind that the methods we are talking about are means of interacting with
the windowing system. A realistic application might involve hundreds or even thousands of
classes, with legions of methods and variables and multiple threads of execution. The vast
majority of these are related to the particulars of our job. The inherited methods of the
JConponent class, and of other predefined classes, serve as a framework on which to hang
code that handles certain types of events and performs special tasks.

The pai nt Conponent () method is an important method of the JConponent class; we
override it to implement the way our particular component displays itself on the screen. The
default behavior of pai nt Conponent () doesn't do any drawing at all; here, we're overriding
pai nt Conponent () to do something interesting. We don't override any of the other inherited
members of JConponent because they provide basic functionality and reasonable defaults for
this (trivial) example. As HelloJava grows, we'll delve deeper into the inherited members and use
additional methods. We will also add some application-specific methods and variables for the
needs of HelloJava.

JConponent is really the tip of another iceberg called SwingSwing. Swing is Java's user
interface toolkit; we'll discuss it in some detail in Chapter 13 through Chapter 18.

2.1.7 Relationships and Finger Pointing

We can correctly refer to Hel | oJaval as a JConponent because subclassing can be thought of
as creating an "is a" relationship, in which the subclass is a kind of its superclass. Hel | oJaval is
therefore a kind of JConponent . When we refer to a kind of object, we mean any instance of that
object's class or any of its subclasses. Later, we will look more closely at the Java class hierarchy
and see that JConponent is itself a subclass of the Cont ai ner class, which is further derived
from a class called Conponent , and so on, as shown in Figure 2.2.

Figure 2.2. Part of the Java class hierarchy



In this sense, a Hel | oJaval object is a kind of JConponent , which is a kind of Cont ai ner ,
and each of these can ultimately be considered to be a kind of Conponent . It's from these
classes that Hel | oJaval inherits its basic graphical user interface functionality and the ability to
have other graphical components embedded within it.

Conponent is a subclass of the top-level Chj ect class, so all of these classes define kinds of
(hj ect s. Every other class in the Java API inherits behavior from Obj ect , which defines a few
basic methods, as you'll see in Chapter 7. We'll continue to use the word object (lowercase 0) in
a generic way to refer to an instance of any class; we'll use Cbj ect to refer specifically to that
class.

2.1.8 Packages

In our previous example, the JConponent class is referenced by its fully qualified name
j avax. swi ng. JConponent :

public class Hell oJaval extends javax.sw ng. JConponent {...}

The prefix on the class hame identifies it as belonging to the | avax. swi ng package. Packages
provide a means for organizing Java classes. A package is a group of Java classes that are
related by purpose or by application. Classes in the same package have special access privileges
with respect to one another and may be designed to work together. Package names are
hierarchical and are used somewhat like Internet domain and host names, to distinguish groups
of classes by organization and application. Classes may be dynamically loaded over networks
from arbitrary locations; within this context, packages provide a crude namespace of Java
classes.

[21 There are many efforts under way to find a general solution to the problem of locating resources in a
globally distributed computing environment. The Uniform Resource Identifier Working Group of the IETF has
proposed Uniform Resource Names (URNs). A URN would be a more abstract and persistent identifier that
would be resolved to a URL through the use of a name service. We can imagine a day when there will exist
a global namespace of trillions of persistent objects forming the infrastructure for all computing resources.
Java provides an important evolutionary step in this direction.

] avax. swi ng identifies a particular package that contains classes related to Swing, Java 2's
fancy graphical user interface toolkit. ] avax. swi ng. JConponent identifies a specific class, the
JConponent class, within that package. The | ava. hierarchy is special. Any package that



begins with | ava. is part of the core Java APl and is available on any platform that supports
Java. While | avax normally denotes a standard extension to the core platform, | avax. swi ng is
an exception—it really is part of the core API. Figure 2.3 illustrates some of the core Java
packages, showing a representative class or two from each.

Figure 2.3. Some core Java packages
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Some other notable core packages include: | ava. | ang, which contains fundamental classes
needed by the Java language itself; | ava. awt , which contains classes of the pre-Java 2
Abstract Window Toolkit; and | ava. net , which contains the networking classes.

A few classes contain methods that are not written in Java, but are instead part of the native Java
implementation on a particular platform. These are the only classes that have to be ported to a
new platform. They form the basis for all interaction with the operating system. All other classes
are built on or around these and are completely platform-independent.

2.1.9 The paintComponent() Method

The source for our Hel | oJaval class defines a method, pai nt Conponent (), that overrides
the pai nt Conponent () method from the JConponent class:

public voi d pai nt Conponent (j ava. awmt . Graphics g) {
g.drawstring("Hello, Javal!", 125, 95);
}

The pai nt Conponent () method is called when it's time for our example to draw itself on the
screen. It takes a single argument, a G- aphi cs object, and doesn't return any type of value
(voi d) to its caller.

Modifiers are keywords placed before classes, variables, and methods to alter their accessibility,
behavior, or semantics. pai nt Conponent () is declared as publ i ¢, which means it can be
invoked (called) by methods in classes other than Hel | oJaval. In this case, it's the Java
windowing environment that is calling our pai nt Conponent () method. A method or variable
declared as pri vat e is inaccessible from outside of its class.



The G aphi cs object, an instance of the Gr aphi cs class, represents a particular graphical
drawing area. (It is also called a graphics context.) It contains methods that can be used to draw
in this area, and variables that represent characteristics such as clipping or drawing modes. The
particular G- aphi cs object we are passed in the pai nt Conponent () method corresponds to
our component's area of the screen.

The G aphi cs class provides methods for rendering shapes, images, and text. In Hel | oJaval,
we invoke the dr awSt ri ng( ) method of our G- aphi cs object to scrawl our message at the
specified coordinates. (For a description of the methods available in the G- aphi cs class, see

Chapter 17.)

As in C++, a method or variable of an object is accessed in a hierarchical way by appending a dot
(- ) and its name to the object that holds it. We invoked the dr awSt ri ng( ) method of the
Graphi cs object (referenced by our g variable) in this way:

g.drawstring("Hello, Javal!", 125, 95);

You may need to get used to the idea that our application is drawn by a method that is called by
an outside agent at arbitrary times. How can we do anything useful with this? How do we control
what gets done and when? These answers will be forthcoming. For now, just think about how you
would structure applications that draw themselves on command.

2.2 HelloJava2: The Sequel

Let's make our application a little more interactive, shall we? The following improvement,
Hel | oJavaZ2, allows us to drag the message around with the mouse.

Hel | oJava? is a new application—another subclass of the JConponent class. In that sense,
it's a sibling of Hel | oJaval. Having just seen inheritance at work, you might wonder why we
aren't creating a subclass of Hel | oJaval and exploiting inheritance to build upon our previous
example and extend its functionality. Well, in this case, that would not necessarily be an
advantage, and for clarity we simply start over.B!

B3I you are left to consider whether such subclassing would even make sense. Should Hel | oJavaz? really
be a kind of Hel | oJava? Are we looking for refinement or just code reuse?

Here is Hel | oJavaz:

/1file: HelloJdava2.java
i nport java.awt.*;

i nport java.awt.event.*;
i nport javax.sw ng. *;

public class HelloJava2
ext ends JConponent inplenents MouselMti onLi stener {

/'l Coordinates for the nessage
i nt messageX = 125, nessageY = 95;
String theMessage;

public Hell oJava2(String nessage) {
t heMessage = nessage;
addMouselMbt i onLi stener(this);



}

public void pai nt Conponent (G aphics g) {
g.drawSt ri ng(t heMessage, nessageX, nessagey);
}

public void nouseDragged( MbuseEvent e) ({
/1l Save the nouse coordi nates and pai nt the nessage.
messageX = e.get X( );
nmessageY = e.getY( );
repaint( );

public void nmouseMoved( MbuseEvent e) {}

public static void main(String[] args) {
JFrame f = new JFrane("Hel |l oJava2");
/1 Make the application exit when the wi ndow is cl osed.
f.addW ndowLi st ener (new W ndowAdapter( ) {
public void wi ndowC osi ng( WndowEvent we) { Systemexit(0); }
1)
f.setSize(300, 300);
f. get Cont ent Pane( ).add(new Hel |l oJava2("Hello, Javal"));
f.setVisible(true);

}
}

Two slashes in a row indicates that the rest of the line is a comment. We've added a few
comments to Hel | oJavaZ to help you keep track of everything.

Place the text of this example in a file called HelloJava2.java and compile it as before. You should
get a new class file, HelloJava2.class, as a result.

To run the new example, use the following command line:

% j ava Hel | oJava2

Feel free to substitute your own salacious comment for the "Hello, Java!" message, and enjoy
many hours of fun, dragging the text around with your mouse.

2.2.1 The import Statement

So, what have we added? First you may notice that a few lines are now hovering above our class:

i mport java.awt.*;
i mport java.awt.event.*;
i mport javax.sw ng.*;

public class Hell oJava2
The i npor t statement lists external classes to use in this file and tells the compiler where to look

for them. In our first example, we designated the JConponent class as the superclass of
Hel | oJaval. JConponent was not defined by us, and the compiler therefore had to look



elsewhere for it. In that case, we referred to JConponent by its fully qualified name, which is
j avax. swi ng. JConponent . The JConponent class and all the other classes in the
J avax. swi ng package are stored in a standard location, known to the compiler.

In this example, the statement | nport | avax. swi ng. * enables us to refer to all the classes in
the | avax. swi ng package by their simple names. For example, we don't have to use fully
qualified names to refer to the JConponent and JFr ane classes. Our current example uses only
the G aphi cs class from the | ava. awt package. So we could have used | npor t

j ava. awt . G aphi cs instead of using the wildcard * to import all of the AWT package's
classes. However, we are anticipating using several more classes from this package in the
upcoming examples.

We also import all the classes from the package | ava. awt . event ; these classes provide the
Event objects that we use to communicate with the user. By listening for events, we find out
when the user moved the mouse, clicked a button, and so on. Notice that importing | ava. awt . *
doesn't automatically import the event package. The asterisk imports only the classes in a
particular package, not other packages. Packages don't contain other packages, even if the
hierarchical naming scheme would seem to imply such a thing.

The i npor t statement may seem a bit like the C or C++ preprocessor #i ncl ude statement,
which injects header files into programs at the appropriate places. This is not true; there are no
header files in Java. The import statement does not copy any code into a source file. It's just a
convenience. Think of it as "introducing” one or more external classes to the compiler; after
they've been introduced, you can call them by their simple names, instead of by their fully-
qualified names.

2.2.2 Instance Variables

We have added some variables to our example:

i nt messageX = 125, nessageY = 95;
String theMessage;

nmessageX and nessage are integers that hold the current coordinates of our movable
message. They are initialized to default values, which should place the message somewhere
near the center of the window. Java integers are always 32-bit signed numbers. There is no
fretting about what architecture your code is running on; numeric types in Java are precisely
defined. The variable t heMessage is of type St ri ng and can hold instances of the St ri ng
class.

You should note that these three variables are declared inside the braces of the class definition,
but not inside any particular method in that class. These variables are called instance variables or
member variables because they belong to the entire class, and copies of them appear in each
separate instance of the class. Instance variables are always visible (usable) in any of the
methods inside their class. Depending on their modifiers, they may also be accessible from
outside the class.

Unless otherwise initialized, instance variables are set to a default value of O (zero), f al se, or
nul I . Numeric types are set to zero, boolean variables are setto f al se, and class type
variables always have their value set to nul | , which means "no value.” Attempting to use an
object with a nul | value results in a runtime error.



Instance variables differ from method arguments and other variables that are declared inside of a
single method. The latter are called local variables. They are effectively private variables that can
be seen only by code inside the method. Java doesn't initialize local variables, so you must
assign values yourself. If you try to use a local variable that has not yet been assigned a value,
your code will generate a compile-time error. Local variables live only as long as the method is
executing and then disappear (which is fine, since nothing outside of the method can see them
anyway). Each time the method is invoked, its local variables are recreated and must be assigned
values.

We have made some changes to our previously stodgy pai nt Conponent () method. All of the
arguments in the call to dr awSt ri ng( ) are now variables.

2.2.3 Constructors

The Hel | oJavaZ2 class includes a special kind of a method called a constructor. A constructor is
called to set up a new instance of a class. When a new object is created, Java allocates storage
for it, sets instance variables to their default values, and then calls the constructor method for the
class to do whatever application-level setup is required.

A constructor method is a method with the same name as its class. For example, the constructor
for the Hel | oJavaZ2 class is called Hel | oJava2( ). Constructors don't have a return type; by
definition, they return an object of that class. But like other methods, constructors can take
arguments. Their sole mission in life is to configure and initialize newly born class instances,
possibly using information passed to them in parameters.

An object is created by using the new operator with the constructor for the class and any
necessary arguments. The resulting object instance is returned as a value. In our example, a new
Hel | oJava2 is created in the mai n( ) method, in this line:

f. get Cont ent Pane( ).add(new Hel | oJava2("Hell o, Java!"));

This line actually does three things. The following lines are equivalent, and a little easier to
understand:

Hel | oJava2 newobj
Cont ai ner cont ent

= new Hel | oJava2("Hell o, Javal");
cont ent . add( newobj ) ;

f. get Cont ent Pane( );

The first line is the important one, where a new Hel | oJava?2 object is created. The Hel | oJava2
constructor takes a St r i ng as an argument and, as it turns out, uses it to set the message that is
displayed in the window. A class could also provide methods that allow us to configure an object
manually after it's created or to change its configuration at a later time. Many classes do both; the
constructor simply takes its arguments and passes them to the appropriate methods or variables.
The Hel | oJavaZ class, for example, could have a public method, set Message( ), that
allowed us to set the message at any time. Constructors with parameters are therefore a
convenience that allows a sort of shorthand to set up a new object.

Hel | oJavaZ2's constructor does two things: it sets the text of the t helVessage instance variable,
and it tells the system "Hey, I'm interested in anything that happens involving the mouse™:

public Hell oJava2(String nessage) {
t heMessage = nessage;
addMouseMbt i onLi stener(this);



So what, you may ask, is the type of the argument to the Hel | oJavaZ2 constructor, back in the
mai n( ) method? It, too, is a St r i ng. With a little magic from the Java compiler, quoted strings
in Java source code are turned into St r i ng objects. A bit of funny business is going on here, but
it's simply for convenience. (See Chapter 9, for a complete discussion of the St ri ng class.)

We can use a special read-only variable, called t hi s , to explicitly refer to our object. A method
can use t hi s to refer to the instance of the object that holds it. The following two statements are
therefore equivalent ways to assign a value to an instance variable:

t heMessage = nessage;
or:

thi s.theMessage = nessage;

We'll always use the shorter, implicit, form to refer to instance variables. But we'll need the t hi s
variable when we have to pass a reference to our object to a method in another class. We often
do this so that methods in other classes can invoke our public methods (a callback, explained
later in this chapter) or use our public variables.

The other method that we call in Hel | oJavaZ2's constructor is addMVbuse-NVot i onLi st ener (
) . This method is part of the event mechanism, which we discuss next.

2.2.4 Events

The last two methods of Hel | cJavaZ2 let us get information from the mouse. Each time the user
performs an action, such as pressing a key on the keyboard, moving the mouse, or perhaps
banging his or her head against a touch-sensitive screen, Java generates an event. An event
represents an action that has occurred; it contains information about the action, such as its time
and location. Most events are associated with a particular graphical user interface (GUI)
component in an application. A keystroke, for instance, could correspond to a character being
typed into a particular text entry field. Pressing a mouse button could activate a particular button
on the screen. Even just moving the mouse within a certain area of the screen could be intended
to trigger effects such as highlighting or changing the cursor's shape.

The way events work was one of the major changes between Java 1.0 and Java 1.1. We're going
to talk about the Java 1.1 (and later) events only; they're a big improvement, and there's no sense
in learning yesterday's news. In Java 1.1 and later, there are many different event classes
including MouseEvent , KeyEvent , and Act | onEvent . For the most part, the meaning of these
events is fairly intuitive. A MbuseEvent occurs when the user does something with the mouse, a
KeyEvent occurs when the user types a key, and so on. Act i onEvent is a little special; we'll
see it at work later in this chapter in our third version of HelloJava. For now, we'll focus on dealing
with a MbuseEvent .

The various GUI components in Java generate events. For example, if you click the mouse inside
a component, the component generates a mouse event. (We can view events as a general-
purpose way to communicate between Java objects; but for the moment, let's limit ourselves to
the simplest case.) In Java 1.1 and later, any object can ask to receive the events generated by
another component. We will call the object that wants to receive events a "listener.” For example,
to declare that a listener wants to receive a component's mouse-motion events, you invoke that



component's addMbuselMbt i onLi st ener () method, specifying the listener object as an
argument. That's what our example is doing in its constructor. In this case, the component is
calling its own addMouselMot | onLi st ener () method, with the argument t hi s, meaning "l
want to receive my own mouse-motion events."

That's how we register to receive events. But how do we actually get them? That's what the two
remaining methods in our class are for. The nouseDr agged( ) method is called automatically
to receive the event generated whenever the user drags the mouse—that is, moves the mouse
with any button pressed. The nouseMoved( ) method is called whenever the user moves the
mouse over the area without pressing a button. Our nouseMbved( ) method is boring: it doesn't
do anything. We're ignoring simple mouse motions.

nmouseDragged( ) has a bit more meat to it. It is called repeatedly to give us updates on the
position of the mouse. Here it is:

publ i c voi d nouseDragged( MouseEvent e) {
nmessageX = e.get X( );
nmessageY = e.getY( );
repaint( );

}

The first argument to nouseDr agged( ) isa MouseEvent object, e, that contains all the
information we need to know about this event. We ask the MouseEvent to tell us the x and y
coordinates of the mouse's current position by calling its get X( ) and get Y( ) methods. These
are saved in the nessageX and nessageY instance variables. Now, having changed the
coordinates for the message, we would like Hel | oJava? to redraw itself. We do this by calling
repai nt (), which asks the system to redraw the screen at a later time. We can't call

pai nt Conponent () directly because we don't have a graphics context to pass to it.

There's one other place where we've added an event handler: the nmai n( ) method. There, we
created an event handler that shuts down the application (by calling Syst em exi t () ) when
the user closes our main window. The syntax might look a little weird; we've used something
tricky called an inner class to get the job done. Inner classes are discussed in Chapter 6.
They're very useful for event handlers.

The real beauty of the event model is that you have to handle only the kinds of events you want.
If you don't care about keyboard events, you just don't register a listener for them; the user can
type all he or she wants, and you won't be bothered. Java 1.1 and Java 2 don't go around asking
potential recipients whether they might be interested in some event, as happened in Java 1.0. If
there are no listeners for a particular kind of event, Java won't even generate it. The result is that
event handling is quite efficient.

We've danced around one question that may be bothering you by now: how does the system
know to call nrouseDr agged( ) and nouseMoved( ) ? And why do we have to supply a
mouselMbved( ) method that doesn't do anything? The answer to these questions has to do with
interfaces. We'll discuss interfaces after clearing up some unfinished business with r epai nt ().

2.2.5 The repaint() Method

We can use the r epai nt () method of the JConponent class to request our component be
redrawn. r epai nt () causes the Java windowing system to schedule a call to our



pai nt Conponent () method at the next possible time; Java supplies the necessary G aphi cs
object, as shown in Figure 2.4.

Figure 2.4. Invoking the repaint() method
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This mode of operation isn't just an inconvenience brought about by not having the right graphics
context handy at the moment. The foremost advantage to this mode of operation is that the
repainting is handled by someone else, while we are free to go about our business. The Java
system has a separate, dedicated thread of execution that handles all r epai nt () requests. It
can schedule and consolidate r epai nt () requests as necessary, which helps to prevent the
windowing system from being overwhelmed during painting-intensive situations like scrolling.
Another advantage is that all of the painting functionality can be kept in our pai nt Conponent (

) method; we aren't tempted to spread it throughout the application.

2.2.6 Interfaces

Now it's time to face up to the question we avoided earlier: how does the system know to call
mouseDragged( ) when a mouse event occurs? Is it simply a matter of knowing that
mouseDragged( ) is some magic name that our event handling method must have? Not quite;
the answer to the question touches on the discussion of interfaces, which are one of the most
important features of the Java language.

The first sign of an interface comes on the line of code that introduces the Hel | cJavaZ2 class: we
say that the class implements the Mbuselbt i onLi st ener interface. Essentially, an interface is
a list of methods that the class must have; this particular interface requires our class to have
methods called nouseDr agged( ) and nouselMbved( ). The interface doesn't say what these
methods have to do—and indeed, nouseMbved( ) doesn't do anything. It does say that the
methods must take a MbuseEvent as an argument and return voi d (i.e., no return value).

Another way of looking at an interface is as a contract between you, the code developer, and the
compiler. By saying that your class implements the MouselMbt i onLi st ener interface, you're
saying that these methods will be available for other parts of the system to call. If you don't
provide them, a compilation error will occur.

But that's not the only way interfaces impact this program. An interface also acts like a class. For
example, a method could return a MouselMbt i onLi st ener or take a Mbuselbt i onLi st ener
as an argument. This means that you don't care about the object's class; the only requirement is
that the object implement the given interface. addVbuselbt i onLi st ener () is such a
method: its argument must be an object that implements the Mbuselbt | onLi st ener interface.
The argument we passist hi s, the Hel | oJavaZ2 object itself. The fact that it's an instance of
JConponent is irrelevant—it could be a Cooki e, an Aar dvar k, or any other class we dream up.
What's important is that it implements Mbuselbt i onLi st ener, and thus declares that it will
have the two named methods. That's why we need a nouseMbved( ) method, even though the
one we supplied doesn't do anything: the Mbuselbt i onLi st ener interface says we have to
have one.



In other languages, you'd handle this problem by passing a function pointer; for example, in C,
the argument to addMVbuselbt i onLi st ener () might be a pointer to the function you want to
have called when an event occurs. This technique is called a callback. For a variety of reasons,
the Java language has eliminated function pointers. Instead, we use interfaces to make contracts
between classes and the compiler. (Some new features of the language make it easier to do
something similar to a callback, but that's beyond the scope of this discussion.)

The Java distribution comes with many interfaces that define what classes have to do in various
situations. This idea of a contract between the compiler and a class is very important. There are
many situations like the one we just saw, where you don't care what class something is, you just
care that it has some capability, like listening for mouse events. Interfaces give you a way of
acting on objects based on their capabilities, without knowing or caring about their actual type.

Furthermore, interfaces provide an important escape clause to the Java rule that any new class
can extend only a single class ("single inheritance™). They provide most of the advantages of
multiple inheritance (a feature of languages like C++) without the confusion. A class in Java can
extend only one class but can implement as many interfaces as it wants; our next example will
implement two interfaces, and the final example in this chapter will implement three. In many
ways, interfaces are almost like classes, but not quite. They can be used as data types, they can
even extend other interfaces (but not classes), and can be inherited by classes (if class A
implements interface B, subclasses of A also implement B). The crucial difference is that classes
don't actually inherit methods from interfaces; the interfaces merely specify the methods the class
must have.

2.3 HelloJava3: The Button Strikes!

Well, now that we have those concepts under control, we can move on to some fun stuff.

Hel | oJava3 brings us a new graphical interface component: the JBut t on.? We add a

JBut t on component to our application that changes the color of our text each time the button is
pressed. The draggable-message capability is still there, too. Our new example is:

[T Why isn't it just called a But t on? But t on is the name that was used in Java's original GUI toolkit, the
Abstract Windowing Toolkit (AWT). AWT had some significant shortcomings, so it was extended and
essentially replaced by Swing in Java 2. Since AWT already took the reasonable names such as But t on
and MenuBar , Swing user interface components have names that are prefixed with "J", like JBut t on and
JMenuBar .

/1file: HelloJdava3.java
i nport java.awt.*;

i nport java.awt.event.*;
i nport javax.swi ng. *;

public class Hell oJava3
ext ends JConponent
i npl enents MouseMbti onLi stener, ActionListener {

/'l Coordinates for the nessage
i nt messageX = 125, nessageY = 95;
String theMessage;

JButton theButton;
// Current index into sonmeColors

i nt col orl ndex;
static Color[] someColors = { Color.black, Color.red,



Col or. green, Col or.blue, Color.nmgenta };

public HelloJava3(String nessage) ({
t heMessage = nessage;
t heButton = new JButton("Change Col or");
set Layout (new Fl owLayout ( ));
add(t heButton);
t heBut t on. addAct i onLi st ener (this);
addMbuseMbt i onLi st ener (this);

}

public void pai nt Conponent (G aphics g) {
g.drawSt ri ng(t heMessage, nessageX, nessagey);
}

public void nouseDragged( MbuseEvent e) ({
/1l Save the nouse coordi nates and pai nt the nessage.

nmessageX = e.get X( );
nmessageY = e.getY( );
repaint( );

}

public void nmouseMoved( MbuseEvent e) {}

public void actionPerformed(ActionEvent e) {
/1 Did somebody push our button?
if (e.getSource( ) == theButton)
changeCol or ( );
}

synchroni zed private void changeCol or( ) {
/1 Change the index to the next color.
if (++col orl ndex == soneCol ors. | ength)
col orl ndex = 0;
set Foreground(currentColor( )); // Use the new col or.
repaint( ); // Paint again so we can see the change.

}

synchroni zed private Color currentColor( ) {
return soneCol or s[ col or | ndex] ;

}

public static void main(String[] args) {
JFrame f = new JFrane("Hell oJava3");
/1 Make the application exit when the wi ndow is cl osed.
f.addW ndowLi st ener (new W ndowAdapter( ) {
public void w ndowC osi ng( WndowEvent we) { Systemexit(0); }
1)
f.setSize(300, 300);
f.get Cont ent Pane( ).add(new Hel |l oJava3("Hell o, Java!"));
f.setVisible(true);



Create Hel | oJava3 in the same way as the other applications. Run the example, and you

should see the display shown in Figure 2.5. Drag the text. Each time you press the button the
color should change. Call your friends! They should be duly impressed.

Figure 2.5. The HelloJava3 application
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So what have we added this time? Well, for starters we have a new variable:
JButton theButton;

The t heBut t on variable is of type JBut t on and is going to hold an instance of the
J avax. swi ng. JBut t on class. The JBut t on class, as you might expect, represents a graphical
button, like other buttons in your windowing system.

Three additional lines in the constructor create the button and display it:

t heButton = new JButton("Change Col or");
set Layout (new Fl owLayout ( ));
add(t heButton);

In the first line, the new keyword creates an instance of the JBut t on class. Recall that the
variable we have declared is just an empty reference and doesn't yet point to a real object—in
this case, an instance of the JBut t on class. This is a fundamental and important concept. The
new operator provides the general mechanism for instantiating objects. It's the feature of the Java
language that creates a new instance of a specified class. It arranges for Java to allocate storage
for the object and then calls the constructor method of the object's class to initialize it.

2.3.1 Method Overloading

JBut t on has more than one constructor. A class can have multiple constructors, each taking
different parameters and presumably using them to do different kinds of setup. When there are
multiple constructors for a class, Java chooses the correct one based on the types of arguments
that are passed to it. We call the JBut t on constructor and pass it a St r i ng argument, so Java
locates the constructor method of the JBut t on class that takes a single St r i ng argument and
uses it to set up the object. This is called method overloading. All methods in Java, not just
constructors, can be overloaded,; this is one aspect of the object-oriented programming principle
of polymorphism .

Overloaded constructors generally provide a convenient way to initialize a new object. The
JBut t on constructor we've used sets the text of the button as it is created:

t heButton = new JButton("Change Col or");

This is shorthand for creating the button and setting its label, like this:



theButton = new JButton( );
t heBut t on. set Text (" Change Col or");

2.3.2 Garbage Collection

We've told you how to create a new object with the new operator, but we haven't said anything
about how to get rid of an object when you are done with it. If you are a C programmer, you're
probably wondering why not. The reason is that you don't have to do anything to get rid of objects
when you are done with them.

The Java runtime system uses a garbage collection mechanism to deal with objects no longer in
use. The garbage collector sweeps up objects not referenced by any variables and removes them
from memory. Garbage collection is one of the most important features of Java. It frees you from
the error-prone task of having to worry about details of memory allocation and deallocation.

2.3.3 Components

We have used the terms "component” and "container" somewhat loosely to describe graphical
elements of Java applications. But these terms are the names of actual classes in the | ava. awt
package.

Conponent is a base class from which all of Java's GUI components are derived. It contains
variables that represent the location, shape, general appearance, and status of the object, as well
as methods for basic painting and event handling. | avax. swi ng. JConponent extends the
fundamental Conrponent class for the Swing toolkit. The pai nt Conponent () method we have
been using in our example is inherited from the JConponent class. Hel | oJava3 is a kind of
JConmponent and inherits all of its public members, just as other (perhaps simpler) types of GUI
components do.

The JBut t on class is also derived from JConponent and therefore shares this functionality.
This means that the developer of the JBut t on class had methods like pai nt Conponent ()
available with which to implement the behavior of the JBut t on object, just as we did when
creating our example. What's exciting is that we are perfectly free to further subclass components
like JBut t on and override their behavior to create our own special types of user-interface
components. JBut t on and Hel | oJava3 are, in this respect, equivalent types of things.

2.3.4 Containers

The Cont ai ner class is an extended type of Conponent that maintains a list of child
components and helps to group them. The Cont ai ner causes its children to be displayed and
arranges them on the screen according to a particular layout strategy. A Cont ai ner also
commonly arranges to receive events related to its child components. This strategy gives us a
great deal of flexibility in managing interface components. We implement the strategy here by
having JBut t on's container, Hel | oJava3, deal with the button's events. (Alternatively, we could
create a smart button that handles its own clicks, by subclassing the JBut t on class and
overriding certain methods to deal with the action of being pressed.)

Remember that a Cont ai ner is a Conponent , too. It can be placed alongside other
Conponent objects in other Cont ai ner s, in a hierarchical fashion, as shown in Figure 2.6. Our
Hel | oJava3 class is a kind of Cont ai ner and can therefore hold and manage other Java
components and containers like buttons, sliders, text fields, and panels.



Figure 2.6. Layout of Java containers and components
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In Figure 2.6, the italicized items are Conponent s, and the bold items are Cont ai ner s. The
keypad is implemented as a container object that manages a number of keys. The keypad itself is
contained in the G znoTool container object.

Since JConponent descends from Cont ai ner , it can be both a component and a container. In
fact, we've already used it in this capacity in the Hel | oJava3 example. It does its own drawing
and handles events, just like any component. But it also contains a button, just like any container.

2.3.5 Layout

Having created a JBut t on object, we need to place it in the container (Hel | oJava3 ), but
where? An object called a Layout Manager determines the location within the Hel | cJava3
container at which to display the JBut t on. A Layout Manager object embodies a particular
scheme for arranging components on the screen and adjusting their sizes. You'll learn more
about layout managers in Chapter 16. There are several standard layout managers to choose
from, and we can, of course, create new ones. In our case, we specify one of the standard
managers, a Fl owlLayout . The net result is that the button is centered at the top of the

Hel | oJava3 container:

set Layout (new Fl owLayout ( ));

To add the button to the layout, we invoke the add( ) method that Hel | oJava3 inherits from
Cont ai ner, passing the JBut t on object as a parameter:

add(t heButton);

add( ) is a method inherited by our class from the Cont ai ner class. It appends our JBut t on
to the list of components that the Hel | oJava3 container manages. Thereafter, Hel | oJava3 is
responsible for the JBut t on: it causes the button to be displayed and it determines where in its
window the button should be placed.

2.3.6 Subclassing and Subtypes

If you look up the add( ) method of the Cont ai ner class, you'll see that it takes a Conponent
object as an argument. But in our example we've given it a JBut t on object. What's going on?



JBut t on is a subclass, indirectly, of the Conponent class (eventually). Because a subclass is a
kind of its superclass and has, at minimum, the same public methods and variables, we can use
an instance of a subclass anywhere we use an instance of its superclass. This is a very important
concept, and it's a second aspect of the object-oriented principle of polymorphism. JBut t on is a
kind of Conponent , so any method that expects a Conponent as an argument will accept a
JBut t on.

2.3.7 More Events and Interfaces

Now that we have a JBut t on, we need some way to communicate with it: that is, to get the
events it generates. We could just listen for mouse clicks within the button and act accordingly.
But that would require customization, via subclassing of the JBut t on; we would be giving up the
advantages of using a prebuilt component. Instead, we have the Hel | oJava3 container object
listen for button clicks. A JBut t on generates a special kind of event called an Act i onEvent
when someone clicks on it with the mouse. To receive these events, we have added another
method to the Hel | oJava3 class:

public void actionPerfornmed(ActionEvent e) {
if (e.getSource( ) == theButton)
changeCol or ( );

If you understood the previous example, you shouldn't be surprised to see that Hel | oJava3 now
declares that it implements the Act i onLi st ener interface, in addition to

Mbuselbt i onLi st ener. Act i onLi st ener requires us to implement an act i onPer f or med(
) method, which is called whenever an Act i onEvent occurs. You also shouldn't be surprised to
see that we added a line to the Hel | oJava3 constructor, registering itself (t hi s) as a listener for
the button's action events:

t heBut t on. addAct i onLi stener(this);

The acti onPer formed( ) method takes care of any action events that arise. First, it checks to
make sure that the event's source (the component generating the event) is what we think it
should be: t heBut t on, the only button we've put in the application. This may seem superfluous;
after all, what else could possibly generate an action event? In this application, nothing. But it's a
good idea to check, because another application may have several buttons, and you may need to
figure out which one has been clicked. Or you may add a second button to this application later,
and you don't want it to break something. To check this, we call the get Sour ce( ) method of
the Act i onEvent object, e. Then we use the == operator to make sure that the event source
matches t heBut t on.

;"_;~ In Java, == is a test for identity, not equality; it is true if the event source
P and t heBut t on are the same object. The distinction between equality
‘*. 4:  and identity is important. We would consider two St r i ng objects to be

equal if they have the same characters in the same sequence. However,
they might not be the same object. In Chapter 7, we'll look at the
equal s( ) method, which tests for equality. Once we establish that the
event e comes from the right button, we call our changeCol or ( )
method, and we're finished.




You may be wondering why we don't have to change nouseDr agged( ) now that we have a
JBut t on in our application. The rationale is that the coordinates of the event are all that matter
for this method. We are not particularly concerned if the event happens to fall within an area of
the screen occupied by another component. This means that you can drag the text right through
the JBut t on and even lose it behind the JBut t on if you aren't careful: try it and see!

2.3.8 Color Commentary

To support Hel | oJava3's colorful side, we have added a couple of new variables and two
helpful methods. We create and initialize an array of Col or objects representing the colors
through which we cycle when the button is pressed. We also declare an integer variable that
serves as an index for this array, specifying the current color:

i nt col orl ndex;
static Color[] someColors = { Color.black, Color.red,
Col or. green, Color.blue, Color.mgenta };

A number of things are going on here. First let's look at the Col or objects we are putting into the
array. Instances of the | ava. awt . Col or class represent colors; they are used by all classes in
the | ava. awt package that deal with color graphics. Notice that we are referencing variables
such as Col or . bl ack and Col or . red . These look like normal examples of an object's
instance variables; however, Col or is not an object, it's a class. What is the meaning of this?

2.3.9 Static Members

A class can contain variables and methods that are shared among all instances of the class.
These shared members are called static variables and static methods. The most common use of
static variables in a class is to hold predefined constants or unchanging objects, which all of the
instances can use.

There are two advantages to this approach. The more obvious advantage is that static members
take up space only in the class; the members are not replicated in each instance. The second
advantage is that static members can be accessed even if no instances of the class exist. In this
example, we use the static variable Col or . r ed , without having to create an instance of the
Col or class.

An instance of the Col or class represents a visible color. For convenience, the Col or class
contains some static, predefined objects with friendly names like gr een, r ed , and (our favorite)
magent a. The variable gr een, for example, is a static member in the Col or class. The data
type of the variable gr een is Col or ; it is initialized like this:

public final static Color green = new Col or(0, 255, 0);

The gr een variable and the other static members of Col or are not changeable (after they've
been initialized), so they are effectively constants and can be optimized as such by the compiler.
Constant (or f i nal ) static members are the closest thing to a #def i ne construct that you'll find
in Java. The alternative to using these predefined colors is to create a color manually by
specifying its red, green, and blue (RGB) components using a Col or class constructor.

2.3.10 Arrays



Next, we turn our attention to the array. We have declared a variable called soneCol or s, which
is an array of Col or objects. In Java, arrays are first-class objects. This means that an array is,
itself, a type of object that knows how to hold an indexed list of some other type of object. An
array is indexed by integers; when you index an array, the resulting value is an object reference—
that is, a reference to the object that is located in the array's specified slot. Our code uses the

col or I ndex variable to index soneCol or s. It's also possible to have an array of simple
primitive types, such as f | oat s, rather than objects.

When we declare an array, we can initialize it by using the familiar C-like curly brace construct.
Specifying a comma-separated list of elements inside of curly braces is a convenience that
instructs the compiler to create an instance of the array with those elements and assign it to our
variable. Alternatively, we could have just declared our soneCol or s variable and, later, allocated
an array object for it and assigned individual elements to that array's slots. See Chapter 5 for a
complete discussion of arrays.

2.3.11 Using Color Methods

So, we now have an array of Col or objects and a variable with which to index the array. Two
private methods do the actual work for us. The pri vat e modifier on these methods specifies
that they can be called only by other methods in the same instance of the class. They cannot be
accessed outside of the object that contains them. We declare members to be pri vat e to hide
the detailed inner workings of a class from the outside world. This is called encapsulation and is
another tenet of object-oriented design, as well as good programming practice. Private methods
are also often created as helper functions for use solely in the class implementation.

The first method, cur rent Col or (), is simply a convenience routine that returns the Col or
object representing the current text color. It returns the Col or object in the soneCol or s array at
the index specified by our col or | ndex variable:

synchroni zed private Color currentColor( ) {
return soneCol ors[ col orl ndex] ;

}

We could just as readily have used the expression soneCol or s|[ col or | ndex] everywhere we
use current Col or () ; however, creating methods to wrap common tasks is another way of
shielding ourselves from the details of our class. In an alternative implementation, we might have
shuffled off details of all color-related code into a separate class. We could have created a class
that takes an array of colors in its constructor and then provided two methods: one to ask for the
current color and one to cycle to the next color ( just some food for thought).

The second method, changeCol or (), is responsible for incrementing the col or | ndex
variable to point to the next Col or in the array. changeCol or () is called from our
act i onPerforned( ) method whenever the button is pressed:

synchroni zed private void changeColor( ) {
i f (++col orlndex == soneCol ors. | ength)
col orl ndex = 0;
set Foreground(current Col or( ));
repaint( );

}

We increment col or | ndex and compare it to the length of the soneCol or s array. All array
objects have a variable called | engt h that specifies the number of elements in the array. If we



have reached the end of the array, we "wrap around to the beginning" by resetting the index to
zero. After changing the currently selected color, we do two things. First, we call the component's
set Foreground( ) method, which changes the color used to draw text in the application. Then
we call repai nt () to cause the component to be redrawn with the new color for the draggable
message.

What is the synchr oni zed keyword that appears in front of our cur r ent Col or () and
changeCol or () methods? Synchronization has to do with threads, which we'll examine in the
next section. For now, all you need know is that the synchr oni zed keyword indicates these two
methods can never be running at the same time. They must always run one after the other.

The reason is that in changeCol or () we increment col or | ndex before testing its value. That
means that for some brief period of time while Java is running through our code, col or | ndex
can have a value that is past the end of our array. If our cur r ent Col or () method happened
to run at that same moment, we would see a runtime "array out of bounds" error. There are, of
course, ways in which we could fudge around the problem in this case, but this simple example is
representative of more general synchronization issues we need to address. In the next section,
you'll see that Java makes dealing with these problems easy through language-level
synchronization support.

2.4 HelloJava4: Netscape's Revenge

We have explored quite a few features of Java with the first three versions of the HelloJava
application. But until now, our application has been rather passive; it has waited patiently for
events to come its way and responded to the whims of the user. Now our application is going to
take some initiative—He! | oJava4 will blink! Here is the code for our latest version:

/1file: HelloJdava4.java
i nport java.awt.*;

i nport java.awt.event.*;
i nport javax.sw ng. *;

public class Hell oJava4
ext ends JConponent
i npl enents MouseMbti onLi st ener, ActionLi stener, Runnable {

/'l Coordinates for the nessage
i nt messageX = 125, nessageY = 95;
String theMessage;

JButton theButton;

int colorlndex; // Current index into someCol ors.
static Color[] sonmeColors = { Color.black, Color.red,
Col or. green, Color.blue, Color.nmgenta };

bool ean bl i nkSt at e;

public Hell oJavad4(String nessage) {
t heMessage = nessage;
t heButton = new JButton("Change Col or");
set Layout (new Fl owLayout ( ));
add(t heButton);
t heBut t on. addAct i onLi st ener (thi s);



addMbuseMbt i onLi st ener (this);
Thread t = new Thread(this);
t.start( );

}

public void pai nt Conponent (G aphics g) {
g.setCol or(blinkState ? getBackground() : currentColor( ));
g.drawSt ri ng(t heMessage, nessageX, nessagey);

}

public void nouseDragged( MbuseEvent e) ({
messageX = e.get X( );
nmessageY = e.getY( );
repaint( );

}

public void nmouseMoved( MbuseEvent e) {}

public void actionPerfornmed(ActionEvent e) {
/1 Did somebody push our button?
if (e.getSource( ) == theButton)
changeCol or ( );
}

synchroni zed private void changeCol or( ) {
/1 Change the index to the next color.
if (++col orl ndex == soneCol ors. | ength)
col orl ndex = 0;
set Foreground(currentColor( )); // Use the new col or.
repaint( ); // Paint again so we can see the change.

synchroni zed private Color currentColor( ) {
return soneCol ors[ col orl ndex] ;

}
public void run( ) {
try {
whil e(true) {
blinkState = !blinkState; // Toggle blinkState.
repaint( ); // Show the change.
Thr ead. sl eep(500);
}
catch (InterruptedException ie) {}
}

public static void main(String[] args) {
JFrame f = new JFrane("Hell oJavad");
/1 Make the application exit when the wi ndow is cl osed.
f . addW ndowLi st ener (new W ndowAdapter( ) {
public void w ndowC osi ng( WndowEvent we) { Systemexit(0); }
1)
f.set Size(300, 300);
f.get Cont ent Pane( ).add(new Hell oJava4("Hell o, Java!"));
f.setVisible(true);



Compile and run this version of HelloJava just like the others. You'll see that the text does in fact
blink. Our apologies if you don't like blinking text—we're not overly fond of it either—but it does
make for a simple, instructive example.

2.4.1 Threads

All the changes we've made in Hel | oJava4 have to do with setting up a separate thread of
execution to make the text blink. Java is a multithreaded language, which means there can be
many threads running at the same time. A thread is a separate flow of control within a program.
Conceptually, threads are similar to processes, except that unlike processes, multiple threads
share the same address space, which means that they can share variables and methods (but
also have their own local variables). Threads are also quite lightweight in comparison to
processes, so it's conceivable for a single application to be running hundreds of threads
concurrently.

Multithreading provides a way for an application to handle many different tasks at the same time.
It's easy to imagine multiple things going on at the same time in an application like a web
browser. The user could be listening to an audio clip while scrolling an image; at the same time,
the browser can be downloading an image. Multithreading is especially useful in GUI-based
applications, as it improves the interactive performance of these applications.

Unfortunately for us, programming with multiple threads can be quite a headache. The difficulty
lies in making sure routines are implemented so they can be run by multiple concurrent threads. If
a routine changes the value of a state variable, for example, then only one thread should be
executing the routine at a time. Later in this section, we'll examine briefly the issue of coordinating
multiple threads' access to shared data. In other languages, synchronization of threads can be
extremely complex and error-prone. You'll see that Java gives you a few simple tools that help
you deal with many of these problems. Java threads can be started, stopped, suspended, and
prioritized. Threads are preemptive, so a higher priority thread can interrupt a lower priority thread
when vying for processor time. See Chapter 8, for a complete discussion of threads.

The Java runtime system creates and manages a number of threads. (Exactly how varies with the
implementation.) We've already mentioned the repaint thread, which manages r epai nt ( )
requests and event processing for GUI components that belong to the | ava. awt and

J avax. swi ng packages. Our example applications have done most of their work in one thread.
Methods like nrouseDr agged( ) and acti onPerforned( ) are invoked by the windowing
thread and run on its time. Similarly, our constructor runs as part of the main application thread.
This means we are somewhat limited in the amount of processing we do within these methods. If
we were, for instance, to go into an endless loop in our constructor, our application would never
appear, as it would never finish initializing. If we want an application to perform any extensive
processing, such as animation, a lengthy calculation, or communication, we should create
separate threads for these tasks.

2.4.2 The Thread Class

As you might have guessed, threads are created and controlled as Thr ead objects. An instance
of the Thr ead class corresponds to a single thread. It contains methods to start, control, and stop
the thread's execution. Our basic plan is to create a Thr ead object to handle our blinking code.
We call the Thread's st art () method to begin execution. Once the thread starts, it continues
to run until we call the Thread'si nt errupt () method to terminate it.



So how do we tell the thread which method to run? Well, the Thr ead object is rather picky; it
always expects to execute a method called r un( ) to perform the action of the thread. The r un(
) method can, however, with a little persuasion, be located in any class we desire.

We specify the location of the r un( ) method in one of two ways. First, the Thr ead class itself
has a method called r un( ). One way to execute some Java code in a separate thread is to
subclass Thr ead and override its r un( ) method to do our bidding. Invoking the st art ()
method of the subclass object causes its r un( ) method to execute in a separate thread.

It's not always desirable or possible to create a subclass of Thr ead to contain our r un( )
method. The Thr ead class has a constructor that takes an object reference as its argument. If
we create a Thr ead object using this constructor and call its st art () method, the Thr ead
executes the r un( ) method of the argument object, rather than its own. In order to accomplish
this, Java needs a guarantee that the object we are passing it does indeed contain a compatible
run( ) method. We already know how to make such a guarantee: we use an interface. Java
provides an interface named Runnabl e that must be implemented by any class that wants to
become a Thr ead.

2.4.3 The Runnable Interface

We've used the second technique in the Hel | oJava4 example. To create a thread, a

Hel | oJava4 object passes itself (t hi s) to the Thr ead constructor. This means that

Hel | oJava4 itself must implement the Runnabl e interface, by implementing the run( )
method. This method is called automatically when the runtime system needs to start the thread.

We indicate that the class implements the interface in our class declaration:

public class Hell oJava4
ext ends JConponent
i npl enents MouseMbti onLi stener, ActionListener, Runnable {...}

At compile time, the Java compiler checks to make sure we abide by this statement. We have
carried through by adding an appropriate r un( ) method to Hel | oJava4. It takes no arguments
and returns no value. Our r un( ) method accomplishes blinking by changing the color of our
text a couple of times a second. It's a very short routine, but we're going to delay looking at it until
we tie up some loose ends in dealing with the Thr ead itself.

2.4.4 Starting the Thread

We want the blinking to begin when the application starts. So we'll start the thread in the
initialization code in Hel | oJava4's constructor. It takes only two lines:

Thread t = new Thread(this);
t.start( );

First, the constructor creates a new instance of Thr ead , passing it the object that contains the
run( ) method to the constructor. Since Hel | oJava4 itself contains our r un( ) method, we
pass the special variable t hi s to the constructor. t hi s always refers to our object. After creating
the new Thr ead, we callits st art () method to begin execution. This, in turn, invokes

Hel | oJavad'srun( ) method in a separate thread.



2.4.5 Running Code in the Thread

Our run( ) method does its job by setting the value of the variable bl i nkSt at e. We have
added bl | nkSt at e, a boolean value, to represent whether we are currently blinking on or off:

bool ean bl i nkSt at e;

A set Col or () call has been added to our pai nt Conrponent () method to handle blinking.
When bl i nkSt at e is true, the call to set Col or () draws the text in the background color,
making it disappear:

g.setCol or(blinkState ? getBackground() : currentColor( ));

Here we are being somewhat terse, using the C-like ternary operator to return one of two
alternative color values based on the value of bl i nkSt at e.

Finally, we come to the r un( ) method itself:

public void run( ) {

try {
whil e(true) {

blinkState = ! blinkState;
repaint( );
Thr ead. sl eep(500);
}
}
catch (InterruptedException ie) {}
}

Basically, r un( ) is an infinite whi | e loop. This means the method will run continuously until the
thread is terminated by a call to the controlling Thr ead object's i nt errupt () method.

The body of the loop does three things on each pass:

Flips the value of bl i nkSt at e to its opposite value using the not operator, "' "
Calls repai nt () to redraw the text
Sleeps for 500 milliseconds (half a second)

sl eep( ) is a static method of the Thr ead class. The method can be invoked from anywhere
and has the effect of putting the current thread to sleep for the specified number of milliseconds.
The effect here is to give us approximately two blinks per second. The t r y/ cat ch construct,
described in the next section, traps any errors in the call to the sl eep( ) method of the Thr ead
class.

2.4.6 Exceptions

The t ry/ cat ch statement in Java is used to handle special conditions called exceptions. An
exception is a message that is sent, normally in response to an error, during the execution of a
statement or a method. When an exceptional condition arises, an object is created that contains
information about the particular problem or condition. Exceptions act somewhat like events. Java
stops execution at the place where the exception occurred, and the exception object is said to be
thrown by that section of code. Like an event, an exception must be delivered somewhere and



handled. The section of code that receives the exception object is said to catch the exception. An
exception causes the execution of the instigating section of code to stop abruptly and transfers
control to the code that receives the exception object.

The t ry/ cat ch construct allows you to catch exceptions for a section of code. If an exception is
caused by any statement inside of a t r y clause, Java attempts to deliver the exception to the
appropriate cat ch clause. A cat ch clause looks like a method declaration with one argument
and no return type. If Java finds a cat ch clause with an argument type that matches the type of
the exception, that cat ch clause is invoked. At r y clause can have multiple cat ch clauses with
different argument types; Java chooses the appropriate one in a way that is analogous to the
selection of overloaded methods. You can catch multiple types of exceptions from a block of
code. Depending on the type of exception thrown, the appropriate cat ch clause will be executed.

If there isno t ry/ cat ch clause surrounding the code, or a matching cat ch clause is not found,
the exception is thrown up the call stack to the calling method. If the exception is not caught
there, it's thrown up another level, and so on until the exception is handled. This provides a very
flexible error-handling mechanism, so that exceptions in deeply nested calls can bubble up to the
surface of the call stack for handling. As a programmer, you need to know what exceptions a
particular statement can generate, so methods in Java are required to declare the exceptions
they can throw. If a method doesn't handle an exception itself, it must specify that it can throw
that exception, so that its calling method knows that it may have to handle it. See Chapter 4, for
a complete discussion of exceptions and the t r y/ cat ch clause.

So, why dowe need atry/ cat ch clause inthe run( ) method? What kind of exception can
Thread's sl eep( ) method throw and why do we care about it, when we don't seem to check
for exceptions anywhere else? Under some circumstances, Thr ead's sl eep( ) method can
throw an | nt er r upt edExcept i on, indicating that it was interrupted by another thread. Since
the run( ) method specified in the Runnabl e interface doesn't declare it can throw an

I nterrupt edExcept i on, we must catch it ourselves, or the compiler will complain. The

try/ cat ch statement in our example has an empty cat ch clause, which means that it handles
the exception by ignoring it. In this case, our thread's functionality is so simple it doesn't matter if
it's interrupted. All of the other methods we have used either handle their own exceptions or throw
only general-purpose exceptions that are assumed to be possible everywhere and don't need to
be explicitly declared.

2.4.7 A Word About Synchronization

At any given time, there can be a number of threads running in the Java runtime system. Unless
we explicitly coordinate them, these threads will be executing methods without any regard for
what the other threads are doing. Problems can arise when these methods share the same data.
If one method is changing the value of some variables at the same time that another method is
reading these variables, it's possible that the reading thread might catch things in the middle and
get some variables with old values and some with new. Depending on the application, this
situation could cause a critical error.

In our HelloJava examples, both our pai nt Conponent () and nouseDr agged( ) methods
access the nessagexX and nessageY variables. Without knowing the implementation of our
particular Java environment, we have to assume that these methods could conceivably be called
by different threads and run concurrently. pai nt Conponent () could be called while
mouseDragged( ) isin the midst of updating nessagexX and nessageY. At that point, the data
is in an inconsistent state and if pai nt Conponent () gets lucky, it could get the new x value
with the old y value. Fortunately, in this case, we probably would not even notice if this were to
happen in our application. We did, however, see another case, in our changeCol or ( ) and



current Col or () methods, where there is the potential for a more serious "out of bounds"
error.

The synchr oni zed modifier tells Java to acquire a lock for the class that contains the method
before executing that method. Only one method can have the lock on a class at any given time,
which means that only one synchronized method in that class can be running at a time. This
allows a method to alter data and leave it in a consistent state before a concurrently running
method is allowed to access it. When the method is done, it releases the lock on the class.

Unlike synchronization in other languages, the synchr oni zed keyword in Java provides locking
at the language level. This means there is no way that you can forget to unlock a class. Even if
the method throws an exception or the thread is terminated, Java will release the lock. This
feature makes programming with threads in Java much easier than in other languages. See
Chapter 8 for more details on coordinating threads and shared data.

Whew! Now it's time to say goodbye to HelloJava. We hope that you have developed a feel for
the major features of the Java language, and that this will help you as you go on to explore the
details of programming with Java.



Chapter 3. Tools of the Trade

You have many options for Java development environments, from the traditional text-editor-and-
command-line environment to IDEs like WebGain's Visual Café, Inprise's JBuilder, Tek-Tools'
KAWA, or Sun's Forte for Java. The examples in this book were developed using the Solaris and
Windows versions of the Java Software Development Kit (SDK), so we will describe those tools
here. When we refer to the compiler or interpreter, we'll be referring to the command-line versions
of these tools, so the book is decidedly biased toward those of you who are working in a Unix or
DOS-like environment with a shell and filesystem. However, the basic features we'll be describing
for Sun's Java interpreter and compiler should be applicable to other Java environments as well.

In this chapter, we'll describe the tools you'll need to compile and run Java applications. The last
part of the chapter discusses how to pack Java class files into Java archives ( JAR files).
Chapter 20, describes the ability to "sign" classes within a JAR file, and to give greater
privileges to classes with a signature that you trust.

3.1 The Java Interpreter

A Java interpreter is software that implements the Java virtual machine and runs Java
applications. It can be a standalone application like the SDK's | ava program, or part of a larger
application like the Netscape Navigator web browser. It's likely that the interpreter itself is written
in a native, compiled language for your particular platform. Other tools, like Java compilers and
development environments, can be written in Java (and should be, we'd argue, in order to
maximize the portability of the Java development environment). Sun's Forte for Java is one
example of a pure-Java IDE.

The Java interpreter performs all of the activities of the Java runtime system. It loads Java class
files and interprets the compiled byte-code. It verifies compiled classes that are loaded from
untrusted sources. In an implementation that supports dynamic, or just-in-time, compilation, the
interpreter also serves as a specialized compiler that turns Java byte-code into native machine
instructions.

Throughout the rest of this book, we'll be building both standalone Java programs and applets.
Both are kinds of Java applications run by a Java interpreter. The difference is that a standalone
Java application has all of its parts; it's a complete program that runs independently. An applet is
more like an embeddable program module. The Java interpreter can't run an applet directly,
because it is used as part of a larger application. To run an applet, you can use a web browser
like Sun's HotJava or Netscape Navigator, or the appl et vi ewer tool that comes with the SDK.
Both HotJava and app! et vi ewer are standalone Java applications run directly by the Java
interpreter; these programs implement the additional structure needed to run Java applets.

Sun's Java interpreter is called | ava. In a standalone Java application, one class includes a
mai n( ) method, which contains the statements to be executed upon startup. To run the
application, execute the interpreter, specifying that class as an argument. You can also specify
options to the interpreter, as well as arguments to be passed to the application:

%java [interpreter options ] class _nane [program argunents ]

The class should be specified as a fully qualified class name, including the package name, if any.
Note, however, that you don't include the .class file extension. Here are a few examples:

% java ani mal s. birds. BigBird



% j ava test

The interpreter searches for the class in the class path, a list of directories where packages of
classes are stored. We'll discuss the class path in detail in the next section. The class path is
typically specified by an environment variable, which you can override with the command-line
option - cl asspat h.

After loading the class specified on the command line, the interpreter executes the class's nai n(
) method. From there, the application can start additional threads, reference other classes, and
create its user interface or other structures, as shown in Figure 3.1.

Figure 3.1. Starting a Java application
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The mai n( ) method must have the right method signature. A method signature is a collection
of information about the method, like a C prototype or a forward function declaration in other
languages. It includes the method's name, type, and visibility, as well as its arguments and return
type. The mai n( ) method must be a publ i c, st at i ¢ method that takes an array of St r i ng
objects as its argument and does not return any value (voi d):

public static void main ( String [] nyArgs )

Because mai n( ) isapublic and st ati c method, it can be accessed directly from another
class using the name of the class that contains it. We'll discuss the implications of visibility
modifiers such as publ i ¢ and the meaning of st at i ¢ in through Chapter 6.

The mai n( ) method's single argument, the array of St r i ng objects, holds the command-line
arguments passed to the application. As in C, the name that we give the parameter doesn't
matter; only the type is important. Unlike C, the content of myAr gs is a true array. There's no
need for an argument count parameter, because my Ar gs knows how many arguments it contains
and can happily provide that information:

int argc = nyArgs. | ength;

Java also differs from C in another respect here: myAr gs|[ 0] is the first command-line argument,
not the name of the application. If you're accustomed to parsing C command-line arguments,
you'll need to be careful not to trip over this difference.

The Java interpreter continues to run until the mai n( ) method of the initial class file has
returned, and until any threads that it started are complete. Special threads designated as
"daemon" threads are silently killed when the rest of the application has completed.



3.2 Policy Files

Java 2 provides a simple mechanism for protecting your computer from evil programs like
viruses. If you download a program from somewhere on the Internet, how can you prevent it from
stealing information on your computer and sending it back out into the Internet? How can you
prevent a malicious program from disabling your computer or erasing data on your disk? Most
computing platforms have no answer for these questions.

Java 2 offers powerful ways to limit the actions of running code. Before Java 2, much of the buzz
about security had to do with the security of applets. The applet ran with security restrictions that
prevented the applet from doing questionable things like reading from or writing to the disk or
contacting arbitrary computers on the network. In Java 2, it's just as easy to apply applet-style
security to applications. Furthermore, it's easy to fine-tune the access you allow applications. For
example, you can allow an application to access the disk, but only in a specific directory, or you
can allow network access to certain addresses.

Why is this important? Let's suppose that you need a certain application, like a calendar or an
address manager. You go to your favorite Internet search engine and find a promising-looking
Java application that does just what you want. You download and run it. But it's entirely possible
that what you've downloaded is not what you wanted. It could be a computer virus that infects
your computer. Or it could simply be a malicious program that erases files from your disk. In this
case, it would have been a really good idea to restrict the application's actions.

3.2.1 The Default Security Manager

You can use an option of the | ava interpreter to install a default security manager. This security
manager enforces many of the same rules as for applets. To see how this works, let's write a little
program that does something questionable, making a network connection to some computer on
the Internet. (We'll cover the specifics of network programming later, in Chapter 11 and

Chapter 12.)

/1file: EvilEnpire.java
i nport java.net.?*;

public class EvilEnpire {
public static void main(String[] args) throws Exception{

try {
Socket s = new Socket ("207.46.131. 13", 80);

System out . println("Connected!");

}
catch (SecurityException e) {

Systemout. println("SecurityException: could not connect.");

}

If you just run this program with the Java interpreter, it will make the network connection:

C.\> java Evil Enpire
Connect ed!

C\>

This is kind of scary. Let's install the default security manager, like this:



C.\> java -D ava. security. nmanager Evil Enpire
SecurityException: could not connect.

C\>

That's better, but suppose that the application actually has a legitimate reason to make its
network connection. We'd like to leave the default security manager in place, just to be safe, but
we'd like to grant this application permission to make a network connection.

3.2.2 The policytool Utility

To permit our Evi | Enpi r e example to make a network connection, we need to create a policy
file that contains the appropriate permission. A handy utility called pol i cyt ool , included in SDK
1.2 and later, helps you make policy files. Fire it up from a command line like this:

C.\> policyt ool

You may get an error message when pol i cyt ool starts up about not finding a default policy
file. Don't worry about this; just click OK to make the message go away.

We want to add a network permission for the Evi | Enpi r e application. The application is
identified by its origin, also called a codebase . A codebase is described by a URL. In this case, it
willbe afi | e: URL that points to the location of the Evi | Enpi r e application on your disk.

If you started up pol i cyt ool , you should be looking at its main window, shown in Figure 3.2.
Click on Add Policy Entry. Another window pops up, like the one shown in Figure 3.3 (but with
the fields empty).

Figure 3.2. The policytool window
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First, fill in the codebase with the URL of the directory containing Evi | Enpi r e as shown in the
figure. Then click on Add Permission. Yet another window pops up, shown in Figure 3.4.

Figure 3.4. Creating a new permission
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Choose SocketPermission from the first combo box. Then fill out the second text field on the
right side with the network address that Evi | Enpi r e will connect to. Finally, choose connect
from the third combo box. Click on OK; you should see the new permission in the policy entry
window, as shown in Figure 3.3.

Click on Done to finish creating the policy. Then choose Save As from the File menu and save
the policy file as something memorable, like EvilEmpire.policy. You can quit pol i cyt ool now;
we're all done with it.

There's nothing magical about the policy file you just created. Take a look at it with a text editor. It
has a simple syntax; here's the important part, showing the policy we just created:

grant codeBase "file:/c:/Projects/Exploring/" {
perm ssi on java. net. Socket Perm ssi on "207.46.131. 13", "connect";

b

You can eschew pol i cyt ool entirely and just create policy files with a text editor, if you're more
comfortable that way.

3.2.3 Using a Policy File with the Default Security Manager



Now that we've gone to the trouble of creating a policy file, let's use it. You can tell the default
security manager to use the policy file with another command-line option to the | ava interpreter:

C.\> java -D ava. security. nanager -
Dj ava. security. policy=Evil Enpire.policy Evil Enpire
Connect ed!

Evi | Enpi r e can now make its socket connection because we have explicitly granted it
permission with a policy file. The default security manager still protects us in other ways,
however; Evi | Enpi r e cannot write or read files on the disk except in the directory it came from;
it cannot make connections to any other network addresses except the one we specified. Take a
moment and bask in this warm fuzzy feeling.

Later, in Chapter 20, you'll see pol i cyt ool again when we explain signed applets. In this
chapter, codebases are identified by URLS, which isn't the most secure option. Through tricky
network shenanigans, a clever forger may be able to give you code that appears to be from
somewhere it's not. Crytpographically signed code is even more trustworthy; see Chapter 20 for
the full details.

3.3 The Class Path

The concept of a path should be familiar to anyone who has worked on a DOS or Unix platform.
It's an environment variable that provides an application with a list of places to look for some
resource. The most common example is a path for executable programs. In a Unix shell, the
PATH environment variable is a colon-separated list of directories that are searched, in order,
when the user types the name of a command. The Java CLASSPATH environment variable,
similarly, is a list of locations that can be searched for packages containing Java class files. Both
the Java interpreter and the Java compiler use CLASSPATH when searching for packages and
classes on the local host.

A location on the class path can be a directory name or the name of a class archive file. Java
supports archives of class files in its own Java archive ( JAR) format, and in the conventional ZIP
format. JAR and ZIP are really the same format, but JAR archives include extra files that describe
each archive's contents. JAR files are created with the SDK's | ar utility; many tools for creating
ZIP archives are publicly available. The archive format enables large groups of classes to be
distributed in a single file; the Java interpreter automatically extracts individual class files from an
archive, as needed.

The precise means and format for setting the class path vary from system to system. On a Unix
system, you set the CLASSPATH environment variable with a colon-separated list of directories
and class archive files:

CLASSPATH=/ hone/ vi cky/ Javal/ cl asses: / hone/j osh/ ol dst uf f/foo. zi p: .

On a Windows system, the CLASSPATH environment variable is set with a semicolon-separated
list of directories and class archive files:

set CLASSPATH=D: \ users\vi cky\ Java\ cl asses; .

The first example above, for Unix, specifies a class path with three locations: a directory in the
user's home, a ZIP file in another user's directory, and the current directory, which is always
specified with a dot (. ). The last component of the class path, the current directory, is useful



when tinkering with classes, but as a general rule, it's bad practice to put the current directory in
any kind of path.

The Java interpreter and the other command-line tools also know how to find core classes, which
are the classes included in every Java installation. The classes in the | ava. | ang, | ava. i o,

j ava. net,and | avax. swi ng packages, for example, are all core classes. You don't need to
include these classes in your class path; the Java interpreter and the other tools can find them by
themselves.

To find other classes, the Java interpreter searches the locations on the class path in order. The
search combines the path location and the fully qualified class name. For example, consider a
search for the class ani mal s. bi rds. Bi gBi r d. Searching the class path directory /ust/lib/java
means the interpreter looks for an individual class file at /usr/lib/java/animals/birds/BigBird.class.
Searching a ZIP or JAR archive on the class path, say /home/vicky/Java/utils/classutils.jar,
means that the interpreter looks for component file animals/birds/BigBird.class in the archive.

For the Java interpreter, | ava, and the Java compiler, | avac, the class path can also be
specified with the - cl asspat h option:

% j avac -classpath /pkg/sdk/lib/classes. zip:/hone/pat/java:. Foo.java

If you don't specify the CLASSPATH environment variable, it defaults to the current directory (. );
this means that the files in your current directory are always available. If you change the class
path and don't include the current directory, these files will no longer be accessible.

3.4 The Java Compiler

In this section, we'll say a few words about | avac, the Java compiler that is supplied as part of
Sun's SDK. (If you are happily working in another development environment, you may want to
skip ahead to the next section.) The | avac compiler is written entirely in Java, so it's available for
any platform that supports the Java runtime system. The ability to support its own development
environments is an important stage in a language's development. Java makes this bootstrapping
automatic by supplying a ready-to-run compiler at the same cost as porting the interpreter.

] avac turns Java source code into a compiled class that contains Java virtual machine byte-
code. By convention, source files are named with a .java extension; the resulting class files have
a .class extension. Each source code file is a single compilation unit. As you'll see in Chapter 6,
classes in a given compilation unit share certain features, such as package and i npor t
statements.

| avac allows you one public class per file and insists the file have the same name as the class. If
the filename and class name don't match, | avac issues a compilation error. A single file can
contain multiple classes, as long as only one of the classes is public. Avoid packing many classes
into a single source file. Including non-public classes in a .java file is one easy way to tightly
couple such classes to a public class. But you might also consider using inner classes (see

Chapter 6).

Now for an example. Place the following source code in file BigBird.java:

package ani nal s. bi rds;

public class BigBird extends Bird {



Then compile it with:
% javac BigBird.java

Unlike the Java interpreter, which takes just a class name as its argument, | avac needs a
filename to process. The previous command produces the class file BigBird.class in the same
directory as the source file. While it's useful to have the class file in the same directory as the
source for testing a simple example, for most real applications you'll need to store the class file in
an appropriate place in the class path.

You can use the - d option to | avac to specify an alternative directory for storing the class files it
generates. The specified directory is used as the root of the class hierarchy, so .class files are
placed in this directory or in a subdirectory below it, depending on whether the class is contained
in a package. (The compiler creates intermediate subdirectories automatically, if necessary.) For
example, we can use the following command to create the BigBird.class file at
/homel/vicky/Java/classes/animals/birds/BigBird.class:

% javac -d /hone/vicky/Javal cl asses Bi gBird.java

You can specify multiple .java files in a single | avac command; the compiler creates a class file
for each source file. But you don't need to list source files for other classes that your class
references, as long as the other classes have already been compiled. During compilation, Java
resolves other class references using the class path. If our class refers to other classes in

ani mal s. bi r ds or other packages, the appropriate paths should be listed in the class path at
compile time, so that | avac can find the appropriate class files.

The Java compiler is more intelligent than your average compiler, replacing some of the
functionality of a make utility. For example, | avac compares the modification times of the source
and class files for all referenced classes and recompiles them as necessary. A compiled Java
class remembers the source file from which it was compiled, so as long as the source file is in the
same directory as the class file, | avac can recompile the source if necessary. If, in the previous
example, class Bi gBi r d references another class, ani nal s. furry. G over, | avac looks for
the source file Grover.java in an ani nal s. f ur ry package and recompiles it if necessary to
bring the Grover.class class file up-to-date.

By default, however, | avac checks only source files that are referenced directly from other
source files. This means that if you have an out-of-date class file that is referenced only by an up-
to-date class file, it may not be noticed and recompiled. You can force | avac to walk the entire
graph of objects using the - depend option. But be warned, this can increase compilation time
significantly. And this technique still won't help if you want to keep class libraries or other
collections of classes up to date even if they aren't being referenced at all. For that you should
consider a make utility.

Finally, it's important to note that | avac can compile an application even if only the compiled
versions of referenced classes are available. You don't need source code for all of your objects.
Java class files contain all the data type and method signature information that source files
contain, so compiling against binary class files is as type-safe (and exception-safe) as compiling
with Java source code.



3.5 Java Archive (JAR) Files

Java archive files (JAR files) are Java's suitcases. They are the standard and portable way to
pack up all of the parts of your Java application into a compact bundle for distribution or
installation. You can put whatever you want into a JAR file: Java class files, serialized objects,
data files, images, sounds, etc. As we'll see in Chapter 20, a JAR file can carry one or more
digital signatures that attest to the integrity and authenticity of that data. A signature can be
attached to the file as a whole or to individual items in the file.

The Java runtime system understands JAR files and can load class files directly from an archive.
So you can pack your application's classes in a JAR file and place it in your CLASSPATH. You can
do the equivalent for applets by listing the JAR file in the ARCHI VE attribute of the HTML
<APPLET> tag. Other types of files (data, images, etc.) contained in your JAR file can be
retrieved using the get Resour ce( ) method. (described in Chapter 10). Therefore, your code
doesn't have to know whether any resource is a plain file or a member of a JAR archive. Whether
a given class or data file is an item in a JAR file, is an individual file on the class path, or is
located on a remote applet server, you can always refer to it in a standard way, and let Java's
class loader resolve the location.

3.5.1 File Compression

Items stored in JAR files may be compressed with ZLIB™ compression. JAR files are completely
compatible with the ZIP archives familiar to Windows users. You could even use tools like pkzi p
to create and maintain simple JAR files. But | ar, the Java archive utility, can do a bit more.

1 see http://www.simtel.net/pub/pd/2530.shtml and RFC 1950.

Compression makes downloading classes over a network much faster. A quick survey of the SDK
distribution shows that a typical class file shrinks by about 40 percent when it is compressed. Text
files such as arbitrary HTML or ASCII containing English words often compress by as much as 75
percent—to one-quarter of their original size. (On the other hand, image files don't get smaller
when compressed; both of the common image formats have compression built in.)

Compression is not the only advantage that a JAR file has for transporting files over a network.
For an application with many components, the amount of time it takes to transport all of the parts
may be less significant than the time involved in setting up the connections and making the
requests for them. This is especially important for applets loaded via the Web. The typical web
browser has to make a separate HTTP request for each class or data file. An applet comprising
100 classes, for example, would require at least 100 separate trips to the web server to gather all
its parts. Placing all the classes in a single JAR file enables them to be downloaded in a single
transaction. Eliminating the overhead of making HTTP requests is likely to be a big savings, since
individual class files tend to be small, and a complex applet could easily require many of them.

3.5.2 The jar Utility

The | ar utility provided with the SDK is a simple tool for creating and reading JAR files. Its user
interface isn't friendly; it mimics the Unix t ar (tape archive) command. If you're familiar with t ar ,
you'll recognize the following incantations:

jar-cvf jarFilepath[ path][...]

Create | ar Fi | e containing pat h(s)



jar-tvf jarFile[ path][...]

List the contents of | ar Fi | e, optionally showing just pat h(s)
jar-xvf jarFile[ path][...]

Extract the contents of | ar Fi | e, optionally extracting just pat h(s)

In these commands, the letters c, t , and x tell j ar whether it is creating an archive, listing an
archive's contents, or extracting files from an archive. The f means that the next argument will be
the name of the JAR file on which to operate. The v tells | ar to be more verbose when
displaying information about files. In verbose mode you can get information about file sizes,
modification times, and compression ratios.

Subsequent items on the command line (i.e., anything aside from the letters telling | ar what to
do and the file on which | ar should operate) are taken as hames of archive items. If you're
creating an archive, the files and directories you list are placed in it. If you're extracting, only the
filenames you list are extracted from the archive. (If you don't list any files, | ar extracts
everything in the archive.)

For example, let's say we have just completed our new game: "spaceblaster.” All the files
associated with the game are in three directories. The Java classes themselves are in the
spaceblaster/game directory; spaceblaster/images contains the game's images; and
spaceblaster/docs contains associated game data. We can pack all of this in an archive with this
command:

% jar cvf spacebl aster.jar spacebl aster

Because we requested verbose output, | ar tells us what it is doing:

addi ng: spacebl aster/ (in=0) (out=0) (stored 0%

addi ng: spacebl aster/gane/ (in=0) (out=0) (stored 0%

addi ng: spacebl ast er/ gane/ Gane. cl ass (i n=8035) (out=3936) (deflated 51%
addi ng: spacebl ast er/ gane/ Pl anet oi d. cl ass (i n=6254) (out=3288) (defl ated
47%

addi ng: spacebl ast er/ gane/ SpaceShi p. cl ass (i n=2295) (out=1280) (defl ated
44%

addi ng: spacebl aster/i mages/ (in=0) (out=0) (stored 0%

addi ng: spacebl ast er/i mages/ spaceshi p.gif (in=6174) (out=5936) (defl ated
3%

addi ng: spacebl aster/i mages/ pl anetoi d. gi f (i n=23444) (out =23454)

(defl ated 0%

addi ng: spacebl aster/docs/ (in=0) (out=0) (stored 0%

addi ng: spacebl ast er/ docs/ hel p1. ht Ml (i n=3592) (out=1545) (defl ated 56%
addi ng: spacebl ast er/ docs/ hel p2. ht Ml (i n=3148) (out=1535) (deflated 51%

| ar creates the file spaceblaster.jar and adds the directory spaceblaster, in turn adding the
directories and files within spaceblaster to the archive. In verbose mode, | ar reports the savings

gained by compressing the files in the archive.

We can unpack the archive with this command:



% jar xvf spaceblaster.jar

Likewise, we can extract an individual file or directory with:

% jar xvf spaceblaster.jar filenane

But you normally don't have to unpack a JAR file to use its contents; Java tools know how to
extract files from archives automatically. We can list the contents of our JAR with the command:

% jar tvf spaceblaster.jar

Here's the output; it lists all the files, their sizes, and creation times:

0 Thu May 15 12:18:54 PDT 1997 META- I NF/
1074 Thu May 15 12:18:54 PDT 1997 META- | NF/ MANI FEST. M-
O Thu May 15 12:09:24 PDT 1997 spacebl aster/
O Thu May 15 11:59:32 PDT 1997 spacebl ast er/ gane/
8035 Thu May 15 12:14:08 PDT 1997 spacebl ast er/ gane/ Gane. cl ass
6254 Thu May 15 12:15:18 PDT 1997 spacebl ast er/ gane/ Pl anet oi d. cl ass
2295 Thu May 15 12:15:26 PDT 1997 spacebl ast er/ gane/ SpaceShi p. cl ass
O Thu May 15 12:17:00 PDT 1997 spacebl aster/i mages/
6174 Thu May 15 12:16:54 PDT 1997 spacebl aster/i nages/ spaceship. gif
23444 Thu May 15 12:16:58 PDT 1997 spacebl aster/i nmages/ pl anetoi d. gi f
O Thu May 15 12:10:02 PDT 1997 spacebl aster/docs/
3592 Thu May 15 12:10:16 PDT 1997 spacebl ast er/ docs/ hel pl. ht m
3148 Thu May 15 12:10: 02 PDT 1997 spacebl ast er/ docs/ hel p2. ht m

3.5.2.1 JAR manifests

Note that | ar adds a directory called META-INF to our archive. It contains one file:
MANIFEST.MF. The META-INF directory holds files describing the contents of the JAR file. The
MANIFEST.MF file that | ar adds is an automatically generated packing list naming the files in
the archive along with cryptographic checksums for each.

The manifest is a text file containing a set of lines in the form keyword: value. The format of the
manifest file changed between SDK 1.1 and SDK 1.2. In SDK 1.2 and later, the manifest file is
very simple, containing no information on the items in the archive:

Mani f est-Version: 1.0
Created-By: 1.2.1 (Sun Mcrosystens Inc.)

Basically the file just describes its version number. In SDK 1.1, the manifest contains entries
describing each item in the archive. In our case, the beginning of our manifest file looks like this
(in SDK 1.1 only):

Mani fest-Version: 1.0

Nanme: spacebl aster/gane/ Gane. cl ass

Di gest-Al gorithnms: SHA MD5

SHA- Di gest: DBVi 4UV+O+Xpr dFYaUt 0bCv2GDo=
VD5- Di gest: 9/ W62nCAt h6GE x8t TNP2Ng==

Nanme: spacebl aster/gane/ Pl anet oi d. cl ass



Di gest-Al gorithns: SHA MD5
SHA- Di gest: SuSUd6pYAASCBJi | A Br WzLGvk=
MD5- Di gest: KN 4cLDxAxDK/ | NKH 2emA==

The first line is the same version number as before. Following it are groups of lines describing
each item. The first line tells you the item's name; in this case, the lines describing the files
Game.class and Planetoid.class. The remaining lines in each section describe various attributes
of the item. In this case, the Di gest - Al gori t hns line specifies that the manifest provides
message digests (similar to checksums) in two forms: SHA and MD5.™2 This is followed by the
actual message digest for the item, computed using these two algorithms.

[21 SHA and MD5 stand for Secure Hashing Algorithm and Message Digest 5. That's all you really need to
know about them; an explanation of these algorithms is beyond the scope of this book.

As we'll discuss in the next section, the META-INF directory and manifest file can also hold digital
signature information for items in the archive. Since the message digest information is really
necessary only for signed JAR files, it is omitted when you create an archive in SDK 1.2 and later.

You can add your own information to the manifest descriptions by specifying a supplementary
manifest file when you create the archive. This is a good place to store other simple kinds of
attribute information about the files in the archive, perhaps version or authorship information.

For example, we can create a file with the following keyword: value lines:

Nane: spacebl aster/i mages/ pl anet oi d. gi f
Revi si onNunber: 42.7
Arti st-Tenpernment: noody

To add this information to the manifest in our archive, place it in a file called myManifest.mf and
give the following | ar command:

% jar -cvnf nyManifest.nf spacebl aster.jar spacebl aster

We've added an additional option to the command, m which specifies that | ar should read
additional manifest information from the file given on the command line. How does | ar know
which file is which? Because mis before 1, it expects to find the manifest information before the
name of the JAR file it will create. If you think that's awkward, you're right; get the names in the
wrong order, and | ar will do the wrong thing. Be careful.

Aside from information for your own use, there are special values (in SDK 1.2) you can put in the
manifest file that are useful. One of these, \Vai n- Cl ass , allows you to specify a class that
contains a nai n( ) method:

Mai n- C ass: Game

If you incorporate this specification in your JAR file manifest (using the moption described
earlier), you can actually run the JAR from the command line:

% java -jar spacebl aster.jar



The interpreter looks for the Vai n- Cl ass value in the manifest. Then it loads the named class as
the application's initial class.

What can we do with the revision and temperament information we've so cleverly included in the
JAR file? Unfortunately, nothing, except for unpacking the archive and reading the manifest.
However, if you were writing your own JAR utility or some kind of resource loader, you could
include code to look at the manifest, check for your private keywords, and act accordingly—
perhaps darkening the display if the artist's temperament is noody.

Another important keyword is Java- Bean. The value of this keyword should be t r ue if the item
is a Java Bean; this information is used by the BeanBox and other utilities that work with Beans

(see Chapter 19).



Chapter 4. The Java Language

In this chapter, we'll introduce the framework of the Java language and some of its fundamental
facilities. We're not going to try to provide a full language reference here. Instead, we'll lay out the
basic structures of Java with special attention to how it differs from other languages. For example,
we'll take a close look at arrays in Java, because they are significantly different from those in
some other languages. We won't, on the other hand, spend much time explaining basic language
constructs like loops and control structures. Nor will we talk much about Java's object-oriented
side here, as that's covered in detail in Chapter 5 through Chapter 7.

As always, we'll try to provide meaningful examples to illustrate how to use Java in everyday
programming tasks.

4.1 Text Encoding

Java is a language for the Internet. Since the people of the Net speak and write in many different
human languages, Java must be able to handle a large number of languages as well. One of the
ways in which Java supports international access is through Unicode character encoding.
Unicode uses a 16-bit character encoding; it's a worldwide standard that supports the scripts
(character sets) of most languages.™

1 For more information about Unicode, see http://www.unicode.org. Ironically, one of the scripts listed
as "obsolete and archaic" and not currently supported by the Unicode standard is Javanese—a historical
language of the people of the Island of Java.

Java source code can be written using the Unicode character encoding and stored either in its full
16-bit form or with ASCIl-encoded Unicode character values. This makes Java a friendly
language for non-English-speaking programmers who can use their native alphabet for class,
method, and variable names in Java code.

The Java char type and St ri ng objects also support Unicode. But if you're concerned about
having to labor with two-byte characters, you can relax. The St r i ng API makes the character
encoding transparent to you. Unicode is also ASCII-friendly; the first 256 characters are defined
to be identical to the first 256 characters in the 1ISO8859-1 (Latin-1) encoding; if you stick with
these values, there's really no distinction between the two.

Most platforms can't display all currently defined Unicode characters. As a result, Java programs
can be written with special Unicode escape sequences. A Unicode character can be represented
with this escape sequence:

\UX XXX

xxxx is a sequence of one to four hexadecimal digits. The escape sequence indicates an ASCII-
encoded Unicode character. This is also the form Java uses to output a Unicode character in an
environment that doesn't otherwise support them.

Java stores and manipulates characters and strings internally as Unicode values. Java also
comes with classes to read and write Unicode-formatted character streams.

4.2 Comments



Java supports both C-style block comments delimited by / * and */ and C++ - style line
comments indicated by / / :

/* This is a
mul tiline
conment . */

/1 This is a single-line conment
/1 and so // is this

As in C, block comments can't be nested. Single-line comments are delimited by the end of a line;
extra / / indicators inside a single line have no effect. Line comments are useful for short
comments within methods; they don't conflict with wrapping block comment indicators around
large chunks of code during development.

4.2.1 Javadoc Comments

By convention, a block comment beginning with / ** indicates a special doc comment. A doc
comment is designed to be extracted by automated documentation generators, such as the
DSK's | avadoc program. A doc comment is terminated by the next */ , just as with a regular
block comment. Leading spacing up to a * on each line is ignored; lines beginning with @are
interpreted as special tags for the documentation generator.

Here's an example:

*

/
I think this class is possibly the nost amazing thing you will
ever see. Let ne tell you about my own personal vision and
nmotivation in creating it.

<p>

It all began when | was a snmall child, growing up on the
streets of Idaho. Potatoes were the rage, and life was good...

@ee Pot at oPeel er
@ee Pot at oMasher
@ut hor John ' Spuds' Smith
@ersion 1.00, 19 Dec 1996

L T T S T

~

| avadoc creates HTML format documentation of classes by reading the source code and the
embedded comments. The author and version information is presented in the output, and the

@ ee tags make hypertext links to the appropriate class documentation. The compiler also looks
at the doc comments; in particular, it is interested in the @lepr ecat ed tag, which means that the
method has been declared obsolete and should be avoided in new programs. The compiler
generates a warning message whenever it sees the usage of a deprecated feature in your code.

Doc comments can appear above class, method, and variable definitions, but some tags may not
be applicable to all of these. For example, a variable declaration can contain only a @ee tag.
Table 4.1 summarizes the tags used in doc comments.

Table 4.1. Doc Comment Tags
Tag | Description Applies to




@see Associated class name Class, method, or variable
@author Author name Class

@version Version string Class

@param Parameter name and description Method

@return Description of return value Method

@exception Exception name and description Method

@deprecated Declares an item to be obsolete Class, method, or variable
4.3 Types

The type system of a programming language describes how its data elements (variables and
constants) are associated with actual storage. In a statically typed language, like C or C++, the
type of a data element is a simple, unchanging attribute that often corresponds directly to some
underlying hardware phenomenon, like a register value or a pointer indirection. In a more
dynamic language like Smalltalk or Lisp, variables can be assigned arbitrary elements and can
effectively change their type throughout their lifetime. A considerable amount of overhead goes
into validating what happens in these languages at runtime. Scripting languages like Perl and Tcl
achieve ease of use by providing drastically simplified type systems in which only certain data
elements can be stored in variables, and values are unified into a common representation, such
as strings.

Java combines the best features of both statically and dynamically typed languages. As in a
statically typed language, every variable and programming element in Java has a type that is
known at compile time, so the runtime system doesn't normally have to check the type validity of
assignments while the code is executing. Unlike C or C++, though, Java also maintains runtime
information about objects and uses this to allow truly safe runtime polymorphism and casting
(using an object as a type other than its declared type).

Java data types fall into two categories. Primitive types represent simple values that have built-in
functionality in the language; they are fixed elements, such as literal constants and numbers.
Reference types (or class types) include objects and arrays; they are called reference types
because they are passed "by reference,” as we'll explain shortly.

4.3.1 Primitive Types

Numbers, characters, and boolean values are fundamental elements in Java. Unlike some other
(perhaps more pure) object-oriented languages, they are not objects. For those situations where
it's desirable to treat a primitive value as an object, Java provides "wrapper" classes (see
Chapter 9). One major advantage of treating primitive values as such is that the Java compiler
can more readily optimize their usage.

Another important portability feature of Java is that primitive types are precisely defined. For

example, you never have to worry about the size of an i nt on a particular platform; it's always a
32-bit, signed, two's complement number. Table 4.2 summarizes Java's primitive types.

Table 4.2. Java Primitive Data Types

Type Definition
Boolean trueorfalse
Char 16-bit Unicode character
Byte 8-bit signed two's complement integer




Short 16-bit signed two's complement integer
Int 32-bit signed two's complement integer
Long 64-bit signed two's complement integer
Float 32-bit IEEE 754 floating-point value
Double 64-bit IEEE 754 floating-point value

If you think the primitive types look like an idealization of C scalar types on a 32-bit machine,
you're absolutely right. That's how they're supposed to look. The 16-bit characters were forced by
Unicode, and ad hoc pointers were deleted for other reasons. But overall, the syntax and
semantics of Java primitive types are meant to fit a C programmer’'s mental habits.

4.3.1.1 Floating-point precision

Floating-point operations in Java are standardized to follow the IEEE 754 international
specification, which means that the result of floating-point calculations will generally be the same
on different Java platforms. More recent versions of Java have been enhanced to allow for
extended precision on platforms that support it. This can introduce extremely small-valued and
arcane differences in the results of high-precision operations. Most applications would never
notice this, but if you want to ensure that your application will produce exactly the same results on
different platforms, use the special keyword st ri ct f p as a class modifier on the class
containing the floating-point manipulation.

4.3.1.2 Variable declaration and initialization
Variables are declared inside of methods or classes in C style. For example:
int foo;

doubl e d1, d2;
bool ean i sFun;

Variables can optionally be initialized with an appropriate expression when they are declared:

int foo = 42;
double dl1 = 3.14, d2 = 2 * 3. 14;
bool ean i sFun = true;

Variables that are declared as instance variables in a class are set to default values if they are
not initialized. (In this case, they act much like st at i ¢ variables in C or C++.) Numeric types
default to the appropriate flavor of zero, characters are set to the null character (\ 0) , and
boolean variables have the value f al se. Local variables declared in methods, on the other hand,
must be explicitly initialized before they can be used.

4.3.1.3 Integer literals

Integer literals can be specified in octal (base 8), decimal (base 10), or hexadecimal (base 16). A
decimal integer is specified by a sequence of digits beginning with one of the characters 1-9:

int i = 1230;

Octal numbers are distinguished from decimal numbers by a leading zero:




int i = 01230; /1 I = 664 deci nal

As in C, a hexadecimal number is denoted by the leading characters Ox or 0X (zero "x"), followed
by digits and the characters a-f or A-F, which represent the decimal values 10-15, respectively:

int i = OxXFFFF; // 1 = 65535 deci nal

Integer literals are of type i nt unless they are suffixed with an L, denoting that they are to be
produced as a | ong value:

13L;
13; /1l equivalent: 13 is converted fromtype int

| ong |
| ong |

(The lowercase character | ("el") is also acceptable, but should be avoided because it often looks
like the numeral 1.)

When a numeric type is used in an assignment or an expression involving a type with a larger
range, it can be promoted to the larger type. For example, in the second line of the previous
example, the number 13 has the default type of i nt, but it's promoted to type | ong for
assignment to the | ong variable. Certain other numeric and comparison operations also cause
this kind of arithmetic promotion. A numeric value can never be assigned to a type with a smaller
range without an explicit (C-style) cast, however:

int i = 13;
byte b = i; /1 Compile-time error, explicit cast needed
byte b = (byte) i; Il K

Conversions from floating-point to integer types always require an explicit cast because of the
potential loss of precision.

4.3.1.4 Floating-point literals
Floating-point values can be specified in decimal or scientific notation. Floating-point literals are

of type doubl e unless they are suffixed with an f or F denoting that they are to be produced as a
f | oat value:

doubl e d = 8. 31;
doubl e e = 3. 00e+8;
float f = 8. 31F;
float g = 3. 00e+8F;

4.3.1.5 Character literals

A literal character value can be specified either as a single-quoted character or as an escaped
ASCII or Unicode sequence:

char a = 'a';
char newline = '"\n';
char smley = '"\u263a';

4.3.2 Reference Types



In C, you can make a new, complex data type by creating a st r uct . In Java (and other object-
oriented languages), you instead create a c| ass that defines a new type in the language. For
instance, if we create a new class called Foo in Java, we are also implicitly creating a new type
called Foo. The type of an item governs how it's used and where it's assigned. An item of type
Foo can, in general, be assigned to a variable of type Foo or passed as an argument to a method
that accepts a Foo value.

In an object-oriented language like Java, a type is not necessarily just a simple attribute.
Reference types are related in the same way as the classes they represent. Classes exist in a
hierarchy, where a subclass is a specialized kind of its parent class. The corresponding types
have the same relationship, where the type of the child class is considered a subtype of the
parent class. Because child classes always extend their parents and have, at a minimum, the
same functionality, an object of the child's type can be used in place of an object of the parent's
type. For example, if | create a new class, Bar , that extends Foo, there is a new type Bar that is
considered a subtype of Foo. Objects of type Bar can then be used anywhere an object of type
Foo could be used; an object of type Bar is said to be assignable to a variable of type Foo. This
is called subtype polymorphism and is one of the primary features of an object-oriented language.
We'll look more closely at classes and objects in Chapter 5.

Primitive types in Java are used and passed "by value." In other words, when a primitive value is
assigned or passed as an argument to a method, it's simply copied. Reference types, on the
other hand, are always accessed "by reference.” A reference is simply a handle or a name for an
object. What a variable of a reference type holds is a reference to an object of its type (or of a
subtype, as described earlier). A reference is like a pointer in C or C++, except that its type is
strictly enforced and the reference value itself is a primitive entity that can't be examined directly.
A reference value can't be created or changed other than through assignment to an appropriate
object. When references are assigned or passed to methods, they are copied by value. You can
think of a reference as a pointer type that is automatically dereferenced whenever it's mentioned.

Let's run through an example. We specify a variable of type Foo, called nmyFoo, and assign it an
appropriate object:#

[21 The comparable code in C++ would be:

Foo nyFoo = new Foo( );
Foo anot her Foo = nyFoo;

myFoo is a reference-type variable that holds a reference to the newly constructed Foo object.
(For now, don't worry about the details of creating an object; we'll cover that in Chapter 5.) We
designate a second Foo type variable, anot her Foo, and assign it to the same object. There are
now two identical references: nyFoo and anot her Foo. If we change things in the state of the
Foo object itself, we will see the same effect by looking at it with either reference.

We can pass an object to a method by specifying a reference-type variable (in this case, either
myFoo or anot her Foo) as the argument:

nyMet hod( nyFoo );

An important, but sometimes confusing, distinction to make at this point is that the reference itself
is passed by value. That is, the argument passed to the method (a local variable from the

method's point of view) is actually a third copy of the reference. The method can alter the state of
the Foo object itself through that reference, but it can't change the caller's notion of the reference
to myFoo. That is, the method can't change the caller's myFoo to point to a different Foo object; it



can change only its own. For those occasions when we want a method to have the side effect of
changing a reference passed in to it, we have to wrap that reference in another object, to provide
a layer of indirection.

Reference types always point to objects, and objects are always defined by classes. However,
two special kinds of reference types specify the type of object they point to in a slightly different
way. Arrays in Java have a special place in the type system. They are a special kind of object
automatically created to hold a series of some other type of object, known as the base type.
Declaring an array-type reference implicitly creates the new class type, as you'll see in the next
section.

Interfaces are a bit sneakier. An interface defines a set of methods and a corresponding type.
Any object that implements all methods of the interface can be treated as an object of that type.
Variables and method arguments can be declared to be of interface types, just like class types,
and any object that implements the interface can be assigned to them. This allows Java to cross
the lines of the class hierarchy in a type-safe way.

4.3.3 A Word About Strings

Strings in Java are objects; they are therefore a reference type. St ri ng objects do, however,
have some special help from the Java compiler that makes them look more like primitive types.
Literal string values in Java source code are turned into St r i ng objects by the compiler. They
can be used directly, passed as arguments to methods, or assigned to St r i ng type variables:

Systemout.printin( "Hello Wrld..." );
String s ="l amthe walrus...";
String t = "John said: \"I amthe walrus...\"";

The + symbol in Java is overloaded to provide string concatenation as well as numeric addition.
Along with its sister +=, this is the only overloaded operator in Java:

String quote = "Four score and " + "seven years ago,";
String nore = quote + " our" + " fathers" + " brought...";

Java builds a single St ri ng object from the concatenated strings and provides it as the result of
the expression. We will discuss the St ri ng class in Chapter 9.

4.4 Statements and Expressions

Although the method declaration syntax of Java is quite different from that of C++, Java
statement and expression syntax is like that of C. Again, the intention was to make the low-level
details of Java easily accessible to C programmers, so that they can concentrate on learning the
parts of the language that are really different. Java statements appear inside of methods and
classes; they describe all activities of a Java program. Variable declarations and assignments,
such as those in the previous section, are statements, as are the basic language structures like
conditionals and loops. Expressions describe values; an expression is evaluated to produce a
result, to be used as part of another expression or in a statement. Method calls, object
allocations, and, of course, mathematical expressions are examples of expressions. Technically,
since variable assignments can be used as values for further assignments or operations (in
somewhat questionable programming style), they can be considered to be both statements and
expressions.



One of the tenets of Java is to keep things simple and consistent. To that end, when there are no
other constraints, evaluations and initializations in Java always occur in the order in which they
appear in the code—from left to right. We'll see this rule used in the evaluation of assignment
expressions, method calls, and array indexes, to name a few cases. In some other languages,
the order of evaluation is more complicated or even implementation-dependent. Java removes
this element of danger by precisely and simply defining how the code is evaluated. This doesn't,
however, mean you should start writing obscure and convoluted statements. Relying on the order
of evaluation of expressions is a bad programming habit, even when it works. It produces code
that is hard to read and harder to modify. Real programmers, however, are not made of stone,
and you may catch us doing this once or twice when we can't resist the urge to write terse code.

4.4.1 Statements

As in C or C++, statements and expressions in Java appear within a code block . A code block is
syntactically just a series of statements surrounded by an open curly brace ({ ) and a close curly
brace (} ). The statements in a code block can contain variable declarations:

- _
Int size = b5;
set Nane(" Max") ;

Methods, which look like C functions, are in a sense code blocks that take parameters and can be
called by name:

set UpDog( String name ) {
int size = 5;
set Nane( nane );

Variable declarations are limited in scope to their enclosing code block. That is, they can't be
seen outside of the nearest set of braces:

i = 6; /1 Compile-time error, no such variable i

In this way, code blocks can be used to arbitrarily group other statements and variables. The
most common use of code blocks, however, is to define a group of statements for use in a
conditional or iterative statement.

Since a code block is itself collectively treated as a statement, we define a conditional like an
i f/ el se clause as follows:

if ( condition)
st at ement ;

[ else
statenent; |



Thus, the i f clause has the familiar (to C/C++ programmers) functionality of taking two different
forms:

if ( condition)
st at ement ;

or:

if ( condition) {
[ statenent; ]
[ statenent; ]

[ ... ]

Here the condi t i on is a boolean expression. You can't use an integer expression or a
reference type, as in C. In other words, while i ==0 is legitimate, i is not (unless i itself is
boolean) .

In the second form, the statement is a code block, and all of its enclosed statements are executed
if the conditional succeeds. Any variables declared within that block are visible only to the
statements within the successful branch of the condition. Like the i f / el se conditional, most of
the remaining Java statements are concerned with controlling the flow of execution. They act for
the most part like their namesakes in C or C++.

The do and whi | e iterative statements have the familiar functionality; their conditional test is also
a boolean expression:

while ( condition)
st at ement ;

do
st at ement ;
while ( condition );

The f or statement also looks like it does in C:

for ( initialization; condition; increnmentor )
st at ement ;

The variable initialization expression can declare a new variable; this variable is limited to the
scope of the f or statement:

for (int i =0; i < 100; i++ ) {
Systemout.printin( i )
int j =i;

}

Java does not support the C comma operator, which groups multiple expressions into a single
expression. However, you can use multiple comma-separated expressions in the initialization and
increment sections of the f or loop. For example:

for (int i =0, j =10; i <j; i++ j--) {



The Java swi t ch statement takes an integer type (or an argument that can be automatically
promoted to an integer type) and selects among a number of alternative case branches:

switch ( int expression ) {
case int expression :
st at enent ;
[ case int expression
st at enent ;
def aul t
statenent; ]

No two of the case expressions can evaluate to the same value. As in C, an optional def aul t
case can be specified to catch unmatched conditions. Normally, the special statement br eak is
used to terminate a branch of the swi t ch:

switch ( retval ) {

case nyC ass. GOOD :
/'l somet hi ng good
br eak;

case nyC ass. BAD :
/'l somet hi ng bad
br eak;

def aul t
/'l neither one
br eak;

The Java br eak statement and its friend cont i nue perform unconditional jumps out of a loop or
conditional statement. They differ from the corresponding statements in C by taking an optional

label as an argument. Enclosing statements, like code blocks and iterators, can be labeled with
identifier statements:

one:
while ( condition ) {
t wo:
while ( condition ) {

/'l break or continue point

}

[/ after two

}

/]l after one

In this example, a br eak or cont i nue without argument at the indicated position would have the
normal, C-style effect. A br eak would cause processing to resume at the point labeled "after
two"; a cont i nue would immediately cause the t wo loop to return to its condition test.



The statement br eak t wo at the indicated point would have the same effect as an ordinary

br eak, but br eak one would break both levels and resume at the point labeled "after one."
Similarly, cont i nue t wo would serve as a normal cont i nue, but cont i nue one would return
to the test of the one loop. Multilevel br eak and cont i nue statements remove the remaining
justification for the evil got o statement in C/C++.

There are a few Java statements we aren't going to discuss right now. Thetry , cat ch, and
final |y statements are used in exception handling, as we'll discuss later in this chapter. The
synchr oni zed statement in Java is used to coordinate access to statements among multiple
threads of execution; see Chapter 8, for a discussion of thread synchronization.

4.4.1.1 Unreachable statements

On a final note, we should mention that the Java compiler flags "unreachable" statements as
compile-time errors. An unreachable statement is one that the compiler determines won't be
called at all. Of course there may be many methods that are actually never called in your code,
but the compiler will only detect those that it can "prove" will never be called simply by checking
at compile time. For example, a method with an unconditional return statement in the middle of it
will cause a compile-time error. So will a method with something like this:

if (1 <2
return;
/1 unreachabl e statenents

4.4.2 Expressions

An expression produces a result, or value, when it is evaluated. The value of an expression can
be a numeric type, as in an arithmetic expression; a reference type, as in an object allocation; or
the special type voi d, which is the declared type of a method that doesn't return a value. In the
last case, the expression is evaluated only for its side effects (i.e., the work it does aside from
producing a value). The type of an expression is known at compile time. The value produced at
runtime is either of this type or, in the case of a reference type, a compatible (assignable)
subtype.

4.4.2.1 Operators

Java supports almost all standard C operators. These operators also have the same precedence
in Java as they do in C, as shown in Table 4.3.

Table 4.3. Java Operators

Precedence Operator Op_)r?/rpaend Description

1 ++, — Arithmetic Increment and decrement

1 +, - Arithmetic Unary plus and minus

1 ~ Integral Bitwise complement

1 ! Boolean Logical complement

1 (type) Any Cast

> * 1 % Arithmetic Multiplication, division,
remainder

3 +, - Arithmetic Addition and subtraction




3 + String String concatenation

4 << Integral Left shift

4 >> Integral Right shift with sign extension

4 >>> Integral Right shift with no extension

5 <, <=, >, >= Arithmetic Numeric comparison

5 instanceof Object Type comparison

6 == 1= Primitive Equality and inequality of
value

6 == 1= Object Equality and inequality of
reference

7 & Integral Bitwise AND

7 & Boolean Boolean AND

8 " Integral Bitwise XOR

8 " Boolean Boolean XOR

9 | Integral Bitwise OR

9 | Boolean Boolean OR

10 && Boolean Conditional AND

11 Il Boolean Conditional OR

12 2 NA Conditional ternary operator

13 = Any Assignment

13 ;zzlfzo/[’; TS E RS 22 S 222, Any Assignment with operation

There are a few operators missing from the standard C collection. For example, Java doesn't
support the comma operator for combining expressions, although the f or statement allows you
to use it in the initialization and increment sections. Java doesn't allow direct pointer
manipulation, so it doesn't support the reference (&), dereference (*), and si zeof operators that
are familiar to C/C++ programmers.

Java also adds some new operators. As we've seen, the + operator can be used with St ri ng
values to perform string concatenation. Because all integral types in Java are signed values, the
>> operator performs a right-arithmetic-shift operation with sign extension. The >>> operator
treats the operand as an unsigned number and performs a right-arithmetic-shift with no sign
extension. The new operator, as in C++, is used to create objects; we will discuss it in detalil
shortly.

4.4.2.2 Assignment

While variable initialization (i.e., declaration and assignment together) is considered a statement,
with no resulting value, variable assignment alone is also an expression:

i, J; /'l statenent
i = b5 /'l both expression and statenent

Normally, we rely on assignment for its side effects alone, but, as in C, an assignment can be
used as a value in another part of an expression:




Again, relying on order of evaluation extensively (in this case, using compound assignments in
complex expressions) can make code very obscure and hard to read. Do so at your own peril.

4.4.2.3 The null value

The expression nul | can be assigned to any reference type. It has the meaning of "no
reference.” A nul | reference can't be used to reference anything and attempting to do so
generates a Nul | Poi nt er Except i on at runtime.

4.4.2.4 Variable access

The dot (.) operator has multiple meanings. It can retrieve the value of an instance variable (of
some object) or a static variable (of some class). It can also specify a method to be invoked on an
object or class. Using the dot (. ) to access a variable in an object is an expression that results in
the value of the variable accessed. This can be either a numeric type or a reference type:

int i;

String s;

i = myQoj ect. | ength;
s = ny(bj ect . nane;

A reference-type expression can be used in further evaluations, by selecting variables or calling
methods within it:

int len = nmyQbj ect.nane. |l ength( );
int initiallLen = nmyQoj ect. nane. substring(5, 10).length( );

Here we have found the length of our nane variable by invoking the | engt h( ) method of the
St ri ng object. In the second case, we took an intermediate step and asked for a substring of the
nane string. The subst ri ng method of the St ri ng class also returns a St r i ng reference, for
which we ask the length.

4.4.2.5 Method invocation

A method invocation is essentially a function call: an expression that results in a value. The
value's type is the return type of the method. Thus far, we have seen methods invoked by name:

Systemout.printin( "Hello Wrld..." );
int myLength = nyString.length( );

Selecting which method to invoke is more complicated than it appears, because Java allows
method overloading and overriding; the details are discussed in Chapter 5.

Like the result of any expression, the result of a method invocation can be used in further
evaluations, as we saw earlier. You can allocate intermediate variables to make it absolutely clear
what your code is doing, or you can opt for brevity where appropriate; it's all a matter of coding
style. The following are equivalent:

int initiallLen = nmyQoj ect. nane. substring(5, 10).length( );

and:



String tenpl = nmyChj ect. nane;
String tenp2 = tenpl. substring(5, 10);
int initiallLen = tenp2.length( );

4.4.2.6 Object creation
Objects in Java are allocated with the new operator:
bject o = new hject( );

The argument to new s the constructor for the class. The constructor is a method which always
has the same name as the class. The constructor specifies any required parameters to create an
instance of the object. The value of the new expression is a reference of the type of the created
object. Objects always have one or more constructors.

We'll look at object creation in detail in Chapter 5. For now, just note that object creation is a
type of expression, and that the resulting object reference can be used in general expressions. In
fact, because the binding of newis "tighter" than that of dot (. ), you can easily create a new
object and invoke a method in it, without assigning the object to a reference type variable:

int hours = new Date().getHours( );

The Dat e class is a utility class that represents the current time. Here we create a hew instance
of Dat e with the new operator and call its get Hour s( ) method to retrieve the current hour as
an integer value. The Dat e object reference lives long enough to service the method call and is
then cut loose and garbage-collected at some point in the future.

Calling methods in object references in this way is, again, a matter of style. It would certainly be
clearer to allocate an intermediate variable of type Dat e to hold the new object and then call its
get Hour s( ) method. However, combining operations like this is common.

4.4.2.7 The instanceof operator
The i nst anceof operator can be used to determine the type of an object at run- time. It is used

to compare an object against a particular type. | nst anceof returns a bool ean value that
indicates whether an object is an instance of a specified class or a subclass of that class:

Bool ean b;

String str = "foo";

b = ( str instanceof String ); /'l true

b = ( str instanceof hject ); /'l also true

b = ( str instanceof Date ); /1l false, not a Date or subcl ass

i nst anceof also correctly reports if the object is of the type of an array or a specified interface:

if ( foo instanceof byte[] )

It is also important to note that the value nul | is not considered an instance of any object. So the
following test will return f al se, no matter what the declared type of the variable:

String s = null;



if ( s instanceof String )
/1 won't happen

4.5 Exceptions

Java's roots are in embedded systems—software that runs inside specialized devices like hand-
held computers, cellular phones, and fancy toasters. In those kinds of applications, it's especially
important that software errors be handled robustly. Most users would agree that it's unacceptable
for their phone to simply crash or for their toast (and perhaps their house) to burn because their
software failed. Given that we can't eliminate the possibility of software errors, it's a step in the
right direction to recognize and deal with anticipated application-level errors in a methodical way.

Dealing with errors in a language like C is entirely the responsibility of the programmer. There is
no help from the language itself in identifying error types, and there are no tools for dealing with
them easily. In C, a routine generally indicates a failure by returning an "unreasonable” value
(e.g., the idiomatic - 1 or nul | ). As the programmer, you must know what constitutes a bad
result, and what it means. It's often awkward to work around the limitations of passing error
values in the normal path of data flow.™! An even worse problem is that certain types of errors can
legitimately occur almost anywhere, and it's prohibitive and unreasonable to explicitly test for
them at every point in the software.

B3I The somewhat obscure setj np( ) and | ongj np( ) statements in C can save a point in the execution
of code and later return to it unconditionally from a deeply buried location. In a limited sense, this is the
functionality of exceptions in Java.

Java offers an elegant solution to these problems with exception handling. (Java exception
handling is similar to, but not quite the same as, exception handling in C++.) An exception
indicates an unusual condition or an error condition. Program control becomes unconditionally
transferred or "thrown" to a specially designated section of code where it's caught and handled. In
this way, error handling is somewhat orthogonal to the normal flow of the program. We don't have
to have special return values for all our methods; errors are handled by a separate mechanism.
Control can be passed long distance from a deeply nested routine and handled in a single
location when that is desirable, or an error can be handled immediately at its source. There are
still some methods that return - 1 as a special value, but these are generally limited to situations
where we are expecting a special value.™

1 For example, the get Hei ght () method of the | nage class returns - 1 if the height isn't known yet. No
error has occurred; the height will be available in the future. In this situation, throwing an exception would be
inappropriate.

A Java method is required to specify the exceptions it can throw (i.e., the ones that it doesn't
catch itself); this means that the compiler can make sure we handle them. In this way, the
information about what errors a method can produce is promoted to the same level of importance
as its argument and return types. You may still decide to punt and ignore obvious errors, but in
Java you must do so explicitly.

4.5.1 Exceptions and Error Classes

Exceptions are represented by instances of the class | ava. | ang. Excepti on and its
subclasses. Subclasses of Except i on can hold specialized information (and possibly behavior)
for different kinds of exceptional conditions. However, more often they are simply "logical”
subclasses that serve only to identify a new exception type. Figure 4.1 shows the subclasses of
Exceptioninthe] ava. | ang package. It should give you a feel for how exceptions are



organized. Most other packages define their own exception types, which usually are subclasses
of Except i on itself, or of its subclass Runt i mneExcept i on.

Another important exception class is | CExcept i on, in the package | ava. i 0. The

| OExcept i on class has many subclasses for typical I/O problems (like

Fi | eNot FoundExcept i on) and networking problems (like Socket Except i on). Network
exceptions belong to the | ava. net package. Another important descendant of | OExcept i on is
Renot eExcept | on, which belongs to the | ava. r m package. It is used when problems arise
during remote method invocation (RMI). Throughout this book we'll mention the exceptions you
need to be aware of as we run into them.

Figure 4.1. The java.lang.Exception subclasses
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An Except i on object is created by the code at the point where the error condition arises. It can
hold whatever information is necessary to describe the exceptional condition, optionally including
a full stack trace for debugging. The Except i on object is passed as an argument to the handling
block of code, along with the flow of control. This is where the terms "throw" and "catch" come
from: the Except i on object is thrown from one point in the code and caught by the other, where
execution resumes.

The Java API also defines the | ava. | ang. Err or class for unrecoverable errors. The
subclasses of Er r or inthe | ava. | ang package are shown in Figure 4.2. Although a few other
packages define their own subclasses of Er r or , subclasses of Er r or are much less common
(and less important) than subclasses of Except i on. You needn't worry about these errors (i.e.,
you do not have to catch them); they normally indicate fatal linkage problems or virtual machine
errors. An error of this kind usually causes the Java interpreter to display a message and exit.

Figure 4.2. The java.lang.Error subclasses
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4.5.2 Exception Handling

The t ry/ cat ch guarding statements wrap a block of code and catch designated types of
exceptions that occur within it:

try {
readFrontil e("foo");

}
catch ( Exception e ) {
/1 Handl e error
Systemout.println( "Exception while reading file:

+e);
}

In this example, exceptions that occur within the body of the t r y portion of the statement are
directed to the cat ch clause for possible handling. The cat ch clause acts like a method; it
specifies an argument of the type of exception it wants to handle and, if it's invoked, it receives
the Except i on object as an argument. Here we receive the object in the variable e and print it
along with a message.

A try statement can have multiple cat ch clauses that specify different types (subclasses) of
Excepti on:

try {
readFrontil e("foo");

}
catch ( Fil eNot FoundException e ) {
/1 Handle file not found



catch ( 1 Oexception e ) {
// Handl e read error

}
catch ( Exception e ) {

// Handle all other errors

The cat ch clauses are evaluated in order, and the first possible (assignable) match is taken. At
most, one cat ch clause is executed, which means that the exceptions should be listed from most
specific to least. In the previous example, we'll anticipate that the hypothetical r eadFr onti | e(

) can throw two different kinds of exceptions: one that indicates the file is not found; the other
indicates a more general read error. Any subclass of Except i on is assignable to the parent type
Excepti on, so the third cat ch clause acts like the def aul t clause ina swi t ch statement and
handles any remaining possibilities.

One beauty of the t r y/ cat ch scheme is that any statement in the t r y block can assume that
all previous statements in the block succeeded. A problem won't arise suddenly because a
programmer forgot to check the return value from some method. If an earlier statement fails,
execution jumps immediately to the cat ch clause; later statements are never executed.

4.5.3 Bubbling Up

What if we hadn't caught the exception? Where would it have gone? Well, if there is no enclosing
try/ cat ch statement, the exception pops to the top of the method in which it appeared and is,
in turn, thrown from that method up to its caller. If that point in the calling method is withina t ry
clause, control passes to the corresponding cat ch clause. Otherwise the exception continues
propagating up the call stack. In this way, the exception bubbles up until it's caught, or until it
pops out of the top of the program, terminating it with a runtime error message. There's a bit more
to it than that because, in this case, the compiler would have reminded us to deal with it, but we'll
get back to that in a moment.

Let's look at another example. In Figure 4.3, the method get Cont ent () invokes the method
openConnection( ) fromwithinatry/ cat ch statement. In turn, openConnecti on( )
invokes the method sendRequest (), which calls the method wri t ¢( ) to send some data.

Figure 4.3. Exception propagation
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In this figure, the second callto wri t e( ) throws an | O=xcept i on. Since sendRequest ()
doesn't contain at ry/ cat ch statement to handle the exception, it's thrown again, from the point
where it was called in the method openConnecti on( ). Since openConnecti on( ) doesn't



catch the exception either, it's thrown once more. Finally it's caught by the t r y statement in
get Cont ent () and handled by its cat ch clause.

Since an exception can bubble up quite a distance before it is caught and handled, we may need
a way to determine exactly where it was thrown. All exceptions can dump a stack trace that lists
their method of origin and all of the nested method calls that it took to arrive there, using the
printStackTrace( ) method.

try {
/'l conpl ex task

} catch ( Exception e ) {
/1 dump information about exactly where the exception occurred
e.printStackTrace( Systemerr );

4.5.4 Checked and Unchecked Exceptions

We explained earlier how Java forces us to be explicit about our error handling. But it's not
realistic to require that every conceivable type of error be handled in every situation. So Java
exceptions are divided into two categories: checked exceptions and unchecked exceptions. Most
application-level exceptions are checked, which means that any method that throws one, either
by generating it itself (as we'll discuss later) or by ignoring one that occurs within it, must declare
that it can throw that type of exception in a special t hr ows clause in its method declaration. We
haven't yet talked in detail about declaring methods; we'll cover that in Chapter 5. For now all
you need know is that methods have to declare the checked exceptions they can throw or allow
to be thrown.

Again in Figure 4.3, notice that the methods openConnection( ) and sendRequest ( )
both specify that they can throw an | O=xcept i on. If we had to throw multiple types of
exceptions, we could declare them separated with commas:

void readFile( String s ) throws | Oexception, InterruptedException {
}

The t hr ows clause tells the compiler that a method is a possible source of that type of checked
exception and that anyone calling that method must be prepared to deal with it. The caller may
use atry/ cat ch block to catch it, or it may declare that it can throw the exception itself.

In contrast, exceptions that are subclasses of either the class | ava. | ang. Runti neExcepti on
orthe class | ava. | ang. Err or are unchecked. See Figure 4.1 for the subclasses of

Runt i mneExcept i on. (Subclasses of Er r or are generally reserved for serious class linkage or
runtime system problems.) It's not a compile- time error to ignore the possibility of these
exceptions; methods don't have to declare they can throw them. In all other respects, unchecked
exceptions behave the same as other exceptions. We are free to catch them if we wish; we
simply aren't required to.

Checked exceptions include application-level problems like missing files and unavailable hosts.
As good programmers (and upstanding citizens), we should design software to recover gracefully
from these kinds of conditions. Unchecked exceptions include problems such as "out of memory"
and " array index out of bounds." While these may indicate application-level programming errors,
they can occur almost anywhere and usually aren't easy to recover from. Fortunately, because



there are unchecked exceptions, you don't have to wrap every one of your array-index operations
inatry/ cat ch statement.

In sum, checked exceptions are problems that a reasonable application should try to handle
gracefully; unchecked exceptions (runtime exceptions or errors) are problems from which we
would not expect our software to recover.

4.5.5 Throwing Exceptions

We can throw our own exceptions: either instances of Except i on or one of its existing
subclasses, or our own specialized exception classes. All we have to do is create an instance of
the Except i on and throw it with the t hr ow statement:

t hrow new Exception( );

Execution stops and is transferred to the nearest enclosing t r y/ cat ch statement. (There is little
point in keeping a reference to the Except i on object we've created here.) An alternative

constructor lets us specify a string with an error message:

t hrow new Exception("Sonething really bad happened");

You can retrieve this string by using the Exception object's get Message( ) method. Often,
though, you can just refer to the object itself; in the first example in the earlier section, "Exception
Handling," an exception's string value is automatically provided to the pri nt | n( ) method.

By convention, all types of Except i on have a St ri ng constructor like this. The earlier St r i ng
message is somewhat facetious and vague. Normally you won't be throwing a plain old
Except i on, but a more specific subclass. For example:

public void checkRead( String s ) {

if ( new File(s).isAbsolute( ) || (s.indexOr("..") I'=-1) )
t hrow new SecurityExcepti on(
"Access to file : "+ s +" denied.");

In this code, we patrtially implement a method to check for an illegal path. If we find one, we throw
a SecurityExcepti on, with some information about the transgression.

Of course, we could include whatever other information is useful in our own specialized
subclasses of Except i on. Often, though, just having a new type of exception is good enough,
because it's sufficient to help direct the flow of control. For example, if we are building a parser,
we might want to make our own kind of exception to indicate a particular kind of failure:

cl ass ParseException extends Exception {
Par seException( ) {

super( );
}

Par seException( String desc ) {
super( desc );
}



See Chapter 5 for a full description of classes and class constructors. The body of our
Except i on class here simply allows a Par seExcept i on to be created in the conventional
ways that we have created exceptions previously (either generically, or with a simple string
description). Now that we have our new exception type, we can guard like this:

/'l Somewhere in our code

try {
parseStream input );

} catch ( ParseException pe ) {
/1 Bad input...

} catch ( | Cexception ioe ) {
/'l Low 1| evel comrunications problem
}

As you can see, although our new exception doesn't currently hold any specialized information
about the problem (it certainly could), it does let us distinguish a parse error from an arbitrary 1/0
error in the same chunk of code.

4.5.5.1 Re-throwing exceptions

Sometimes you'll want to take some action based on an exception and then turn around and
throw a new exception in its place. For example, suppose that we want to handle an

| OExcept i on by freeing up some resources before allowing the failure to pass on to the rest of
the application. You can do this in the obvious way, by simply catching the exception and then
throwing it again or throwing a new one.

4.5.6 Try Creep

The t r y statement imposes a condition on the statements that it guards. It says that if an
exception occurs within it, the remaining statements will be abandoned. This has consequences
for local variable initialization. If the compiler can't determine whether a local variable assignment
we placed inside a t r y/ cat ch block will happen, it won't let us use the variable:

void nmyMethod( ) {
int foo;

try {
foo = getResults( );

catch ( Exception e ) {

}

int bar = foo; // Conpile-time error -- foo may not have been
initialized

In this example, we can't use f 0o in the indicated place because there's a chance it was never
assigned a value. One obvious option is to move the assignment inside the t r y statement:

try {
foo = getResults( );

int bar = foo; // kay because we get here only



/1 i f previous assignnment succeeds

catch ( Exception e ) {
}

Sometimes this works just fine. However, now we have the same problem if we want to use bar
later in my Vet hod( ). If we're not careful, we might end up pulling everything into the t r vy
statement. The situation changes if we transfer control out of the method in the cat ch clause:

try {
foo = getResults( );

catch ( Exception e ) {
.ré{urn;
}

int bar = foo; // Okay because we get here only
/1 i f previous assignnment succeeds

Your code will dictate its own needs; you should just be aware of the options.

4.5.7 The finally Clause

What if we have some cleanup to do before we exit our method from one of the cat ch clauses?
To avoid duplicating the code in each cat ch branch and to make the cleanup more explicit, use
thefinal |y clause. Afinal | y clause can be added after a t r y and any associated cat ch

clauses. Any statements in the body of the f i nal | y clause are guaranteed to be executed, no
matter why control leaves the t r y body:

try {
/1 Do sonething here

}

catch ( Fil eNot FoundException e ) {
}

catch ( 1 Oexception e ) {

catch ( Exception e ) {

}
finally {

/1 Cean up here
}

In this example, the statements at the cleanup point will be executed eventually, no matter how
control leaves the t r y. If control transfers to one of the cat ch clauses, the statements in
finally are executed after the cat ch completes. If none of the cat ch clauses handles the
exception, the f i nal | y statements are executed before the exception propagates to the next
level.



If the statements in the t r y execute cleanly, or if we perform ar et ur n, br eak, or cont i nue,
the statements in the f i nal | y clause are executed. To perform cleanup operations, we can
evenuse try andfinal | y without any cat ch clauses:

try {
/1 Do sonething here
return;
}
finally {
System out . printl n("Woo-hoo!");
}

Exceptions that occur ina cat ch or fi nal | y clause are handled normally; the search for an
enclosing t r y/ cat ch begins outside the offending t r y statement.

4.5.8 Performance Issues

We mentioned at the beginning of this section that there are methods in the core Java APIs that
will still return "out of bounds" values like - 1 or nul | , instead of throwing Except i ons. Why is
this? Well, for some it is simply a matter of convenience; where a special value is easily
discernible, we may not want to have to wrap those methods int r y/ cat ch blocks.

But there is also a performance issue. Because of the way the Java virtual machine is
implemented, guarding against an exception being thrown (using a t r y) is free. It doesn't add
any overhead to the execution of your code. However, throwing an exception is not free. When an
exception is thrown, Java has to locate the appropriate t r y/ cat ch block and perform other time-
consuming activities at runtime.

The result is that you should throw exceptions only in truly "exceptional” circumstances and try to
avoid using them for expected conditions, especially when performance is an issue. For example,
if you have a loop, it may be better to perform a small test on each pass and avoid throwing the
exception, rather than throwing it frequently. On the other hand, if the exception is thrown only
one in a gazillion times, you may want to eliminate the overhead of the test code and not worry
about the cost of throwing that exception.

4.6 Arrays

An array is a special type of object that can hold an ordered collection of elements. The type of
the elements of the array is called the base type of the array; the number of elements it holds is a
fixed attribute called its length. Java supports arrays of all primitive and reference types.

The basic syntax of arrays looks much like that of C or C++. We create an array of a specified
length and access the elements with the index operator, [ | . Unlike other languages, however,
arrays in Java are true, first-class objects. An array is an instance of a special Java array class
and has a corresponding type in the type system. This means that to use an array, as with any
other object, we first declare a variable of the appropriate type and then use the new operator to
create an instance of it.

Array objects differ from other objects in Java in three respects:



Java implicitly creates a special array class for us whenever we declare an arraytype
variable. It's not strictly necessary to know about this process in order to use arrays, but it
helps in understanding their structure and their relationship to other objects in Java.

Java lets us use the special [ | operator to access array elements, so that arrays look as
we expect. We could implement our own classes that act like arrays, but because Java
doesn't have user-defined operator overloading, we would have to settle for having
methods like get () and put () instead of using the special [ | notation.

Java provides a corresponding special form of the new operator that lets us construct an
instance of an array and specify its length with the [ | notation.

4.6.1 Array Types

An array-type variable is denoted by a base type followed by the empty brackets, [ | .
Alternatively, Java accepts a C-style declaration, with the brackets placed after the array name.

The following are equivalent:

int [] arrayO>flnts;
int arrayOints [];

In each case, arrayO | nt s is declared as an array of integers. The size of the array is not yet
an issue, because we are declaring only the array-type variable. We have not yet created an
actual instance of the array class, with its associated storage. It's not even possible to specify the
length of an array when creating an array-type variable.

An array of objects can be created in the same way:

String [] soneStrings;
Button soneButtons [];

4.6.2 Array Creation and Initialization

The new operator is used to create an instance of an array. After the new operator, we specify the
base type of the array and its length, with a bracketed integer expression:

arrayOfints
someStri ngs

new int [42];
new String [ nunber + 2 J;

We can, of course, combine the steps of declaring and allocating the array:

doubl e [] sonmeNunbers = new doubl e [20];
Conmponent wi dgets [] = new Conponent [12];

As in C, array indices start with zero. Thus, the first element of soneNunber s[ ] is O and the last
element is 19. After creation, the array elements are initialized to the default values for their type.
For numeric types, this means the elements are initially zero:

int [] grades = new int [30];
grades[ 0] = 99;
grades[1l] = 72;
/'l grades[2] ==



The elements of an array of objects are references to the objects, not actual instances of the
objects. The default value of each element is therefore nul | , until we assign instances of
appropriate objects:

String nanes [] = new String [4];
names [ 0] new String( );

nanmes [1] = "Boofa";

nanmes [2] = sonmeCbject.toString( );
/1 names[3] == null

This is an important distinction that can cause confusion. In many other languages, the act of
creating an array is the same as allocating storage for its elements. In Java, a newly allocated
array of objects actually contains only reference variables, each with the value nul | .! That's not
to say that there is no memory associated with an empty array—there is memory needed to hold
those references (the empty "slots" in the array). Figure 4.4 illustrates the nanes array of the
previous example.

51 The analog in C or C++ would be an array of pointers to objects. However, pointers in C or C++ are
themselves two- or four-byte values. Allocating an array of pointers is, in actuality, allocating the storage for
some number of those pointer objects. An array of references is conceptually similar, although references
are not themselves objects. We can't manipulate references or parts of references other than by
assignment, and their storage requirements (or lack thereof ) are not part of the high-level Java language
specification.

Figure 4.4. A Java array

String[ ]
names[0] ———— Siring
names | names[l] ———— = Siring
names[2] ———— Siring

names[3] —+ null

nanes is a variable of type St ri ng[ | (i.e., a string array). This particular St r i ng[ | object
contains four St r i ng type variables. We have assigned St r i ng objects to the first three array
elements. The fourth has the default value nul | .

Java supports the C-style curly braces { } construct for creating an array and initializing its
elements:

int [] primes ={ 1, 2, 3, 5, 7, 7+4 }; Il primes[2] == 3

An array object of the proper type and length is implicitly created and the values of the comma-
separated list of expressions are assigned to its elements.

We can use the { } syntax with an array of objects. In this case, each of the expressions must
evaluate to an object that can be assigned to a variable of the base type of the array, or the value
nul | . Here are some examples:



String [] verbs = { "run", "junp", sonmeWord.toString( ) };

Button [] controls = { stopButton, new Button("Forwards"),
new Butt on(" Backwards") };

/1 Al types are subtypes of bject

hject [] objects = { stopButton, "A word", null };

The following are equivalent:

Button [] threeButtons
Button [] threeButtons

new Button [3];
{ null, null, null };

4.6.3 Using Arrays
The size of an array object is available in the public variable | engt h:

char [] al phabet = new char [26];

i nt al phaLen = al phabet .| engt h; /1 al phaLen == 26
String [] nmusketeers = { "one", "two", "three" };
i nt num = nusket eers. | engt h; /1l num ==

| engt h is the only accessible field of an array; it is a variable, not a method. (Don't worry, the
compiler will tell you when you accidentally put those parentheses on, as if it were a method,;
everyone does now and then.)

Array access in Java is just like array access in C; you access an element by putting an integer-
valued expression between brackets after the name of the array. The following example creates
an array of But t on objects called keyPad and then fills the array with But t on objects:

Button [] keyPad = new Button [ 10 ];
for (int i=0; i < keyPad.length; i++)
keyPad[ i ] = new Button( Integer.toString( i ) );

Attempting to access an element that is outside the range of the array generates an
Arrayl ndexCut O BoundsExcept i on. This is a type of Runt | neExcept i on, so you can

either catch and handle it yourself, or ignore it, as we've already discussed:

String [] states = new String [50];

try {
states[0] = "California";
states[ 1] = "Oregon”;
.siétes[SO] = "McDonal d's Land"; // Error: array out of bounds
}
catch ( Arrayl ndexQut O BoundsException err ) {
Systemout.println( "Handled error: " + err.getMessage( ) );
}

It's a common task to copy a range of elements from one array into another. Java supplies the
arraycopy( ) method for this purpose; it's a utility method of the Syst emclass:

System arraycopy(source, sourceStart, destination, destStart,|ength);



The following example doubles the size of the nanes array from an earlier example:

String [] tnmpVar = new String [ 2 * nanes.length ];
System arraycopy( nanes, 0, tnmpVar, 0, nanes.length );
nanmes = tnpVar;

A new array, twice the size of nanes, is allocated and assigned to a temporary variable t npVar .
arraycopy( ) is used to copy the elements of nanes to the new array. Finally, the new array is
assigned to nanes. If there are no remaining references to the old array object after nanes has
been copied, it will be garbage-collected on the next pass.

4.6.4 Anonymous Arrays

You often want to create "throw-away" arrays: arrays that are only used in one place and never
referenced anywhere else. Such arrays don't need to have a name, because you never need to
refer to them again in that context. For example, you may want to create a collection of objects to
pass as an argument to some method. It's easy enough to create a normal, named array—but if
you don't actually work with the array (if you use the array only as a holder for some collection),
you shouldn't have to. Java makes it easy to create "anonymous"” (i.e., unnamed) arrays.

Let's say you need to call a method named set Pet s( ), which takes an array of Ani nal
objects as arguments. Cat and Dog are subclasses of Ani el . Here's how to call set Pet s( )
using an anonymous array:

Dog pokey = new Dog ("gray");

Cat squiggles = new Cat ("black");

Cat jasm ne = new Cat ("orange");

setPets ( new Animal [] { pokey, squiggles, jasnm ne });

The syntax looks just like the initialization of an array in a variable declaration. We implicitly
define the size of the array and fill in its elements using the curly brace notation. However, since
this is not a variable declaration, we have to explicitly use the new operator to create the array
object.

You can use anonymous arrays to simulate variable-length argument lists (called VARARGS in
C), a feature of many programming languages that Java doesn't provide. The advantage of
anonymous arrays over variable-length argument lists is that the former allow stricter type
checking; the compiler always knows exactly what arguments are expected, and therefore it can
verify that method calls are correct.

4.6.5 Multidimensional Arrays

Java supports multidimensional arrays in the form of arrays of array type objects. You create a
multidimensional array with C-like syntax, using multiple bracket pairs, one for each dimension.
You also use this syntax to access elements at various positions within the array. Here's an
example of a multidimensional array that represents a chess board:

ChessPiece [][] chessBoard;

chessBoard = new ChessPi ece [8][8];
chessBoard[ 0] [ O] new ChessPi ece( "Rook" );
chessBoard[ 1] [ 0] new ChessPi ece( "Pawn" );



Here chessBoar d is declared as a variable of type ChessPi ece[ ][] (i.e., an array of
ChessPi ece arrays). This declaration implicitly creates the type ChessPi ece[ | as well. The
example illustrates the special form of the new operator used to create a multidimensional array.
It creates an array of ChessPi ece[ | objects and then, in turn, creates each array of

ChessPi ece objects. We then index chessBoar d to specify values for particular ChessPi ece
elements. (We'll neglect the color of the pieces here.)

Of course, you can create arrays with more than two dimensions. Here's a slightly impractical
example:

Color [][][] rgbCube = new Col or [256][256][ 256];
rgbCube[ 0] [0][0] = Col or. bl ack;
[ 255] [ 255][0] = Col or.yell ow,

r gbCube

As in C, we can specify the initial index of a multidimensional array to get an array-type object
with fewer dimensions. In our example, the variable chessBoar d is of type ChessPi ece[ ][] .
The expression chessBoar d[ 0] is valid and refers to the first element of chessBoar d, which is
of type ChessPi ece[ | . For example, we can create a row for our chess board:

ChessPiece [] startRow = {
new ChessPi ece("Rook"), new ChessPi ece("Knight"),
new ChessPi ece("Bi shop"), new ChessPi ece("King"),
new ChessPi ece(" Queen"), new ChessPi ece("Bi shop"),
new ChessPi ece("Knight"), new ChessPi ece(" Rook")

b

chessBoard[ 0] = startRow,

We don't necessarily have to specify the dimension sizes of a multidimensional array with a
single new operation. The syntax of the new operator lets us leave the sizes of some dimensions
unspecified. The size of at least the first dimension (the most significant dimension of the array)
has to be specified, but the sizes of any number of the less significant array dimensions may be
left undefined. We can assign appropriate array-type values later.

We can create a checkerboard of boolean values (which is not quite sufficient for a real game of
checkers) using this technique:

bool ean [][] checker Board,;
checkerBoard = new bool ean [8][];

Here, checker Boar d is declared and created, but its elements, the eight bool ean[ | objects of
the next level, are left empty. Thus, for example, checker Boar d[ 0] is nul | until we explicitly
create an array and assign it, as follows:

checker Boar d[ 0]
checker Boar d[ 1]

new bool ean [ 8];
new bool ean [ 8];

.c.hécker Boar d[ 7] new bool ean [ 8];

The code of the previous two examples is equivalent to:

bool ean [][] checkerBoard = new bool ean [8][8];



One reason we might want to leave dimensions of an array unspecified is so that we can store
arrays given to us by another method.

Note that since the length of the array is not part of its type, the arrays in the checkerboard do not
necessarily have to be of the same length. That is, multidimensional arrays do not have to be
rectangular. Here's a defective (but perfectly legal, to Java) checkerboard:

checker Boar d[ 2]
checker Boar d[ 3]

new bool ean [ 3];
new bool ean [10];

And here's how you could create and initialize a triangular array:

int [][] triangle = newint [5][];

for (int i =0; i <triangle.length; i++) {
triangle[i] = newint [ + 1];
for (int j =0; j <i + 1; j++)
triangle[i][j] =1 + j;
}

4.6.6 Inside Arrays

We said earlier that arrays are instances of special array classes in the Java language. If arrays
have classes, where do they fit into the class hierarchy and how are they related? These are
good questions; however, we need to talk more about the object-oriented aspects of Java before
answering them. That's the subject of the next chapter. For now, take it on faith that arrays fit into
the class hierarchy.



Chapter 5. Objects in Java

In this chapter, we'll get to the heart of Java and explore the object-oriented aspects of the
language. Object-oriented design is the art of decomposing an application into some number of
objects—self-contained application components that work together. The goal is to break the
problem down into a number of smaller problems that are simpler and easier to understand.
Ideally, the components can be implemented as straightforward objects in the Java language.
And if things are truly ideal, the components correspond to well-known objects that already exist,
so they don't have to be created at all.

An object desigh methodology is a system or a set of rules created to help you identify objects in
your application domain and pick the real ones from the noise. In other words, such a
methodology helps you factor your application into a good set of reusable objects. The problem is
that though it wants to be a science, good object-oriented design is still pretty much an art form.
While you can learn from the various off-the-shelf design methodologies, none of them will help
you in all situations. The truth is that there is no substitute for experience.

We won't try to push you into a particular methodology here; there are shelves full of books to do
that.l! Instead, we'll provide a few hints to get you started. Here are some general design
guidelines, which should be taken with a liberal amount of salt and common sense:

1 Once you have some experience with basic object-oriented concepts, you might want to take a look at
Design Patterns: Elements of Reusable Object-Oriented Software, by Gamma, Helm, Johnson, Vlissides
(Addison-Wesley). This book catalogs useful object-oriented designs that have been refined over the years
by experience. Many appear in the design of the Java APIs.

Think of an object in terms of its interface, not its implementation. It's perfectly fine for an
object's internals to be unfathomably complex, as long as its "public face" is easy to
understand.

Hide and abstract as much of your implementation as possible. Avoid public variables in
your objects, with the possible exception of constants. Instead define accessor methods
to set and return values (even if they are simple types). Later, when you need to, you'll be
able to modify and extend the behavior of your objects without breaking other classes
that rely on them.

Specialize objects only when you have to. When you use an object in its existing form, as
a piece of a new object, you are composing objects. When you change or refine the
behavior of an object, you are using inheritance. You should try to reuse objects by
composition rather than inheritance whenever possible, because when you compose
objects you are taking full advantage of existing tools. Inheritance involves breaking down
the barrier of an object and should be done only when there's a real advantage. Ask
yourself if you really need to inherit the whole public interface of an object (do you want to
be a "kind" of that object), or if you can just delegate certain jobs to the object and use it
by composition.

Minimize relationships between objects and try to organize related objects in packages.
To enhance your code's reusability, write it as if there is a tomorrow. Determine what one
object needs to know about another to get its job done and try to minimize the coupling
between them.

5.1 Classes

Classes are the building blocks of a Java application. A class can contain methods, variables,
initialization code, and, as we'll discuss later on, even other classes. It serves as a blueprint for
making class instances, which are runtime objects that implement the class structure. You



declare a class with the cl ass keyword. Methods and variables of the class appear inside the
braces of the class declaration:

cl ass Pendul um {
fl oat nass;
float length = 1.0;
int cycles;

float position ( float tine ) {

}

The Pendul umclass contains three variables: nass, | engt h, and cycl es. It also defines a
method called posi ti on( ), which takes af| oat value as an argument and returns a f | oat
value. Variables and method declarations can appear in any order, but variable initializers can't
use forward references to uninitialized variables. Once we've defined the Pendul umclass, we
can create a Pendul umobject (an instance of that class) as follows:

Pendul um p;
p = new Pendul un{ );

Recall that our declaration of the variable p does not create a Pendul umobject; it simply creates
a variable that refers to an object of type Pendul um We still have to create the object, using the
new keyword. Now that we've created a Pendul umaobject, we can access its variables and
methods, as we've already seen many times:

p. mss = 5.0;
float pos = p.position( 1.0 );

Two kinds of variables can be defined in a class: instance variables and static variables. Every
object has its own set of instance variables; the values of these variables in one object can differ
from the values in another object. If you don't initialize an instance variable when you declare it,
it's given a default value appropriate for its type.

Figure 5.1 shows a hypothetical Text Book application, which uses two instances of Pendul um
through the reference-type variables bi gPendul umand snal | Pendul um Each of these
Pendul umobjects has its own copy of nass, | engt h, and cycl es. As with variables, methods
defined in a class may be instance methods or static methods. An instance method is associated
with an instance of the class, but each instance doesn't really have its own copy of the method.
Instead, there's just one copy of the method, which operates on the values of the instance
variables of a particular object. As you'll see in Chapter 6, we talk about subclassing; there's
more to learn about how methods see variables.

Figure 5.1. Instances of the Pendulum class



class Pendulum
float maps;
float length;
int cycles;
position ();
M
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class TextBook . Pendulum bigPendulurm
i flear mass = 10.0;
Pendulum bigPendulum; i float length = 1.0;
Pendulum smallPendulum; 5*“".':\‘.":1(}8 = 0.0;
iposition ()
- Pendulum smallPenduslsm
: float mass = 1.0;
{ floak length = 1.0;
cint oycles = 0.0;
iposikion ();
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5.1.1 Accessing Fields and Methods

Inside a class, we can access instance variables and call instance methods of the class directly
by nhame. Here's an example that expands upon our Pendul um

cl ass Pendul um {

voi d resetEverything( ) {
mass = 1.0;
| engt h
cycles =

1.0;
O.

)

float startingPosition = position( 0.0 );

Other classes access members of an object through a reference, using the C-style dot notation:

cl ass Text Book {

voi d showPendul un{ ) {
Pendul um bob = new Pendul unm( );

iﬁi i = bob. cycl es;
bob. reset Everything( );
bob. mass = 1.01;

Here we have created a second class, Text Book, that uses a Pendul umaobject. It creates an
instance in showPendul un{ ) and then invokes methods and accesses variables of the object
through the reference bob. Several factors affect whether class members can be accessed from
outside the class. You can use the visibility modifiers publ i ¢, pri vat e, and pr ot ect ed to



control access; classes can also be placed into packages, which affects their scope. The

pri vat e modifier, for example, designates a variable or method for use only by other members
of the class itself. In the previous example, we could change the declaration of our variable

cycl es toprivate:

cl ass Pendul um {

private int cycles;

Now we can't access cycl es from Text Book:

cl ass Text Book {
voi d showPendul un{ ) {
|nt i = bob. cycl es; /1 Compile time error

If we need to access cycl es, we might add a public get Cycl es( ) method to the Pendulum
class. We'll take a detailed look at access modifiers and how they affect the visibility of variables
and methods in Chapter 6.

5.1.2 Static Members

Instance variables and methods are associated with and accessed through an instance of the
class—i.e., through a particular object. In contrast, members that are declared with the st at i c
modifier live in the class and are shared by all instances of the class. Variables declared with the
st at i ¢ modifier are called static variables or class variables; similarly, these kinds of methods
are called static methods or class methods. We can add a static variable to our Pendulum
example:

cl ass Pendul um {

static float gravAccel = 9. 80;

We have declared the new f | oat variable gr avAccel as st ati c. That means if we change its
value in any instance of a Pendul um the value changes for all Pendul umobjects, as shown in

Figure 5.2.

Figure 5.2. Static variables shared by all instances of a class



-
class Pendulum
float mass;
fleoat length;
int cycles:
position () ;
b static float gravAccel=9_H; 4- -_“E same variahie
tlass TextBook - _, | Pendulum bigPendulum
Ji i float mass = 10.0;
Pendulum bigPendulum; : fizdt l?“fuj ; é‘lu"
Pendulum smallPendulum; i : Jpreles = L.y
' jposition {);
--= gtatic fleat graviccel=0.8;
t | Pendulum smallPendulum
i i float masa = 1.0;
E i float length = 1.0;
' tint cyclea = 0.0;
! iposition {);
‘M-=< gtatic float gravAccel=%9_§;
M A

Static members can be accessed like instance members. Inside our Pendul umeclass, we can
refer to gr avAccel by name, like an instance variable:

cl ass Pendul um {

float getWight () {
return mass * gravAccel ;
}

However, since static members exist in the class itself, independent of any instance, we can also
access them directly through the class. We don't need a Pendul umobject to set the variable
gr avAccel ; instead we can use the class name in place of a reference-type variable:

Pendul um gravAccel = 8. 76;

This changes the value of gr avAccel for any current or future instances. Why would we want to
change the value of gr avAccel ? Well, perhaps we want to explore how pendulums would work
on different planets. Static variables are also very useful for other kinds of data shared among
classes at runtime. For instance, you can create methods to register your objects so that they can
communicate, or you can count references to them. We can use static variables to define
constant values. In this case, we use the st at i ¢ modifier along with the f i nal modifier. So, if
we cared only about pendulums under the influence of the Earth's gravitational pull, we could
change Pendul umas follows:

cl ass Pendul um {

static final float EARTH G = 9. 80

We have followed a common convention and named our constant with capital letters; C
programmers should recognize the capitalization convention, which resembles the C convention



for #def | ne statements. Now the value of EARTH Gis a constant; it can be accessed by any
instance of Pendul um(or anywhere, for that matter), but its value can't be changed at runtime.

It's important to use the combination of st at i ¢ and fi nal only for things that are really
constant. That's because the compiler is allowed to "inline" such values within classes that
reference them. This is probably okay for constants like , but it may not be ideal for other
variables. Static members are useful as flags and identifiers, which can be accessed from
anywhere. They are especially useful for values needed in the construction of an instance itself.
In our example, we might declare a number of static values to represent various kinds of
Pendul umobjects:

cl ass Pendul um {

static int SIMPLE = 0, ONE_SPRING = 1, TWO SPRING = 2:

We might then use these flags in a method that sets the type of a Pendul umor, more likely, in a
special constructor, as we'll discuss shortly:

Pendul um pendy = new Pendul um( );
pendy. set Type( Pendul um ONE_SPRI NG ) ;

Inside the Pendul umclass, we can use static members directly by name, as well; there's no
need for the Pendul um prefix:

cl ass Pendul um {

v0| d resetEverything( ) {
set Type ( SI MPLE );

5.2 Methods

Methods appear inside class bodies. They contain local variable declarations and other Java
statements that are executed by a calling thread when the method is invoked. Method
declarations in Java look like ANSI C-style function declarations with two restrictions: a method in
Java always specifies a return type (there's no default). The returned value can be a primitive
type, a reference type, or the type voi d, which indicates no returned value. A method always has
a fixed number of arguments. The combination of method overloading and true arrays lessens the
need for a variable number of arguments. These techniques are type-safe and easier to use than
C's variable-argument list mechanism.

Here's a simple example:

class Bird {
i nt xPos, yPos;

double fly ( int x, int y ) {
doubl e distance = Math.sgrt( x*x + y*y );
flap( distance );



XxPos = Xx;
yPos = v,
return di stance;

In this example, the class Bi r d defines a method, f | y( ), that takes as arguments two integers:
x andy. It returns a doubl e type value as a result.

5.2.1 Local Variables

The f | y( ) method declares a local variable called di st ance, which it uses to compute the
distance flown. A local variable is temporary; it exists only within the scope of its method. Local
variables are allocated and initialized when a method is invoked; they are normally destroyed
when the method returns. They can't be referenced from outside the method itself. If the method
is executing concurrently in different threads, each thread has its own copies of the method's
local variables. A method's arguments also serve as local variables within the scope of the
method.

An object created within a method and assigned to a local variable may or may not persist after
the method has returned. As with all objects in Java, it depends on whether any references to the
object remain. If an object is created, assigned to a local variable, and never used anywhere else,
that object will no longer be referenced when the local variable is destroyed, so garbage
collection will remove the object. If, however, we assign the object to an instance variable, pass it
as an argument to another method, or pass it back as a return value, it may be saved by another
variable holding its reference. We'll discuss object creation and garbage collection in more detail
shortly.

5.2.2 Shadowing

If a local variable and an instance variable have the same name, the local variable shadows or
hides the name of the instance variable within the scope of the method. In the following example,
the local variables xPos and yPos hide the instance variables of the same name:

class Bird {
i nt xPos, yPos;
int xNest, yNest;

double flyToNest( ) {
i nt xPos = xNest;
int yPos = yNest:
return ( fly( xPos, yPos ) );

When we set the values of the local variables in f | yToNest (), it has no effect on the values of
the instance variables.

5.2.2.1 The "this" reference



You can use the special reference t hi s any time you need to refer explicitly to the current object.
At times you don't need to use t hi s, because the reference to the current object is implicit; this is
the case with using instance variables and methods inside a class. But we can use t hi s to refer
explicitly to instance variables in the object, even if they are shadowed. The following example
shows how we can use t hi s to allow argument names that shadow instance variable names.
This is a fairly common technique, as it saves your having to make up alternative names. Here's
how we could implement our f | y( ) method with shadowed variables:

class Bird {
i nt xPos, yPos;

double fly ( int xPos, int yPos ) {
doubl e di stance = Math.sqrt( xPos*xPos + yPos*yPos );
flap( distance );
t hi s. xPos = xPos;
thi s.yPos = yPos;
return distance;

In this example, the expression t hi s. xPos refers to the instance variable xPos and assigns it
the value of the local variable xPos, which would otherwise hide its name. The only reason we
need to use t hi s in the previous example is because we've used argument names that hide our
instance variables, and we want to refer to the instance variables.

5.2.3 Static Methods

Static methods (class methods), like static variables, belong to the class and not to an individual
instance of the class. What does this mean? Well, foremost, a static method lives outside of any
particular class instance. It can be invoked by name, through the class name, without any objects
around. Because it is not bound to a particular object instance, a static method can directly
access only other static members of the class. It can't directly see any instance variables or call
any instance methods, because to do so we'd have to ask, "on which instance?" Static methods
can be called from instances, just like instance methods, but the important thing is that they can
also be used independently.

Our f 1 y() method uses a static method: Vat h. sgrt (), which is defined by the

J ava. | ang. \Vat h class; we'll explore this class in detail in Chapter 9. For now, the important
thing to note is that Vat h is the name of a class and not an instance of a Vat h object. (It so
happens that you can't even make an instance of the Vat h class.) Because static methods can
be invoked wherever the class name is available, class methods are closer to normal C-style
functions. Static methods are particularly useful for utility methods that perform work that is useful
either independently of instances or in creating instances. For example, in our Bi r d class we can
enumerate all types of birds that can be created:

class Bird {

static String [] getBirdTypes( ) {
String [] types;
/'l Create list...
return types;



Here we've defined a static method get Bi r dTypes( ), which returns an array of strings
containing bird names. We can use get Bi r dTypes( ) from within an instance of Bi r d, just like
an instance method. However, we can also call it from other classes, using the Bi r d class name
as a reference:

String [] names = Bird. getBirdTypes( );

Perhaps a special version of the Bi r d class constructor accepts the name of a bird type. We
could use this list to decide what kind of bird to create.

5.2.4 Initializing Local Variables

Inthe f | yToNest () example, we made a point of initializing the local variables xPos and
yPos. Unlike instance variables, local variables must be initialized before they can be used. It's a
compile-time error to try to access a local variable without first assigning it a value:

void nmyMethod( ) {
int foo = 42;
int bar;

/1l bar += 1; Wuld cause conpile-tinme error, bar uninitialized

bar = 99;
bar += 1; /1 OK here

Notice that this doesn't imply local variables have to be initialized when declared, just that the first
time they are referenced must be in an assignment. More subtle possibilities arise when making
assignments inside of conditionals:

voi d myMet hod {

int foo;
if ( soneCondition ) {
foo = 42;
}
foo += 1; /1 Compile-tinme error, foo may not be initialized

}

In this example, f oo is initialized only if soneCondi t i onistrue. The compiler doesn't let you
make this wager, so it flags the use of f 0o as an error. We could correct this situation in several
ways. We could initialize the variable to a default value in advance or move the usage inside of
the conditional. We could also make sure the path of execution doesn't reach the uninitialized
variable through some other means, depending on what makes sense for our particular
application. For example, we could return from the method abruptly:

int foo;

|f( someCondition ) {
foo = 42;



} else
return;

foo += 1;

In this case, there's no chance of reaching f 0o in an uninitialized state, so the compiler allows
the use of f 0o after the conditional.

Why is Java so picky about local variables? One of the most common (and insidious) sources of
error in C or C++ is forgetting to initialize local variables, so Java tries to help us out. If it didn't,
Java would suffer the same potential irregularities as C or C++.12

[21 As with mal | oc'ed storage in C or C++, Java objects and their instance variables are allocated on a
heap, which allows them default values once, when they are created. Local variables, however, are
allocated on the Java virtual machine stack. As with the stack in C and C++, failing to initialize these could
mean successive method calls could receive garbage values, and program execution might be inconsistent
or implementation-dependent.

5.2.5 Argument Passing and References

Let's consider what happens when you pass arguments to a method. All primitive data types
(e.g., i nt,char, fl oat) are passed by value. Now you're probably used to the idea that
reference types (i.e., any kind of object, including arrays and strings) are used through
references. An important distinction is that the references themselves (the pointers to these
objects) are actually primitive types and are passed by value too.

Consider the following piece of code:

int i = 0;
SomeKi ndOF Cbj ect obj = new SomeKi ndOf Cbj ect( ) ;
myMet hod( i, obj );

void nyMethod(int j, SomekindCf Cbject o) {

}

The first chunk of code calls ny Vet hod( ), passing it two arguments. The first argument, | , is
passed by value; when the method is called, the value of i is copied into the method's parameter,
| . IfmyMet hod( ) changes the value of i , it's changing only its copy of the local variable.

In the same way, a copy of the reference to obj is placed into the reference variable o of

my Vet hod( ) . Both references refer to the same object, so any changes made through either
reference affect the actual (single) object instance. If we change the value of, say, o. si ze, the
change is visible either as 0. si ze (inside nmy Vet hod( )) oras obj . si ze (in the calling
method). However, if myMet hod( ) changes the reference o itself—to point to another object—
it's affecting only its copy. It doesn't affect the variable obj , which still refers to the original object.
In this sense, passing the reference is like passing a pointer in C and unlike passing by reference
in C++.

What if my Vet hod( ) needs to modify the calling method's notion of the obj reference as well
(i.e., make obj point to a different object)? The easy way to do that is to wrap obj inside some
kind of object. One example would be to wrap the object up as the lone element in an array:



SomeKi ndOF Cbj ect [] wrapper = new SomeKi ndOf Cbject [] { obj };

All parties could then refer to the object as wr apper [ 0] and would have the ability to change the
reference. This is not aesthetically pleasing, but it does illustrate that what is needed is the level
of indirection.

Another possibility is to use t hi s to pass a reference to the calling object. In that case, the
calling object serves as the wrapper for the reference. Let's look at a piece of code that could be
from an implementation of a linked list:

class El enent {
publ i c El ement nextEl ement;

voi d addToList( List list ) {
list.addToList( this );
}

}

class List {
voi d addToLi st( El enent elenent ) {

el enent . next El ement = get Next El enent ( ) ;

Every element in a linked list contains a pointer to the next element in the list. In this code, the
El enent class represents one element; it includes a method for adding itself to the list. The

Li st class itself contains a method for adding an arbitrary El enent to the list. The method
addToLi st () callsaddToLi st ( ) with the argument t hi s (which is, of course, an El enent ).
addToLi st ( ) canuse the t hi s reference to modify the El enent 's next El enent instance
variable. The same technique can be used in conjunction with interfaces to implement callbacks
for arbitrary method invocations.

5.2.6 Method Overloading

Method overloading is the ability to define multiple methods with the same name in a class; when
the method is invoked, the compiler picks the correct one based on the arguments passed to the
method. This implies that overloaded methods must have different numbers or types of
arguments. (In Chapter 6, we'll look at method overriding, which occurs when we declare
methods with identical signatures in different classes.)

Method overloading (also called ad-hoc polymorphism) is a powerful and useful feature. The idea
is to create methods that act in the same way on different types of arguments. This creates the
illusion that a single method can operate on any of the types. The pri nt ( ) method in the
standard Pr i nt St r eamclass is a good example of method overloading in action. As you've
probably deduced by now, you can print a string representation of just about anything using this
expression:

Systemout. print( argunent )

The variable out is a reference to an object (a Pri nt St r ean) that defines nine different
versions of the pri nt () method. The versions take arguments of the following types: Obj ect ,
String,char[],char,int,long,fl oat, doubl e, and bool ean.



class PrintStream{

void print( Object arg ) { ... }
void print( String arg ) { ... }
void print( char [] arg ) { ... }

You can invoke the pri nt () method with any of these types as an argument, and it's printed in
an appropriate way. In a language without method overloading, this would require something
more cumbersome, such as a uniquely named method for printing each type of object. Then it
would be your responsibility to remember what method to use for each data type. In the previous
example, print () has been overloaded to support two reference types: Choj ect and St ri ng.

What if we try to call pri nt () with some other reference type? Say, perhaps, a Dat e object?
When there's not an exact type match, the compiler searches for an acceptable, assignable
match. Since Dat e, like all classes, is a subclass of Obj ect, a Dat e object can be assigned to a
variable of type Obj ect . It's therefore an acceptable match, and the Cbj ect method is selected.

What if there's more than one possible match? Say, for example, we tried to print a subclass of
String called MyString. (The String classis fi nal , so it can't be subclassed, but allow me
this brief transgression for purposes of explanation.) My St r i ng is assignable to either St ri ng or
to Cbj ect . Here the compiler makes a determination as to which match is "better" and selects
that method. In this case, it's the St r i ng method.

The intuitive explanation is that the St r i ng class is closer to My St r i ng in the inheritance
hierarchy. It is a more specific match. A more rigorous way of specifying it would be to say that a
given method is more specific than another method if the argument types of the first method are
all assignable to the argument types of the second method. In this case, the St r i ng method is
more specific to a subclass of St r i ng than the Cbj ect method because type St ri ng is
assignable to type Obj ect . The reverse is not true.

If you're paying close attention, you may have noticed we said that the compiler resolves
overloaded methods. Method overloading is not something that happens at runtime; this is an
important distinction. It means that the selected method is chosen once, when the code is
compiled. Once the overloaded method is selected, the choice is fixed until the code is
recompiled, even if the class containing the called method is later revised and an even more
specific overloaded method is added. This is in contrast to overridden (virtual) methods, which
are located at runtime and can be found even if they didn't exist when the calling class was
compiled. We'll talk about method overriding later in the chapter.

One last note about overloading. In earlier chapters, we've pointed out that Java doesn't support
programmer-defined overloaded operators, and that + is the only system-defined overloaded
operator. If you've been wondering what an overloaded operator is, | can finally clear up that
mystery. In a language like C++, you can customize operators such as + and * to work with
objects that you create. For example, you could create a class Conpl ex that implements
complex numbers, and then overload methods corresponding to + and * to add and multiply
Conpl ex objects. Some people argue that operator overloading makes for elegant and readable
programs, while others say it's just "syntactic sugar" that makes for obfuscated code. The Java
designers clearly espoused the latter opinion when they chose not to support programmer-
defined overloaded operators.

5.3 Object Creation



Objects in Java are allocated from a system heap space, much like nal | oc'ed storage in C or
C++. Unlike in C or C++, however, we needn't manage that memory ourselves. Java takes care
of memory allocation and deallocation for you. Java explicitly allocates storage for an object when
you create it with the new operator. More importantly, objects are removed by garbage collection
when they're no longer referenced.

5.3.1 Constructors

Objects are allocated by specifying the new operator with an object constructor. A constructor is a
special method with the same name as its class and no return type. It's called when a new class
instance is created, which gives the class an opportunity to set up the object for use.
Constructors, like other methods, can accept arguments and can be overloaded (they are not,
however, inherited like other methods; we'll discuss inheritance in Chapter 6).

class Date {
| ong tine;

Date( ) {
time = currentTinme( );
}

Date( String date ) {
time = parseDate( date );
}

In this example, the class Dat e has two constructors. The first takes no arguments; it's known as
the default constructor. Default constructors play a special role: if we don't define any
constructors for a class, an empty default constructor is supplied for us. The default constructor is
what gets called whenever you create an object by calling its constructor with no arguments. Here
we have implemented the default constructor so that it sets the instance variable time by calling a
hypothetical method, cur rent Ti me( ), which resembles the functionality of the real
java.util . Dat e class. The second constructor takes a St r i ng argument. Presumably, this

St ri ng contains a string representation of the time that can be parsed to set the t | e variable.
Given the constructors in the previous example, we create a Dat e object in the following ways:

Date now = new Date( );
Date christmas = new Date("Dec 25, 1999");

In each case, Java chooses the appropriate constructor at compile time based on the rules for
overloaded method selection.

If we later remove all references to an allocated object, it'll be garbage-collected, as we'll discuss
shortly:

christmas = null; /1 fair gane for the garbage collector

Setting this reference to nul | means it's no longer pointing to the "Dec 25, 1999" object. (So
would setting chr i st mas to any other value.) Unless that object is referenced by another
variable, it's now inaccessible and can be garbage-collected.



A few more notes: constructors can't be abst ract, synchroni zed, or f i nal . Constructors
can, however, be declared with the visibility modifiers publ i ¢, pri vat e, or pr ot ect ed, to
control their accessibility. We'll talk in detail about visibility modifiers later in the chapter.

5.3.2 Working with Overloaded Constructors

A constructor can refer to another constructor in the same class or the immediate superclass
using special forms of the t hi s and super references. We'll discuss the first case here, and
return to that of the superclass constructor after we have talked more about subclassing and
inheritance. A constructor can invoke another, overloaded constructor in its class using the
reference t hi s( ) with appropriate arguments to select the desired constructor. If a constructor
calls another constructor, it must do so as its first statement:

class Car {
String nodel ;
i nt doors;

Car( String m int d) {
nodel = m
doors = d;
/'l other, conplicated setup

}

Car( String m) {
this( m 4);
}

In this example, the class Car has two constructors. The first, more explicit one, accepts
arguments specifying the car's model and its number of doors. The second constructor takes just
the model as an argument and, in turn, calls the first constructor with a default value of four
doors. The advantage of this approach is that you can have a single constructor do all the
complicated setup work; other auxiliary constructors simply feed the appropriate arguments to
that constructor.

The call to t hi s( ) must appear as the first statement in our second constructor. The syntax is
restricted in this way because there's a need to identify a clear chain of command in the calling of
constructors. At one end of the chain, Java invokes the constructor of the superclass (if we don't
do it explicitly) to ensure that inherited members are initialized properly before we proceed.

There's also a point in the chain, just after the constructor of the superclass is invoked, where the
initializers of the current class's instance variables are evaluated. Before that point, we can't even
reference the instance variables of our class. We'll explain this situation again in complete detail
after we have talked about inheritance.

For now, all you need to know is that you can invoke a second constructor only as the first
statement of another constructor. For example, the following code is illegal and causes a compile-
time error:

Car( String m) {
i nt doors = determ neDoors( );
this( m doors ); /1l Error: constructor call



/1 must be first statenent

The simple model name constructor can't do any additional setup before calling the more explicit
constructor. It can't even refer to an instance member for a constant value:

class Car {

f| hal int default_doors = 4;

Car( String m) {
this( m default _doors ); // Error: referencing
/1 uninitialized variable

The instance variable def aul t Door s is not initialized until a later point in the chain of
constructor calls, so the compiler doesn't let us access it yet. Fortunately, we can solve this
particular problem by using a static variable instead of an instance variable:

class Car {

static final int DEFAULT DOORS = 4:

Car( String m) {
this( m DEFAULT _DOORS ); [// Ckay now
}

The static members of a class are initialized when the class is first loaded, so it's safe to access
them in a constructor.

5.3.3 Static and Nonstatic Code Blocks

It's possible to declare a code block (some statements within curly braces) directly within the
scope of a class. This code block doesn't belong to any method; instead, it's executed once, at
the time the object is constructed, or, in the case of a code block marked st at i ¢, at the time the
class is loaded.

Nonstatic code blocks can be thought of as extensions of instance variable initialization. They're
called at the time the instance variable's initializers are evaluated (after superclass construction),
in the order that they appear in the Java source:

class Myd ass {
Properties nyProps = new Properties( );
/'l set up nyProps
{
nmyPr ops. put ("foo", "bar");
myProps. put ("boo", "gee");



int a = 5;

You can use static code blocks to initialize static class members. So the static members of a
class can have complex initialization just like objects:

cl ass Col or Weel {
static Hashtabl e col ors = new Hashtabl e( );

/1l set up colors

static {
colors. put("Red", Color.red );
colors. put ("G een", Color.green );
col ors. put ("Blue", Color.blue );

The class Col or VWheel provides a variable col or s that maps the names of colors to Col or
objects in a Hasht abl e. The first time the class Col or \Wheel is referenced and loaded, the
static components of Col or \Wheel are evaluated, in the order they appear in the source. In this
case, the static code block simply adds elements to the col or s Hasht abl e.

5.4 Object Destruction

Now that we've seen how to create objects, it's time to talk about their destruction. If you're
accustomed to programming in C or C++, you've probably spent time hunting down memory
leaks in your code. Java takes care of object destruction for you; you don't have to worry about
memory leaks, and you can concentrate on more important programming tasks.

5.4.1 Garbage Collection

Java uses a technique known as garbage collection to remove objects that are no longer needed.
The garbage collector is Java's grim reaper. It lingers, usually in a low-priority thread, stalking
objects and awaiting their demise. It finds them, watches them, and periodically counts
references to them to see when their time has come. When all references to an object are gone,
S0 it's no longer accessible, the garbage-collection mechanism reclaims it and returns the space
to the available pool of resources.

There are many different algorithms for garbage collection; the Java virtual machine architecture
doesn't specify a particular scheme. It's worth noting, though, that current implementations of
Java use a conservative mark-and-sweep system. Under this scheme, Java first walks through
the tree of all accessible object references and marks them as alive. Then Java scans the heap
looking for identifiable objects that aren't so marked. Java finds objects on the heap because they
are stored in a characteristic way and have a particular signature of bits in their handles unlikely
to be reproduced naturally. This kind of algorithm doesn't suffer from the problem of cyclic
references, where detached objects can mutually reference each other and appear alive.

By default, the Java virtual machine is configured to run the garbage collector in a low-priority
thread, so that the garbage collector runs periodically to collect stray objects. With the SDK's

| ava interpreter, you can turn off garbage collection by using the - noasyncgc command-line
option. If you do this, the garbage collector will be run only if it's requested explicitly or if the Java



virtual machine runs out of memory. In newer runtime implementations like HotSpot, garbage
collections effectively runs continuously in a very efficient way and should never cause a
significant delay in execution.

You can prompt the garbage collector to make a sweep explicitly by invoking the Syst em gc( )
method. An extremely time-sensitive Java application might use this to its advantage by
deactivating asynchronous garbage collection and scheduling its own cleanup periods. But this is
probably not a good idea. This issue is hecessarily implementation-dependent, because on
different platforms, garbage collection may be implemented in different ways. On some systems it
may even be running in hardware.

5.4.2 Finalization

Before an object is removed by garbage collection, its f i nal i ze( ) method is invoked to give it
a last opportunity to clean up its act and free other kinds of resources it may be holding. While the
garbage collector can reclaim memory resources, it may not take care of things like closing files
and terminating network connections gracefully or efficiently. That's what the f i nal i ze( )
method is for. An object'sfi nal i ze( ) method is called once and only once before the object
is garbage-collected. However, there's no guarantee when that will happen. Garbage collection
may never run on a system that is not short of memory. It is also interesting to note that
finalization and collection occur in two distinct phases of the garbage-collection process. First
items are finalized; then they are collected. It is therefore possible that finalization could
(intentionally or unintentionally) create a lingering reference to the object in question, postponing
its garbage collection. The object could, of course, be subject to collection later, if the reference
goes away, butitsfi nal i ze( ) method would not be called again.

The final i ze( ) methods of superclasses are not invoked automatically for you. If you need to
invoke the finalization routine of your parent classes, you should invoke the fi nal i ze( )
method of your superclass, using super . finalize( ).We discuss inheritance and overridden
methods in Chapter 6.



Chapter 6. Relationships Among Classes

So far, we know how to create a Java class and to create objects, which are instances of a class.
But an object by itself isn't very interesting—no more interesting than, say, a table knife. You can
marvel at a table knife's perfection, but you can't really do anything with it until you have some
other pieces of cutlery and food to use the cutlery on. The same is true of objects and classes in
Java: they're interesting by themselves, but what's really important comes from relationships that
you establish among them.

That's what we'll cover in this chapter. In particular, we'll be looking at several kinds of
relationships:

Inheritance relationships
How a class inherits methods and variables from its parent class
Interfaces

How to declare that a class supports certain behavior and define a type to refer to that
behavior

Packaging
How to organize objects into logical groups
Inner classes

A generalization of classes that lets you nest a class definition inside of another class
definition

6.1 Subclassing and Inheritance

Classes in Java exist in a class hierarchy. A class in Java can be declared as a subclass of
another class using the ext ends keyword. A subclass inherits variables and methods from its
superclass and uses them as if they were declared within the subclass itself:

class Aninmal {
fl oat weight;

void eat( ) {
}
—

class Mammal extends Ani nmal {
i nt heartRate;
/'l inherits weight
voi d breathe( ) {

}



/'l inherits eat( )

In this example, an object of type Manmal has both the instance variable wei ght and the method
eat (). They are inherited from Ani mal .

A class can extend only one other class. To use the proper terminology, Java allows single
inheritance of class implementation. Later in this chapter we'll talk about interfaces, which take
the place of multiple inheritance as it's primarily used in C++.

A subclass can be further subclassed. Normally, subclassing specializes or refines a class by
adding variables and methods:

cl ass Cat extends Manmal {
bool ean | ongHai r;
/1 inherits weight and heartRate

;/.oi.d purr( ) {

}
/'l inherits eat() and breathe( )

The Cat class is a type of Manmal that is ultimately a type of Ani mal . Cat objects inherit all the
characteristics of Vamral objects and, in turn, Ani nal objects. Cat also provides additional
behavior in the form of the purr ( ) method and the | ongHai r variable. We can denote the
class relationship in a diagram, as shown in Figure 6.1.

Figure 6.1. A class hierarchy
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A subclass inherits all members of its superclass not designated as pri vat e. As we'll discuss
shortly, other levels of visibility affect what inherited members of the class can be seen from
outside of the class and its subclasses, but at a minimum, a subclass always has the same set of
visible members as its parent. For this reason, the type of a subclass can be considered a
subtype of its parent, and instances of the subtype can be used anywhere instances of the
supertype are allowed. Consider the following example:

Cat sinmon = new Cat( );
Ani mal creature = sinon;

The Cat si non in this example can be assigned to the Ani nal type variable cr eat ur e
because Cat is a subtype of Ani nmal .



6.1.1 Shadowed Variables

In the section on methods in Chapter 5, we saw that a local variable of the same name as an
instance variable shadows (hides) the instance variable. Similarly, an instance variable in a
subclass can shadow an instance variable of the same name in its parent class, as shown in

Figure 6.2.

Figure 6.2. The scope of shadowed variables
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In Figure 6.2, the variable vwei ght is declared in three places: as a local variable in the method
foodConsunpt i on( ) of the class Vanmal , as an instance variable of the class Varmal , and
as an instance variable of the class Ani mal . The actual variable selected depends on the scope
in which we are working.

In the previous example, all variables were of the same type. About the only reason for declaring
a variable with the same type in a subclass is to provide an alternate initializer.

A more important use of shadowed variables involves changing their types. We could, for
example, shadow an i nt variable with a doubl e variable in a subclass that needs decimal
values instead of integer values. We do this without changing the existing code because, as its
name suggests, when we shadow variables, we don't replace them but instead mask them. Both
variables still exist; methods of the superclass see the original variable, and methods of the
subclass see the new version. The determination of what variables the various methods see
occurs at compile time.

Here's a simple example:

class I ntegerCal cul ator {
int sum

}

cl ass Deci mal Cal cul at or extends | ntegerCal cul ator {
doubl e sum

In this example, we shadow the instance variable sumto change its type from i nt to doubl e.™
Methods defined in the class | nt eger Cal cul at or see the integer variable sum while methods



defined in Deci mal Cal cul at or see the floating-point variable sum However, both variables
actually exist for a given instance of Deci nal Cal cul at or, and they can have independent
values. In fact, any methods that Deci mal Cal cul at or inherits from | nt eger Cal cul at or
actually see the integer variable sum

21 Note that a better way to design our calculators would be to have an abstract Cal cul at or class with two
subclasses: | nt eger Cal cul at or and Deci nal Cal cul at or.

Since both variables exist in Deci nal Cal cul at or, we need to reference the variable inherited
from | nt eger Cal cul at or . We do that using the super reference:

int s = super.sum

Inside of Deci nmal Cal cul at or, the super keyword used in this manner refers to the sum
variable defined in the superclass. We'll explain the use of super more fully in a bit.

Another important point about shadowed variables has to do with how they work when we refer to
an object by way of a less derived type. For example, we can refer to a Deci nal Cal cul at or
object as an | nt eger Cal cul at or . If we do so and then access the variable sum we get the
integer variable, not the decimal one:

Deci nal Cal cul at or dc
I ntegerCal culator ic

new Deci mal Cal cul ator( );
dc;

int s = ic.sum /| accesses |ntegerCal cul ator sum

After this detailed explanation, you may still be wondering what shadowed variables are good for.
Well, to be honest, the usefulness of shadowed variables is limited, but it's important to
understand the concepts before we talk about doing the same thing with methods. We'll see a
different and more dynamic type of behavior with method shadowing, or more correctly, method
overriding.

6.1.2 Overriding Methods

In Chapter 5, we saw we could declare overloaded methods (i.e., methods with the same name
but a different number or type of arguments) within a class. Overloaded method selection works
in the way we described on all methods available to a class, including inherited ones. This means
that a subclass can define some overloaded methods that augment the overloaded methods
provided by a superclass.

But a subclass does more than that; it can define a method that has exactly the same method
signature (arguments and return type) as a method in its superclass. In that case, the method in
the subclass overrides the method in the superclass and effectively replaces its implementation,
as shown in Figure 6.3. Overriding methods to change the behavior of objects is called sub-type
polymorphism . It's the kind that most people think of when they talk about the power of object-
oriented languages.

Figure 6.3. Method overriding
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In Figure 6.3, Manmal overrides the r epr oduce( ) method of Ani el , perhaps to specialize
the method for the peculiar behavior of mammals' giving live birth.2 The Cat object's sleeping
behavior is overridden to be different from that of a general Ani nal , perhaps to accommodate
cat naps. The Cat class also adds the more unique behaviors of purring and hunting mice.

21 we'll ignore the platypus, which is an obscure nonovoviviparous mammal.

From what you've seen so far, overridden methods probably look like they shadow methods in
superclasses, just as variables do. But overridden methods are actually more powerful than that.
An overridden method in Java acts like a vi r t ual method in C++. When there are multiple
implementations of a method in the inheritance hierarchy of an object, the one in the "most
derived" class (the lowest one in the hierarchy) always overrides the others, even if we refer to
the object by way of a less derived type. For example, if we have a Cat instance assigned to a
variable of the more general type Ani mal and we call its s| eep( ) method, we get the s| eep(
) method implemented in the Cat class, not the one in Ani nal :

Cat sinmon = new Cat( );
Ani mal creature = sinon;

creature. sl eep(); /| accesses Cat sleep( );

In other respects, the variable cr eat ur e looks like an Ani nal . For example, access to a
shadowed variable would find the implementation in the Ani nal class, not the Cat class.
However, because methods are virtual, the appropriate method in the Cat class can be located,
even though we are dealing with an Ani nmal object. This means we can deal with specialized
objects as if they were more general types of objects and still take advantage of their specialized
implementations of behavior.

A common programming error in Java is to miss and accidentally overload a method when trying
to override it. Any difference in the number or type of arguments produces two overloaded
methods instead of a single, overridden method. Make it a habit to look twice when overriding
methods.

6.1.2.1 Overridden methods and dynamic binding

In a previous section, we mentioned that overloaded methods are selected by the compiler at
compile time. Overridden methods, on the other hand, are selected dynamically at runtime. Even
if we create an instance of a subclass, our code has never seen before (perhaps a new object



type loaded from the network), any overriding methods that it contains will be located and invoked
at runtime to replace those that existed when we last compiled our code.

In contrast, if we load a new class that implements an additional, more specific overloaded
method, our code will continue to use the implementation it discovered at compile time. Another
effect of this is that casting (i.e., explicitly telling the compiler to treat an object as one of its
assignable types) affects the selection of overloaded methods, but not overridden methods.

6.1.2.2 Static method binding

st at i ¢ methods do not belong to any object instance; they are accessed directly through a class
name, so they are not dynamically selected at runtime like instance methods. That is why
st ati c methods are called "static"—they are always bound at compile time.

A st at i c method in a superclass can be shadowed by another st at i ¢ method in a subclass,
as long as the original method was not declared f i nal . However, you can't override a st at i c
method with a nonst at i ¢ method. In other words, you can't change a st at | ¢ method in a
superclass into an instance method in a subclass.

6.1.2.3 Dynamic method selection and performance

When Java has to search dynamically for overridden methods in subclasses, there's a small
performance penalty. In languages like C++, the default is for methods to act like shadowed
variables, so you have to declare explicitly the methods you want to be dynamic (or, as C++
terms them, virtual).

In Java, instance methods are, by default, dynamic. But you can use the f i nal modifier to
declare that an instance method can't be overridden, so it won't be subject to dynamic binding
and its performance won't suffer. We have seen f i nal used with variables to effectively make
them constants. When applied to a method, f i nal means that its implementation is constant; no
overriding allowed. f i nal can also be applied to an entire class, which means the class can't be
subclassed.

Newer runtime systems like Sun's HotSpot should, however, eliminate the need for this kind of
specificity. A profiling runtime should be able to determine which methods are not being
overridden and "optimistically inline" them.

6.1.2.4 Compiler optimizations

When | avac, the Java compiler, is run with the - O switch, it performs certain optimizations. It
can inline f i nal methods to improve performance (while slightly increasing the size of the
resulting class file). pri vat e methods, which are effectively f i nal , can also be inlined, and
final classes may also benefit from more powerful optimizations.

Another kind of optimization allows you to include debugging code in your Java source without
penalty. Java doesn't have a preprocessor to explicitly control what source is included, but you
can get some of the same effects by making a block of code conditional on a constant (i.e.,
static andfinal) variable. The Java compiler is smart enough to remove this code when it
determines that it won't be called. For example:

static final bool ean DEBUG = fal se;



final void debug (String nessage) {
if (DEBUG ({
Systemerr. println(nessage);
/1 do other stuff

If we compile this code using the - O switch, the compiler can recognize that the condition on the
DEBUG variable is always false, and the body of the debug( ) method will be optimized away.
But that's not all—since debug( ) itself is also f i nal , it can be inlined, and an empty inlined
method generates no code at all. So when we compile with DEBUG set to f al se, calls to the
debug( ) method generate no residual code at all.

;"_7‘; The - O compiler switch is something that may eventually go away in favor

s of smarter runtime systems, like Sun's HotSpot, which can inline arbitrary
w # :.chunks of code dynamically. In some recent versions of Java, the - O
* switch is documented not to work at all! We document it here mainly for
completeness.

6.1.2.5 Method selection revisited

By now you should have a good, intuitive idea as to how methods are selected from the pool of
potentially overloaded and overridden method names of a class. If, however, you are dying for a
dry definition, we'll provide one now. If you are satisfied with your understanding, you may wish to
skip this little exercise in logic.

In a previous section, we offered an inductive rule for overloaded method resolution. It said that a
method is considered more specific than another if its arguments are assignable to the arguments
of the second method. We can now expand this rule to include the resolution of overridden
methods by adding the following condition: to be more specific than another method, the type of
the class containing the method must also be assignable to the type of the class holding the
second method.

What does that mean? Well, the only classes whose types are assignable are classes in the
same inheritance hierarchy. So, what we're talking about now is the set of all methods of the
same name in a class or any of its parent or child classes. Since subclass types are assignable to
superclass types, but not vice versa, the resolution is pushed, in the way that we expect, down
the chain, toward the subclasses. This effectively adds a second dimension to the search, in
which resolution is pushed down the inheritance tree towards more refined classes and,
simultaneously, toward the most specific overloaded method within a given class.

6.1.2.6 Exceptions and overridden methods

When we talked about exception handling in Chapter 4, we didn't mention an important
restriction that applies when you override a method. When you override a method, the new
method (the overriding method) must adhere to the t hr ows clause of the method it overrides. In
other words, if an overridden method declares that it can throw an exception, the overriding
method must also specify that it can throw the same kind of exception, or a subtype of that
exception. By allowing the exception to be a subtype of the one specified by the parent, the



overriding method can refine the type of exception thrown, to go along with its new behavior. For
example:

cl ass Meat | nedi bl eExcepti on extends | nedi bl eException {

}

class Aninmal {
void eat( Food f ) throws | nedi bl eException {

}
}
cl ass Herbivore extends Ani mal {
void eat( Food f ) throws | nedi bl eException {
if ( f instanceof Meat )
t hrow new Meat | nedi bl eException( );

In this code, Ani mal specifies that it can throw an | nedi bl eExcepti on fromits eat ()
method. Her bi vor e is a subclass of Ani nal , soits eat () method must also be able to throw
an | nedi bl eExcept i on. However, Her bi vor e's eat () method actually throws a more
specific exception: \Veat | nedi bl eExcept i on. It can do this because

Meat | nedi bl eExcepti on is a subtype of | nedi bl eExcepti on (remember that exceptions
are classes, too). Our calling code's cat ch clause can therefore be more specific:

Ani mal creature = ...
try {
creature.eat( food );
} catch ( Meatl nedi bl eException ) {
/]l creature can't eat this food because it's neat
} catch ( Inedibl eException ) {
/]l creature can't eat this food
}

However, if we don't care why the food is inedible, we're free to catch | nedi bl eExcept i on
alone, because a MVeat | nedi bl eExcepti onisalso an | nedi bl eExcepti on.

. The eat () method in the Her bi vor e class could have declared that it
o throws a Veat | nedi bl eExcept i on, not a plain old

w f I nedi bl eExcept i on. But it should do so only if eating meat is the only
cause of herbivore indigestion.

Ty

6.1.3 Special References: this and super

The special references t hi s and super allow you to refer to the members of the current object
instance or to members of the superclass, respectively. We have seen t hi s used elsewhere to
pass a reference to the current object and to refer to shadowed instance variables. The reference
super does the same for the parents of a class. You can use it to refer to members of a
superclass that have been shadowed or overridden. A common arrangement is for an overridding



method in a subclass to do some preliminary work and then defer to the overridden method of the
superclass to finish the job:

class Aninmal {
void eat( Food f ) throws | nedi bl eException {
/'l consune food
}

}

cl ass Herbivore extends Ani mal {
void eat( Food f ) throws Meatl nedi bl eException {
/'l check if edible

éﬁber. eat( f );

In this example, our Her bi vor e class overrides the Ani mal eat () method to first do some
checking on the food object. After doing its job, it uses super . eat () to call the (otherwise
overridden) implementation of eat () in its superclass.

super prompts a search for the method or variable to begin in the scope of the immediate
superclass rather than the current class. The inherited method or variable found may reside in the
immediate superclass, or in a more distant one. The usage of the super reference when applied
to overridden methods of a superclass is special; it tells the method resolution system to stop the
dynamic method search at the superclass, instead of at the most derived class (as it otherwise
does). Without super , there would be no way to access overridden methods.

6.1.4 Casting

As in C++, a cast explicitly tells the compiler to change the apparent type of an object reference.
Unlike in C++, casts in Java are checked both at compile time and at runtime to make sure they
are legal. Attempting to cast an object to an incompatible type at runtime results in a

Cl assCast Except i on. Only casts between objects in the same inheritance hierarchy (and as
we'll see later, to appropriate interfaces) are legal in Java and pass the scrutiny of the compiler
and the runtime system.

Casts in Java affect only the treatment of references; they never change the form of the actual
object. This is an important rule to keep in mind. You never change the object pointed to by a
reference by casting it; you change only the compiler's (or runtime system's) notion of it.

A cast can be used to narrow the type of a reference—to make it more specific. Often, we'll do
this when we have to retrieve an object from a more general type of collection or when it has
been previously used as a less derived type. (The prototypical example is using an object in a
Vect or or Hasht abl e, as you'll see in Chapter 9.) Continuing with our Cat example:

Ani mal creature = ...

Cat simon = ...
creature = sinon; Il K
/1l simon = creature; /1 Conmpile time error, inconpatible type

sinmon = (Cat)creature; Il K



We can't reassign the reference in cr eat ur e to the variable si non even though we know it
holds an instance of a Cat (Simon). We have to perform the indicated cast. This is also called
downcasting the reference.

Note that an implicit cast was performed when we went the other way to widen the reference
si nmon to type Ani mal during the first assignment. In this case, an explicit cast would have been
legal, but superfluous.

If casting seems complicated, here's a simple way to think about it. Basically, you can't lie about
what an object is. If you have a Cat object, you can cast it to a less derived type (i.e., a type
above it in the class hierarchy) such as Ani nal or even Obj ect, since all Java classes are a
subclass of Cbj ect . If you have an Obj ect you know is a Cat , you can downcast the Cbj ect
to be an Ani mal or a Cat . However, if you aren't sure if the Coj ect isa Cat ora Dog at
runtime, you should check it with i nst anceof before you perform the cast. If you get the cast
wrong, the runtime system throws a Cl assCast Except i on.

As we mentioned earlier, casting can affect the selection of compile-time items such as variables
and overloaded methods, but not the selection of overridden methods. Figure 6.4 shows the
difference. As shown in the top half of the diagram, casting the reference si non to type Ani nal
(widening it) affects the selection of the shadowed variable wei ght within it. However, as the
lower half of the diagram indicates, the cast doesn't affect the selection of the overridden method
sleep( ).

Figure 6.4. Casting and selection of methods and variables
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6.1.5 Using Superclass Constructors

When we talked earlier about constructors, we discussed how the special statement t hi s( )
invokes an overloaded constructor upon entry to another constructor. Similarly, the statement
super () explicitly invokes the constructor of a superclass. Of course, we also talked about how
Java makes a chain of constructor calls that includes the superclass's constructor, so why use
super () explicitly? When Java makes an implicit call to the superclass constructor, it calls the



default constructor. So, if we want to invoke a superclass constructor that takes arguments, we
have to do so explicitly using super ().

If we are going to call a superclass constructor with super (), it must be the first statement of
our constructor, justas t hi s( ) must be the first call we make in an overloaded constructor.
Here's a simple example:

cl ass Person {
Person ( String name ) {
/'l setup based on nane

}

cl ass Doctor extends Person {
Doctor ( String name, String specialty ) {
super( nane );
/'l setup based on specialty

In this example, we use super () to take advantage of the implementation of the superclass
constructor and avoid duplicating the code to set up the object based on its name. In fact,
because the class Per son doesn't define a default (no arguments) constructor, we have no
choice but to call super () explicitly. Otherwise, the compiler would complain that it couldn't find
an appropriate default constructor to call. In other words, if you subclass a class whose
constructors all take arguments, you have to invoke one of the superclass's constructors explicitly
from your subclass constructor.

Instance variables of the class are initialized upon return from the superclass constructor,
whether that's due to an explicit call to super () or an implicit call to the default superclass
constructor.

6.1.6 Full Disclosure: Constructors and Initialization

We can now give the full story of how constructors are chained together and when instance
variable initialization occurs. The rule has three parts and is applied repeatedly for each
successive constructor invoked.

If the first statement of a constructor is an ordinary statement—i.e., not a call to t hi s()
or super () —Java inserts an implicit call to super () to invoke the default constructor
of the superclass. Upon returning from that call, Java initializes the instance variables of
the current class and proceeds to execute the statements of the current constructor.

If the first statement of a constructor is a call to a superclass constructor via super (),
Java invokes the selected superclass constructor. Upon its return, Java initializes the
current class's instance variables and proceeds with the statements of the current
constructor.

If the first statement of a constructor is a call to an overloaded constructor viat hi s( ),
Java invokes the selected constructor and upon its return simply proceeds with the
statements of the current constructor. The call to the superclass's constructor has



happened within the overloaded constructor, either explicitly or implicitly, so the
initialization of instance variables has already occurred.

6.1.7 Abstract Methods and Classes

A method in Java can be declared with the abst r act modifier to indicate that it's just a
prototype. An abstract method has no body; it's simply a signature declaration followed by a
semicolon. You can't directly use a class that contains an abstract method; you must instead
create a subclass that implements the abstract method's body.

abstract void vaporMethod( String name );

In Java, a class that contains one or more abstract methods must be explicitly declared as an
abstract class, also using the abst r act modifier:

abstract class vapord ass {

ébét ract void vapor Met hod( String nane );

An abstract class can contain other, nonabstract methods and ordinary variable declarations;
however, it can't be instantiated. To be used, it must be subclassed and its abstract methods
must be overridden with methods that implement a body. Not all abstract methods have to be
implemented in a single subclass, but a subclass that doesn't override all its superclass's abstract
methods with actual, concrete implementations must also be declared abst r act .

Abstract classes provide a framework for classes that are to be "filled in" by the implementor. The
j ava.io. | nput St r eamclass, for example, has a single abstract method called r ead( ).
Various subclasses of | nput St r eamimplement r ead( ) in their own ways to read from their
own sources. The rest of the | nput St r eamclass, however, provides extended functionality built
on the simple r ead( ) method. A subclass of | nput St r eaminherits these nonabstract
methods that provide functionality based on the simple r ead( ) method that the subclass
implements.

6.2 Interfaces

Java expands on the abstract method concept with its interfaces scheme. It's often desirable to
specify the prototypes for a set of methods and provide no implementation. In Java, this is called
an interface. An interface defines a set of methods that a class must implement (i.e., some or all
of the class's behavior). A class in Java can declare that it implements an interface and then go
about implementing the required methods. A class that implements an interface doesn't have to
inherit from any particular part of the inheritance hierarchy or use a particular implementation.

Interfaces are kind of like Boy Scout or Girl Scout merit badges. A scout who has learned to build
a birdhouse can walk around wearing a little sleeve patch with a picture of one. This says to the
world, "I know how to build a birdhouse." Similarly, an interface is a list of methods that define
some set of behavior for an object. Any class that implements each of the methods listed in the
interface can declare that it implements the interface and wear, as its merit badge, an extra
type—the interface's type.

Interface types act like class types. You can declare variables to be of an interface type, you can
declare arguments of methods to accept interface types, and you can even specify that the return



type of a method is an interface type. In each of these cases, what is meant is that any object that
implements the interface (i.e., wears the right merit badge) can fill that spot. In this sense,
interfaces are orthogonal to the class hierarchy. They cut across the boundaries of what kind of
object an item is and deal with it only in terms of what it can do. A class can implement as many
interfaces as it desires. In this way, interfaces in Java replace the need for C++'s multiple
inheritance (and all of its messy side effects).

An interface looks like a purely abst ract class (i.e., a class with only abst r act methods). You
define an interface with the | nt er f ace keyword and list its methods with no bodies, just
prototypes:

interface Driveable {
bool ean startEngi ne( );
voi d stopEngi ne( );
fl oat accelerate( float acc );
bool ean turn( Direction dir );

The previous example defines an interface called Dr i veabl e with four methods. It's acceptable,
but not necessary, to declare the methods in an interface with the abst r act modifier; we haven't
done that here. More importantly, the methods of an interface are always considered public, and
you can optionally declare them as so. Why public? Well, the user of the interface wouldn't
necessarily be able to see them otherwise.

Interfaces define capabilities, so it's common to name interfaces after their capabilities.
Driveabl e, Runnabl e, and Updat eabl e are good interface names. Any class that implements
all the methods can then declare it implements the interface by using a special i npl enent s
clause in its class definition. For example:

cl ass Autonobile inplenents Driveable {

publ i ¢ bool ean startEngi ne( ) {
if ( notTooCold )
engi neRunni ng = true;

}

public void stopEngi ne( ) {
engi neRunni ng = fal se;

}
public float accelerate( float acc ) {
}
public boolean turn( Direction dir ) {
}

Here, the class Aut onobi | e implements the methods of the Dr | veabl e interface and declares
itself Dr i veabl e using an i npl enent s clause.



As shown in Figure 6.5, another class, such as Lawnnower , can also implement the

Dr i veabl e interface. The figure illustrates the Dr i veabl e interface being implemented by two
different classes. While it's possible that both Aut onobi | e and Lawnnower could derive from
some primitive kind of vehicle, they don't have to in this scenario. This is a significant advantage
of interfaces over standard multiple inheritance, as implemented in C++.

Figure 6.5. Implementing the Driveable interface
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After declaring the interface, we have a new type, Dr i veabl e. We can declare variables of type
Dr i veabl e and assign them any instance of a Dr i veabl e object:

Aut onpbi | e auto
Lawnnower nower

= new Aut onobile( );
Driveabl e vehicl e;

new Lawnmower ( ) ;

vehi cl e = auto;
vehi cl e. start Engi ne( );
vehi cl e. st opEngi ne( );

vehi cl e = nower;
vehi cl e. start Engi ne( );
vehi cl e. st opEngi ne( );

Both Aut ormobi | e and Lawnnower implement Dr i veabl e, so they can be considered of that
type.

6.2.1 Interfaces as Callbacks

Interfaces can be used to implement callbacks in Java. An object can, in effect, pass one of its
methods to another object. The callback occurs when the other object subsequently invokes the
method. In C or C++, this is prime territory for function pointers; Java uses interfaces instead.

Consider two classes: a Ti cker Tape class that displays data and a Text Sour ce class that
provides an information feed. We'd like our Text Sour ce to send any new text data. We could
have Text Sour ce store a reference to a Ti cker Tape object, but then we could never use our



Text Sour ce to send data to any other kind of object. Instead, we'd have to proliferate
subclasses of Text Sour ce that dealt with different types. A more elegant solution is to have
Text Sour ce store a reference to an interface type, Text Updat eabl e:

i nterface Text Updat eabl e {
voi d doText Update( String text );
}

cl ass TickerTape inpl enents Text Updat eabl e {
public void doTextUpdate( String text ) {
Systemout.printin("TICKER \n" + text + "\n");
}

}

cl ass Text Source {
Text Updat eabl e recei ver;

Text Sour ce( TextUpdateable r ) {
receiver =r;
}

public void sendText( String s ) {
recei ver. doText Update( s );
}

}

The only thing the Text Sour ce really cares about is finding the right method to invoke in order to
output some text. Using an interface establishes a "well-known" name, doText Updat e, for that
method.

When the Text Sour ce is constructed, a reference to the Ti cker Tape (which implements the
interface) is stored in an instance variable. This "registers” the Ti cker Tape as the

Text Sour ce's "output device." Whenever it needs to output data, the Text Sour ce calls the
output device's doText Updat e( ) method.

6.2.2 Interface Variables

Although interfaces mostly allow us to specify behavior without implementation, there's one
exception. An interface can contain constants (st at i ¢ fi nal variables), which appear in any
class that implements the interface. This feature enables predefined parameters for use with the
methods:

interface Scal eabl e {
static final int BIG=0, MEDIUM = 1, SMALL = 2;
voi d setScale( int size);

}

The Scal eabl e interface defines three integers: Bl G, VEDI UM and SVALL. All variables defined
in interfaces are implicitly f i nal and st at i c; we don't have to use the modifiers, but for clarity,
we recommend you do. A class that implements Scal eabl e sees these variables:

cl ass Box inplenents Scal eabl e {

voi d setScale( int size ) {



switch( size ) {
case BI G

case NVEDI UM

case SMALL:

6.2.2.1 Empty interfaces

Sometimes, interfaces are created just to hold constants; anyone who implements the interfaces
can see the constant names, as if they were included by a C/C++ include file. This is a somewhat
degenerate, but acceptable, use of interfaces.

Sometimes completely empty interfaces serve as a marker that a class has a special property.
The j ava. i 0. Seri al | zeabl e interface is a good example. Classes that implement

Seri al i zabl e don't add any methods or variables. Their additional type simply identifies them
to Java as classes that want to be able to be serialized.

6.2.3 Subinterfaces

An interface can extend another interface, just as a class can extend another class. Such an
interface is called a subinterface. For example:

i nterface Dynam cal | yScal eabl e extends Scal eabl e {
voi d changeScal e( int size );
}

The interface Dynani cal | yScal eabl e extends our previous Scal eabl e interface and adds
an additional method. A class that implements Dynami cal | yScal eabl e must implement all the
methods of both interfaces.

Note here that we are using the term "extends" and not "implements"” to subclass the interface.
Interfaces can't implement anything! But an interface is allowed to extend as many interfaces as it
wants. If you want to extend two or more interfaces, list them after the ext ends keyword,
separated by commas:

i nterface Dynam cal | yScal eabl e extends Scal eabl e, Sonet hi ngEl seabl e {

}

Keep in mind that although Java supports multiple inheritance of interfaces, each class can
extend only a single parent class.

6.3 Packages and Compilation Units

A package is a name for a group of related classes and interfaces. In Chapter 3, we discussed
how Java uses package names to locate classes during compilation and at runtime. In this sense,
packages are somewhat like libraries; they organize and manage sets of classes. Packages



provide more than just source-code-level organization though. They also create an additional
level of scope for their classes and the variables and methods within them. We'll talk about the
visibility of classes later in this section. In the next section, we'll discuss the effect that packages
have on access to variables and methods among classes.

6.3.1 Compilation Units

The source code for a Java class is organized into compilation units. A simple compilation unit
contains a single class definition and is named for that class. The definition of a class named
My Cl ass, for instance, would appear in a file named MyClass.java. For most of us, a compilation
unit is just a file with a .java extension, but in an integrated development environment, it could be
an arbitrary entity. For brevity here, we'll refer to a compilation unit simply as a file.

The division of classes into their own compilation units is important because the Java compiler
assumes much of the responsibility of a make utility. The compiler relies on the names of source
files to find and compile dependent classes. It's possible (and common) to put more than one
class definition into a single file, but there are some restrictions we'll discuss shortly.

A class is declared to belong to a particular package with the package statement. The package
statement must appear as the first statement in a compilation unit. There can be only one
package statement, and it applies to the entire file:

package mnytool s.text;

cl ass Text Conponent {
}

In this example, the class Text Conponent is placed in the package nyt ool s. t ext .
6.3.2 Package Names

Package names are constructed in a hierarchical way, using a dot-separated naming convention.
Package-name components construct a unique path for the compiler and runtime systems to
locate files; however, they don't affect the contents directly in any other way. There is no such
thing as a subpackage; the package namespace is really flat, not hierarchical. Packages under a
particular part of a package hierarchy are related only by informal association. For example, if we
create another package called nmyt ool s. t ext . poet ry (presumably for text classes specialized
in some way to work with poetry), those classes won't be part of the nmyt ool s. t ext package;
they won't have the access privileges of package members. In this sense, the package-naming
convention can be misleading.

6.3.3 Class Visibility
By default, a class is accessible only to other classes within its package. This means that the
class Text Conponent is available only to other classes in the nyt ool s. t ext package. To be

visible elsewhere, a class must be declared as publ i c:

package mnytool s.text;

public class TextEditor {

}



The class Text Edi t or can now be referenced anywhere. There can be only a single publ i ¢
class defined in a compilation unit; the file must be named for that class.

By hiding unimportant or extraneous classes, a package builds a subsystem that has a well-
defined interface to the rest of the world. Public classes provide a facade for the operation of the
system. The details of its inner workings can remain hidden, as shown in Figure 6.6. In this
sense, packages hide classes in the way classes hide private members.

Figure 6.6. Packages and class visibility
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Figure 6.6 shows part of the hypothetical nmyt ool s. t ext package. The classes Text Ar ea and
Text Edi t or are declared publ i c, so they can be used elsewhere in an application. The class
Text Conponent is part of the implementation of Text Ar ea and is not accessible from outside
of the package.

6.3.4 Importing Classes

Classes within a package can refer to each other by their simple names. However, to locate a
class in another package, we have to supply a qualifier. Continuing with the previous example, an
application refers directly to our editor class by its fully qualified name of

myt ool s. t ext. Text Edi t or. But we'd quickly grow tired of typing such long class names, so
Java gives us the | npor t statement. One or more | npor t statements can appear at the top of a
compilation unit, beneath the package statement. The i nport statements list the fully qualified
names of classes to be used within the file.

Like a package statement, an | nport statement applies to the entire compilation unit. Here's
how you might use an i nport statement:

package somewhere. el se;
i nport nytools.text. TextEditor;

class Myd ass {
Text Edi t or edi t Boy;

As shown in this example, once a class is imported, it can be referenced by its simple name
throughout the code.

It is also possible to import all of the classes in a package using the * wildcard notation:

i nport nytools.text.*;



Now we can refer to all publ i ¢ classes in the nyt ool s. t ext package by their simple names.

Obviously, there can be a problem with importing classes that have conflicting names. If two
different packages contain classes that use the same name, you just have to fall back to using
fully qualified names to refer to those classes. Other than the potential for naming conflicts,
there's no penalty for importing classes. Java doesn't carry extra baggage into the compiled class
files. In other words, Java class files don't contain other class definitions—they only reference
them.

6.3.5 The Unnamed Package

A class that is defined in a compilation unit that doesn't specify a package falls into the large,
amorphous, unnamed package. Classes in this nameless package can refer to each other by
their simple names. Their path at compile time and runtime is considered to be the current
directory, so package-less classes are useful for experimentation and testing, and for brevity in
examples in books about Java.

6.4 Visibility of Variables and Methods

One of the most important aspects of object-oriented design is data hiding, or encapsulation. By
treating an object in some respects as a "black box" and ignoring the details of its
implementation, we can write stronger, simpler code with components that can be easily reused.

6.4.1 Basic Access Modifiers

By default, the variables and methods of a class are accessible to members of the class itself and
to other classes in the same package. To borrow from C++ terminology, classes in the same
package are friendly. We'll call this the default level of visibility. As you'll see as we go on, the
default visibility lies in the middle of the range of restrictiveness that can be specified.

The modifiers publ i ¢ and pri vat e, on the other hand, define the extremes. As we mentioned
earlier, methods and variables declared as pr i vat e are accessible only within their class. At the
other end of the spectrum, members declared as publ i ¢ are accessible from any class in any
package, provided the class itself can be seen. (The class that contains the methods must be
publ i c to be seen outside of its package, as we discussed previously.) The publ i ¢ members
of a class should define its most general functionality—what the black box is supposed to do.

Figure 6.7 illustrates the four simplest levels of visibility, continuing the example from the
previous section. Public members in Text Ar ea are accessible from anywhere. Private members
are not visible from outside the class. The default visibility allows access by other classes in the
package.

Figure 6.7. Private, default, protected, and public visibility
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The pr ot ect ed modifier allows special access permissions for subclasses. Contrary to how it
might sound, pr ot ect ed is slightly less restrictive than the default level of accessibility. In
addition to the default access afforded classes in the same package, pr ot ect ed members are
visible to subclasses of the class, even if they are defined in a different package. If you are a C++
programmer and so are used to more restrictive meanings, this may rub you the wrong way. =

B3I Early on, the Java language allowed for certain combinations of modifiers, one of which was
privateprotect ed. The meaning of private protected was to limit visibility strictly to subclasses (and
remove package access). This was later deemed confusing and overly complex. It is no longer supported.

Table 6.1 summarizes the levels of visibility available in Java; it runs generally from most
restrictive to least. Methods and variables are always visible within a class, so the table doesn't
address those.

Table 6.1. Visibility Modifiers

Modifier Visibility
private None
none (default) |Classes in the package
protected Classes in package and subclasses inside or outside the package
public All classes

6.4.2 Subclasses and Visibility

Subclasses add two important (but unrelated) complications to the topic of visibility. First, when
you override methods in a subclass, the overriding method must be at least as visible as the
overridden method. While it is possible to take a pr i vat e method and override it with a publ i c
method in a subclass, the reverse is not possible; you can't override a publ i ¢ method with a
privat e method. This restriction makes sense if you realize that subtypes have to be usable as
instances of their supertype (e.g., a Vanmal is a subclass of Ani nmal and therefore must be
usable as an Ani mal ). If we could override a method with a less visible method, we would have a
problem: our Vanmal might not be able to do all the things an Ani nmal can. However, we can




reduce the visibility of a variable. In this case, the variable acts like any other shadowed variable;
the two variables are distinct and can have separate visibilities in different classes.

The next complication is a bit harder to follow: the pr ot ect ed variables of a class are visible to
its subclasses, but only through objects of the subclass's type or its subtypes. In other words, a
subclass can see a pr ot ect ed variable of its superclass as an inherited variable, but it can't
access that same variable in a separate instance of the superclass itself. This can be confusing,
because we often forget that visibility modifiers don't restrict access between instances of the
same class in the same way that they restrict access between instances of different classes. Two
instances of the same type of object can normally access all of each other's members, including
private ones. Said another way: two instances of Cat can access all of each other's variables and
methods (including private ones), but a Cat can't access a protected member in an instance of
Ani mal unless the compiler can prove that the Ani el is a Cat . If you found this hard to follow,
don't worry too much. You shouldn't run into these issues very often.

6.4.3 Interfaces and Visibility

Interfaces behave like classes within packages. An interface can be declared publ i ¢ to make it
visible outside of its package. Under the default visibility, an interface is visible only inside of its
package. There can be only one publ i ¢ interface declared in a compilation unit.

6.5 Arrays and the Class Hierarchy

At the end of , we mentioned that arrays have a place in the Java class hierarchy, but we didn't
give you any details. Now that we've discussed the object-oriented aspects of Java, we can give
you the whole story.

Array classes live in a parallel Java class hierarchy under the Cbj ect class. If a class is a direct
subclass of Cbj ect , then an array class for that base type also exists as a direct subclass of

(hj ect . Arrays of more derived classes are subclasses of the corresponding array classes. For
example, consider the following class types:

class Animal { ... }
class Bird extends Aninal { ... }
class Penguin extends Bird { ... }

Figure 6.8 illustrates the class hierarchy for arrays of these classes. Arrays of the same
dimension are related to one another in the same manner as their base type classes. In our
example, Bi r d is a subclass of Ani nal , which means that the Bi r d[ | type is a subtype of

Ani mal [ ] . In the same way a Bi r d object can be used in place of an Ani mal object, a Bi r d[ |
array can be assigned to a variable of type Ani nal [ ] :

Animal [][] animals;
Bird [][] birds = new Bird [10][10];
birds[0][0] = new Bird( );

/'l make animals and birds reference the sane array object

ani mal s = birds;
Cbserve( animal s[0][0] ); /'l processes Bird object

Figure 6.8. Arrays in the Java class hierarchy
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Animal Animal[] Animal([] []
Bird Bird[] Bird[][]
Fenguin Penguin(] Penguin(] []

Because arrays are part of the class hierarchy, we can use i nst anceof to check the type of an
array:

if ( birds instanceof Animal[][] ) /'l true
An array is a subtype of Cbj ect and can therefore be assigned to Chj ect type variables:

(bj ect sonet hi ng;
sormet hing = ani mal s;

Since Java knows the actual type of all objects, you can also cast back if appropriate:
animals = (Animal [][])sonething;

Under unusual circumstances, Java may not be able to check the types of objects you place into
arrays at compile time. In those cases, it's possible to receive an Arr ay St or eExcept i on if you
try to assign the wrong type of object to an array element. Consider the following:

class Dog { ... }

cl ass Poodl e extends Dog { ... }

cl ass Chi huahua extends Dog { ... }
Dog [] dogs;

Poodl e [] poodl es = new Poodl e [10];

dogs = poodl es;
dogs[ 3] = new Chi huahua( ); // runtinme error, ArrayStoreException

Both Pood| e and Chi huahua are subclasses of Dog, so an array of Pood!| e objects can
therefore be assigned to an array of Dog objects. The problem is that an object assignable to an
element of an array of type Dog[ | may not be assignable to an element of an array of type
Poodl e[ ] . A Chi huahua object, for instance, can be assigned to a Dog element because it's a
subtype of Dog, but not to a Pood! e element.k

[ In some sense, this could be considered a hole in the Java type system. It doesn't occur elsewhere in
Java—only with arrays. This is because array objects exhibit covariance in overriding their assignment and
extraction methods. Covariance allows array subclasses to override methods with arguments or return
values that are subtypes of the overridden methods, where the methods would normally be overloaded or
prohibited. This allows array subclasses to operate on their base types with type safety, but also means that
subclasses have different capabilities than their parents, leading to the problem shown earlier.



6.6 Inner Classes

Java 1.1 added to the language a large heap of syntactic sugar called inner classes. Simply put,
classes in Java can be declared at any level of scope. That is, you can declare a class within any
set of curly braces (i.e., almost anywhere that you could put any other Java statement), and its
visibility is limited to that scope in the same way that the name of a variable or method would be.
Inner classes are a powerful and aesthetically pleasing facility for structuring code. Their even
sweeter cousins, anonymous inner classes, are another powerful shorthand that make it seem as
if you can create classes dynamically within Java's statically typed environment.

However, if you delve into the inner workings of Java, inner classes are not quite as aesthetically
pleasing or dynamic. We said that they are syntactic sugar; this means that they let you leverage
the compiler by writing a few lines of code that trigger a lot of behind-the-scenes work somewhere
between the compiler's front end and the byte-code. Inner classes rely on code generation; they
are a feature of the Java language, but not of the Java virtual machine. As a programmer you
may never need be aware of this; you can simply rely on inner classes like any other language
construct. However, you should know a little about how inner classes work, to better understand
the results and a few potential side effects.

To this point, all of our classes have been top-level classes. We have declared them,
freestanding, at the package level. Inner classes are essentially nested classes, like this:

Class Animal {
Class Brain {

}

Here the class Br ai n is an inner class: it is a class declared inside the scope of class Ani nmal .
Although the details of what that means require a fair bit of explanation, we'll start by saying that
the Java language tries to make the meaning, as much as possible, the same as for the other
Java entities (methods and variables) living at that level of scope. For example, let's add a
method to the Ani mal class:

Cl ass Animal {
Class Brain {

}
voi d perfornmBehavior( ) { ... }

Both the inner class Br ai n and the method per f or nBehavi or () are within the scope of

Ani mal . Therefore, anywhere within Ani nal we can refer to Br ai n and per f or nBehavi or (

) directly, by name. Within Ani nal we can call the constructor for Br ai n (newBr ai n( ) ) to get
a Br ai n object, or invoke per f or nBehavi or () to carry out that method's function. But neither
Brai n nor per fornBehavi or () are accessible outside of the class Ani mal without some
additional qualification.

Within the body of the Br ai n class and the body of the per f or nBehavi or () method, we
have direct access to all of the other methods and variables of the Ani mal class. So, just as the
per fornmBehavi or () method could work with the Br ai n class and create instances of

Br ai n, code within the Br ai n class can invoke the per f or rBehavi or () method of Ani nal
as well as work with any other methods and variables declared in Ani nal .



That last bit has important consequences. From within Br ai n we can invoke the method

per fornBehavi or () ; thatis, from within an instance of Br ai n we can invoke the

per fornmBehavi or () method of an instance of Ani mal . Well, which instance of Ani nmal ? If
we have several Ani mal objects around (say, a few Cat s and Dogs), we need to know whose
perfornmBehavi or () method we are calling. What does it mean for a class definition to be
"inside" another class definition? The answer is that a Br ai n object always lives within a single
instance of Ani nal : the one that it was told about when it was created. We'll call the object that
contains any instance of Br ai n its enclosing instance.

A Br ai n object cannot live outside of an enclosing instance of an Ani nal object. Anywhere you
see an instance of Br ai n, it will be tethered to an instance of Ani nal . Although it is possible to
construct a Br ai n object from elsewhere (i.e., another class), Br ai n always requires an
enclosing instance of Ani mal to "hold" it. We'll also say now that if Br ai n is to be referred to
from outside of Ani mal , it acts something like an Ani nal . Br ai n class. And just as with the
perfornBehavi or () method, modifiers can be applied to restrict its visibility. There is even
an interpretation of the st at i ¢ modifier, which we'll talk about a bit later. However, the details
are somewhat boring and not immediately useful. For more information, consult a full language
reference, such as Java Language Reference, Second Edition, by Mark Grand (O'Reilly &
Associates). Before we get too far afield, let's turn to a more compelling example.

A particularly important use of inner classes is to make adapter classes. An adapter class is a
"helper” class that ties one class to another in a very specific way. Using adapter classes, you
can write your classes more naturally, without having to anticipate every conceivable user's
needs in advance. Instead, you provide adapter classes that marry your class to a particular
interface. As an example, let's say that we have an Enpl oyeeli st object:

public class Enpl oyeeLi st {
private Enployee [] enployees = ... ;

Enpl oyeeli st holds information about a set of employees. Let's say that we would like to have
Enpl oyeeli st provide its elements via an iterator. An iterator is a simple interface to a list of
objects. Thej ava. uti| .| terator interface has several methods:

public interface Iterator {
bool ean hashMore ( );
Obj ect next( );
voi d remove( );

It lets us step through its elements, asking for the next one and testing to see if more remain. The
iterator is a good candidate for an adapter class because it is an interface that our

Enpl oyeeli st can't readily implement itself. Why can't the list implement the iterator directly?
Because an iterator is a "one-way," disposable view of our data. It isn't intended to be reset and
used again. It may also be necessary for there to be multiple iterators walking through the list at
different points. We must therefore keep the iterator implementation separate from the

Enpl oyeeli st itself. This is crying out for a simple class to provide the iterator capability. But
what should that class look like?

Well, before we knew about inner classes, our only recourse would have been to make a new
"top-level” class. We would probably feel obliged to call it Enpl oyeeli st | terator:



cl ass Enpl oyeeListlterator inplenents Iterator {
/1 1ots of know edge about Enpl oyeelLi st

Here we have a comment representing the machinery that the Enpl oyeeli st | t er at or
requires. Think for just a second about what you'd have to do to implement that machinery. The
resulting class would be completely coupled to the Enpl oyeeli st and unusable in other
situations. Worse, to function it must have access to the inner workings of Enpl oyeeli st . We
would have to allow Enpl oyeeli st |t erat or access to the private array in Enpl oyeeli st ,
exposing this data more widely than it should be. This is less than ideal.

This sounds like a job for inner classes. We already said that Enpl oyeeli stlterat or was
useless without an Enpl oyeeli st ; this sounds a lot like the "lives inside" relationship we
described earlier. Furthermore, an inner class lets us avoid the encapsulation problem, because it
can access all the members of its enclosing instance. Therefore, if we use an inner class to
implement the iterator, the array enpl oyees can remain pri vat e, invisible outside the

Enpl oyeeli st. So let's just shove that helper class inside the scope of our Enpl oyeeli st :

public class Enpl oyeeLi st {
private Enployee [] enpl oyees = ... ;

class Iterator inp
int elenment =

lements java.util.lterator {
0;

bool ean hasMore( ) {
return elenent < enployees.|length ;
}

bject next( ) {
if ( hasMoreEl enents( ) )
return enpl oyees[ el enment++ ];
el se
t hrow new NoSuchEl enent Exception( );

}

void remove( ) {
t hrow new Unsupport edQOperati onException( );
}

Now Enpl oyeeli st can provide an accessor method like the following to let other classes work
with the list:

Iterator getlterator( ) {
return new lterator( );
}

One effect of the move is that we are free to be a little more familiar in the naming of our iterator
class. Since it is no longer a top-level class, we can give it a name that is appropriate only within
the Enpl oyeeli st . In this case, we've named it | t er at or to emphasize what it does—but we
don't need a name like Enpl oyeel t er at or that shows the relationship to the Enpl oyeelLi st



class because that's implicit. We've also filled in the guts of the | t er at or class. As you can see,
now that it is inside the scope of Enpl oyeeli st, | t er at or has direct access to its private
members, so it can directly access the enpl oyees array. This greatly simplifies the code and
maintains compile-time safety.

Before we move on, we should note that inner classes can have constructors, even though we
didn't need one in this example. They are in all respects real classes.

6.6.1 Inner Classes Within Methods

Inner classes may also be declared within the body of a method. Returning to the Ani mal class,
we could put Br ai n inside the per f or rBehavi or () method if we decided that the class was
useful only inside of that method:

Class Animal {
voi d perfornmBehavior( ) {
Class Brain {

}

In this situation, the rules governing what Br ai n can see are the same as in our earlier example.
The body of Br ai n can see anything in the scope of per f or nBehavi or () and above it (in the
body of Ani nal ). This includes local variables of per f or nBehavi or () and its arguments. But
there are a few limitations and additional restrictions, as described in the following sections.

6.6.1.1 Limitations on inner classes

perfornmBehavi or ( ) is a method, and methods have limited lifetimes. When they exit, their
local variables normally disappear into the stacky abyss. But an instance of Br ai n (like any
object) lives on as long as it is referenced. So Java must make sure that any local variables used
by instances of Br ai n created within an invocation of per f or rBehavi or () also live on.
Furthermore, all of the instances of Br ai n that we make within a single invocation of
perfornmBehavi or () must see the same local variables. To accomplish this, the compiler
must be allowed to make copies of local variables. Thus, their values cannot change once an
inner class has seen them. This means that any of the method's local variables that are
referenced by the inner class must be declared f i nal . The f i nal modifier means that they are
constant once assigned. This is a little confusing and easy to forget, but the compiler will
graciously remind you.

6.6.1.2 Static inner classes

We mentioned earlier that the inner class Br ai n of the class Ani mal could in some ways be
considered an Ani mal . Brai n class. That is, it is possible to work with a Br ai n from outside the
Ani mal class, using just such a qualified name: Ani mal . Br ai n. But given that our

Ani mal . Bral n class always requires an instance of an Ani nmal as its enclosing instance, some
explicit setup is needed.®!

51 gpecifically, we would have to follow a design pattern and pass a reference to the enclosing instance of
Ani nel into the Ani nal . Br ai n constructor. See a Java language reference for more information. We
don't expect you to run into this situation very often.



But there is another situation in which we might use inner classes by name. An inner class that
lives within the body of a top-level class (not within a method or another inner class) can be
declared st at i c. For example:

class Aninmal {
static class MgrationPattern {

}

A static inner class such as this acts just like a new top-level class called

Ani mal . M grationPattern. We can use it just like any other class, without regard to any
enclosing instances. Although this seems strange, it is not inconsistent, since a static member
never has an object instance associated with it. The requirement that the inner class be defined
directly inside a top-level class ensures that an enclosing instance won't be needed. If we have
permission, we can create an instance of the class using the qualified name:

Animal . M grationPattern stl ToSanFranci sco =
new Ani mal . M grationPattern( );

As you see, the effect is that Ani nal acts something like a mini-package, holding the
M grati onPat t er n class. Here we have used the fully qualified name, but we could also import
it like any other class:

| mport Aninmal.MgrationPattern;

This enables us to refer to it simply as M gr at i onPat t er n. We can use all of the standard
visibility modifiers on inner classes, so a static inner class could be private, protected, default, or
publicly visible.

Another example: the Java 2D API uses static inner classes to implement specialized shape
classes. For example, the | ava. awt . geom Rect angl e2D class has two inner classes, Fl oat
and Doubl e, that implement two different precisions. These are actually trivial subclasses; it
would have been sad to have to multiply the number of top-level classes by three to
accommodate them.

6.6.1.3 Anonymous inner classes

Now we get to the best part. As a general rule, the more deeply encapsulated and limited in
scope our classes are, the more freedom we have in naming them. We saw this in our previous
iterator example. This is not just a purely aesthetic issue. Naming is an important part of writing
readable and maintainable code. We generally want to give things the most concise and
meaningful names possible. A corollary to this is that we prefer to avoid doling out names for
purely ephemeral objects that are going to be used only once.

Anonymous inner classes are an extension of the syntax of the new operation. When you create
an anonymous inner class, you combine the class's declaration with the allocation of an instance
of that class. After the new operator, you specify either the name of a class or an interface,
followed by a class body. The class body becomes an inner class, which either extends the
specified class or, in the case of an interface, is expected to implement the specified interface. A
single instance of the class is created and returned as the value.



For example, we could do away with the declaration of the | t er at or class in the
Enpl oyeeli st example by using an anonymous inner class in the get | t er at or () method:

Iterator getlterator( ) {
return new Iterator( ) {
int elenent = 0;
bool ean hasMore( ) {
return elenent < enployees.|length ;
}

bject next( ) {
if ( hasMoreEl enents( ) )
return enpl oyees[ el enent++ ];
el se
t hrow new NoSuchEl enent Exception( );

}

void remove( ) {
t hrow new Unsupport edQOperati onException( );
}

b

Here we have simply moved the guts of | t er at or into the body of an anonymous inner class.
The call to newimplies a class that implements the | t er at or interface and returns an instance
of the class as its result. Note the extent of the curly braces and the semicolon at the end. The
get | teratgor( ) method contains a single r et ur n statement.

But the previous code certainly does not improve readability. Inner classes are best used when
you want to implement a few lines of code, when the verbiage and conspicuousness of declaring
a separate class detracts from the task at hand.

Here's a better example. Suppose that we want to start a new thread to execute the
per fornmBehavi or () method of our Ani nal :

new Thread( ) {
public void run() { perfornmBehavior( ); }
}.start( );

Here we have gone over to the terse side. We've allocated and started a new Thr ead, using an
anonymous inner class that extends the Thr ead class and invokes our per f or nBehavi or ()
method in its r un( ) method. The effect is similar to using a method pointer in some other
language. However, the inner class allows the compiler to check type consistency, which would
be more difficult (or impossible) with a true method pointer. At the same time, our anonymous
adapter class with its three lines of code is much more efficient and readable than creating a new,
top-level adapter class hamed Ani nal Behavi or Thr eadAdapt er .

While we're getting a bit ahead of the story, anonymous adapter classes are a perfect fit for event
handling (which we'll cover fully in Chapter 13). Skipping a lot of explanation, let's say you want
the method handl eCl i cks( ) to be called whenever the user clicks the mouse. You would
write code like this:

addMouselLi st ener (new Mousel nput Adapter ( ) {
public void noused i cked( MouseEvent e) { handl edicks(e); }

1)



In this case, the anonymous class extends the Mbusel nput Adapt er class by overriding its
mouseCl i cked( ) method to call our method. A lot is going on in a very small space, but the
result is clean, readable code. You get to assign method names that are meaningful to you, while
allowing Java to do its job of type checking.

6.6.1.4 Scoping of the "this" reference

Sometimes an inner class may want to get a handle on its "parent” enclosing instance. It might
want to pass a reference to its parent, or to refer to one of the parent's variables or methods that
has been hidden by one of its own. For example:

class Aninal {
int size;
class Brain {
int size;
}

Here, as far as Br ai n is concerned, the variable si ze in Ani nal is hidden by its own version.

Normally an object refers to itself using the special t hi s reference (implicitly or explicitly). But
what is the meaning of t hi s for an object with one or more enclosing instances? The answer is
that an inner class has multiple t hi s references. You can specify which t hi s you want by
prepending the name of the class. So, for instance (no pun intended), we can get a reference to
our Ani mal from within Br ai n like so:

class Brain {
Ani mal ourAnimal = Aninal.this;

Similarly, we could refer to the si ze variable in Ani nmal :

class Brain {
int aninmal Size = Aninmal .this.size;

6.6.1.5 How do inner classes really work?

Finally, we'll get our hands dirty and take a look at what's really going on when we use an inner
class. We've said that the compiler is doing all of the things that we had hoped to forget about.
Let's see what's actually happening. Try compiling this trivial example:

class Aninmal {
class Brain {

}

What you'll find is that the compiler generates two .class files: Animal.class and
Animal$Brain.class.



The second file is the class file for our inner class. Yes, as we feared, inner classes are really just
compiler magic. The compiler has created the inner class for us as a normal, top-level class and
named it by combining the class names with a dollar sign. The dollar sign is a valid character in
class names, but is intended for use only by automated tools. (Please don't start naming your
classes with dollar signs.) Had our class been more deeply nested, the intervening inner-class
names would have been attached in the same way to generate a unique top-level name.

Now take a look at it with the SDK's | avap utility (don't quote the argument on a Windows
system):

% j avap ' Ani mal $Brai n'

cl ass Aninmal $Brai n extends java.l ang. Ooj ect {
Ani mal $Brai n( Ani mal ) ;

}

You'll see that the compiler has given our inner class a constructor that takes a reference to an
Ani mal as an argument. This is how the real inner class gets the handle on its enclosing
instance.

The worst thing about these additional class files is that you need to know they are there. Utilities
like | ar don't automatically find them; when you're invoking a utility like | ar , you need to specify
these files explicitly or use a wildcard that finds them.

6.6.1.6 Security implications

Given what we just saw—that the inner class really does exist as an automatically generated top-
level class—how does it get access to private variables? The answer, unfortunately, is that the
compiler is forced to break the encapsulation of your object and insert accessor methods so that
the inner class can reach them. The accessor methods will be given package-level access, so
your object is still safe within its package walls, but it is conceivable that this difference could be
meaningful if people were allowed to create new classes within your package.

The visibility modifiers on inner classes also have some problems. Current implementations of the
virtual machine do not implement the notion of a pri vat e or pr ot ect ed class within a package,
So giving your inner class anything other than publ i ¢ or default visibility is only a compile-time
guarantee. It is difficult to conceive of how these security issues could be abused, but it is
interesting to note that Java is straining a bit to stay within its original design.



Chapter 7. Working with Objects and Classes

In the previous two chapters, we came to know Java objects and then their interrelationships. We
have now climbed the scaffolding of the Java class hierarchy and reached the top. In this chapter,
we'll talk about the Cbj ect class itself, which is the "grandmother” of all classes in Java. We'll
also describe the even more fundamental C! ass class (the class hamed "Class") that represents
Java classes in the Java virtual machine. We'll discuss what you can do with these objects in
their own right. Finally, this will lead us to a more general topic: the reflection interface, which lets
a Java program inspect and interact with (possibly unknown) objects on the fly.

Each DeepSheep now has its own hashtable. You can see now why objects are not cloneable by
default. It would make no sense to assume that all objects can be sensibly duplicated with a
shallow copy. Likewise, it makes no sense to assume that a deep copy is necessary, or even
correct. In this case, we probably don't need a deep copy; the flock contains the same members
no matter which sheep you're looking at, so there's no need to copy the Hasht abl e. But the
decision depends on the object itself and its requirements.

7.1 The Object Class

j ava. | ang. Obj ect is the ancestor of all objects; it's the primordial class from which all other
classes are ultimately derived. Methods defined in Cbj ect are therefore very important because
they appear in every instance of any class, throughout all of Java. At last count, there were nine
publ i ¢ methods in Obj ect . Five of these are versions of wai t ( ) andnoti fy( ) thatare

used to synchronize threads on object instances, as we'll discuss in Chapter 8. The remaining
four methods are used for basic comparison, conversion, and administration.

Every objecthasat oSt ring( ) method that is called implicitly when it's to be represented as a
text value. Pri nt St r eamobjects use t oSt ri ng( ) to print data, as discussed in Chapter 10.
toString( ) isalsoused when an object is referenced in a string concatenation. Here are
some examples:

MyGbj nyCbj ect = new MQoj ( );
Answer theAnswer = new Answer( );

Systemout. println( nyQbject );
String s = "The answer is: " + theAnswer ;

To be friendly, a new kind of object should override t oSt ri ng( ) and implement its own version
that provides appropriate printing functionality. Two other methods, equal s( ) and hashCode(
) , may also require specialization when you create a new class.

7.1.1 Equality and Equivalence

equal s( ) determines whether two objects are equivalent. Precisely what that means for a
particular class is something that you'll have to decide for yourself. Two St r i ng objects, for
example, are considered equivalent if they hold precisely the same characters in the same
sequence:

String userNane = "Joe";

|f( user Name. equal s( suspect Nane ) )



arrest ( userNane );
Using equal s( ) is not the same as:
if ( userNane == suspect Nane ) /1 Wong!

This code tests whether the two reference variables, user Nane and suspect Nane, refer to the
same object; which is sufficient but not necessary for them to be equivalent objects.

A class should override the equal s( ) method if it needs to implement its own notion of
equality. If you have no need to compare objects of a particular class, you don't need to override
equal s( ).

Watch out for accidentally overloading equal s( ) when you mean to override it. With
overloading, the method signatures differ; with overriding, they must be the same. The equal s()
method signature specifies an Obj ect argument and a boolean return value. You'll probably
want to check only objects of the same type for equivalence. But in order to override (not
overload) equal s( ), the method must specify its argument to be an Chbj ect .

Here's an example of correctly overriding an equal s() method in class Shoes with an
equal s() method in subclass Sneaker s. Using its own method, a Sneaker s object can
compare itself with any other object.

cl ass Sneakers extends Shoes {
publ i ¢ bool ean equal s( Object arg ) {
if ( (arg '= null) && (arg instanceof Sneakers) ) {
/'l conmpare arg with this object to check equival ence
/1 1f conparison is okay..
return true;

}
return fal se;
}
}
If we specified publ i ¢ bool ean equal s( Sneakers arg) ... inthe Sneaker s class, we'd

overload the equal s() method instead of overriding it. If the other object happens to be
assigned to a non-Sneaker s variable, the method signature won't match. The result: superclass
Shoes's implementation of equal s() will be called, possibly causing an error.

7.1.2 Hashcodes

The hashCode( ) method returns an integer that is a hashcode for the object. A hashcode is
like a signature or checksum for an object; it's a random-looking identifying number that is usually
generated from the contents of the object. The hashcode should always be different for instances
of the class that contain different data, but should normally be the same for instances that
compare "equal” with the equal s( ) method. Hashcodes are used in the process of storing
objects in a Hasht abl e, or a similar kind of collection. The hashcode helps the Hasht abl e
optimize its storage of objects by serving as an identifier for distributing them into storage evenly,
and locating them quickly later.



The default implementation of hashCode( ) in Obj ect assigns each object instance a unique
number. If you don't override this method when you create a subclass, each instance of your
class will have a unique hashcode. This is sufficient for some objects. However, if your classes
have a notion of equivalent objects (if you have overriden equal s( )) and you want equal
objects to serve as equivalent keys in a Hasht abl e, then you should override hashCode( ) so
that your equivalent objects generate the same hashcode value.

7.1.3 Cloning Objects

Objects can use the cl one( ) method of the Cbj ect class to make copies of themselves. A
copied object will be a new object instance, separate from the original. It may or may not contain
exactly the same state (the same instance variable values) as the original—that's controlled by
the object being copied. Just as important, the decision as to whether the object allows itself to be
cloned at all is up to the object.

The Java Obj ect class provides the mechanism to make a simple copy of an object including all
of its state—a bitwise copy. But by default this capability is turned off. (We'll hit upon why in a
moment.) To make itself cloneable, an object must implement the | ava. | ang. Cl oneabl e
interface. This is a flag interface indicating to Java that the object wants to cooperate in being
cloned (the interface does not actually contain any methods). If the object isn't cloneable, the

cl one( ) method throws a Cl oneNot SupportedExcepti on.

cl one( ) is a protected method, so by default it can be called only by an object on itself, an
object in the same package, or another object of the same type or a subtype. If we want to make
an object cloneable by everyone, we have to override its cl one( ) method and make it public.

Here is a simple, cloneable class—Sheep:

i nport java.util.Hashtabl e;

public class Sheep inplenents C oneable {
Hasht abl e fl ock = new Hashtabl e( );

public Object clone( ) {

try {
return super.clone( );

} catch (C oneNot SupportedException e ) {
throw new Error (" This shoul d never happen!");
}

}

Sheep has one instance variable, a Hasht abl e called f | ock (which the sheep uses to keep
track of its fellow sheep). Our class implements the Cl oneabl e interface, indicating that it is
okay to copy Sheep and it has overridden the cl one( ) method to make it public. Our cl one(
) simply returns the object created by the superclass's clone( ) method—a copy of our Sheep.
Unfortunately, the compiler is not smart enough to figure out that the object we're cloning will
never throw the Cl oneNot Support edExcept i on, so we have to guard against it anyway. Our
sheep is now cloneable. We can make copies like so:

Sheep one = new Sheep( );
Sheep anot her One = ( Sheep) one. cl one( );



The cast is necessary here because the return type of cl one( ) is Cbj ect .1

21 you might think that we could override the c| one() method in our objects to refine the return type of the
cl one( ) method. However this is currently not possible in Java. You can't override methods and change
their return types. Technically this would be called covariant return typing. It's something that may find its
way into the language eventually.

We now have two sheep instead of one. The equal s( ) method would tell us that the sheep are
equivalent, but == tells us that they aren't equal—that is, they are two distinct objects. Java has
made a "shallow" copy of our Sheep. What's so shallow about it? Java has simply copied the bits
of our variables. That means that the f | ock instance variable in each of our Sheep still holds the
same information—that is, both sheep have a reference to the same Hasht abl e. The situation
looks like that shown in Figure 7.1.

Figure 7.1. Shallow copy of an object

Sheep Sheep

clone (b

Flock flock

Y

=

Hashiable

This may or may not be what you intended. If we instead want our Sheep to have separate
copies of all of its variables (or something in between), we can take control ourselves. In the
following example, DeepSheep, we implement a "deep" copy, duplicating our own f | ock
variable:

public class DeepSheep inplenents C oneable {
Hasht abl e fl ock = new Hashtabl e( );

public Object clone( ) {

try {
DeepSheep copy = (DeepSheep)super.clone( );

copy. flock = (Hashtabl e)fl ock.clone( );
return copy;
} catch (Cd oneNot SupportedException e ) {
throw new Error (" This shoul d never happen!");
}

Our cl one( ) method now clones the Hasht abl e as well. Now, when a DeepSheep is cloned,
the situation looks more like that shown in Figure 7.2.

Figure 7.2. Deep copy of an object
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Each DeepSheep now has its own hashtable. You can see now why objects are not cloneable by
default. It would make no sense to assume that all objects can be sensibly duplicated with a
shallow copy. Likewise, it makes no sense to assume that a deep copy is necessary, or even
correct. In this case, we probably don't need a deep copy; the flock contains the same members
no matter which sheep you're looking at, so there's no need to copy the Hasht abl e. But the
decision depends on the object itself and its requirements.

7.2 The Class Class

The last method of Obj ect we need to discuss is get Cl ass( ). This method returns a
reference to the Cl ass object that produced the Obj ect instance.

A good measure of the complexity of an object-oriented language is the degree of abstraction of
its class structures. We know that every object in Java is an instance of a class, but what exactly
is a class? In C++, objects are formulated by and instantiated from classes, but classes are really
just artifacts of the compiler. Thus, you see classes only mentioned in C++ source code, not at
runtime. By comparison, classes in Smalltalk are real, runtime entities in the language that are
themselves described by "metaclasses" and "metaclass classes." Java strikes a happy medium
between these two languages with what is effectively a two-tiered system that uses Cl ass
objects.

Classes in Java source code are represented at runtime by instances of the | ava. | ang. Cl ass
class. There's a Cl ass object for every class you use; this Cl ass object is responsible for
producing instances for its class. You don't have to worry about any of this unless you are
interested in loading new kinds of classes dynamically at runtime. The Cl ass object is also the
basis for "reflecting” on a class to find out its methods and other properties; we'll discuss this
feature in the next section.

We get the Cl ass associated with a particular object with the get Cl ass( ) method:

String nyString = "Foo!"
Class ¢ = nyString.getd ass( );

We can also get the Cl ass reference for a particular class statically, using the special . cl ass
notation:

Class ¢ = String.class;

The . cl ass reference looks like a static field that exists in every class. However, it is really
resolved by the compiler.



One thing we can do with the Cl ass object is ask for the name of the object's class:

String s = "Boofal";
Cl ass nycls= s.getC ass( );
Systemout.println( nycls.getNanme( ) ); /1 "java.lang. String"

Another thing that we can do with a Cl ass is to ask it to produce a new instance of its type of
object. Continuing with the previous example:

try {

String s2 = (String)strd ass. new nstance( );
}
catch ( Instantiati onExceptione ) { ... }
catch ( Illegal AccessExceptione ) { ... }

newl nst ance( ) has a return type of Cbj ect, so we have to cast it to a reference of the
appropriate type. (newl nst ance( ) has to be able to return any kind of constructed object.) A
couple of problems can occur here. An | nst anti at i onExcept i on indicates we're trying to
instantiate an abst r act class or an interface. | | | egal AccessExcepti on is a more general
exception that indicates we can't access a constructor for the object. Note that newl nst ance( )
can create only an instance of a class that has an accessible default constructor. It doesn't allow
us to pass any arguments to a constructor. (But see Section 7.3.4 later in this chapter.)

All this becomes more meaningful when we add the capability to look up a class by name.
forName( ) isastatic method of Cl ass that returns a Cl ass object given its name as a
String:

try {
Cl ass sneakersC ass = C ass. f or Nane(" Sneakers");

}
catch ( C assNot FoundException e ) { ... }
A Cl assNot FoundExcept i on is thrown if the class can't be located.

Combining these tools, we have the power to load new kinds of classes dynamically. When
combined with the power of interfaces, we can use new data types by name in our applications:

interface Typewiter {
void typeLine( String s );

}
class Printer inplenments Typewiter {
}
class MyApplication {
St .ri ng out put Devi ceNane = "Printer";

try {
Cl ass newCl ass = { ass. forNane( out put Devi ceNane ) ;

Typewiter device = (Typewiter)newC ass. newl nstance( );



d.e;/i ce.typeLine("Hello...");

}
catch ( Exceptione ) { ... }

Here we have an application loading a class implementation (Pr i nt er which implements the
Typewr it er interface) knowing only its name. Imagine the name was entered by the user or
looked up from a configuration file.

7.3 Reflection

In this section, we'll take a look at the Java reflection API, supported by the classes in the
java.l ang. refl ect package. As its name suggests, reflection is the ability for a class or
object to examine itself. Reflection lets Java code look at an object (more precisely, the class of
the object) and determine its structure. Within the limits imposed by the security manager, you
can find out what constructors, methods, and fields a class has, as well as their attributes. You
can even change the value of fields, dynamically invoke methods, and construct new objects,
much as if Java had primitive pointers to variables and methods. And you can do all of this on
objects that your code has never even seen before.

We don't have room here to fully cover the reflection API. As you might expect, the r ef | ect
package is complex and rich in details. But reflection has been designed so that you can do a lot
with relatively little effort; 20 percent of the effort will give you 80 percent of the fun.

The reflection API is used by JavaBeans to determine the capabilities of objects at runtime. It's
also used at a lower level by object serialization to tear apart and build objects for transport over
streams or into persistent storage. Obviously, the power to pick apart objects and see their
internals must be zealously guarded by the security manager. Your code is not allowed to do
anything with the reflection API that it couldn't do with static (ordinary, compiled) Java code. In
short, reflection is a powerful tool, but it isn't a loophole. An object can't use it to find out about
data fields that it wouldn't normally be able to access (for example, another object's private
fields), and you can't use it to modify any data inappropriately.

The three primary features of a class are its fields (variables), methods, and constructors. For
purposes of describing or accessing an object, these three features are represented by separate
classes in the reflection API: j ava. | ang. refl ect. Fi el d,java.lang.refl ect. Mt hod,
and | ava. | ang. refl ect. Construct or. We can create these objects using the Cl ass
object.

The Cl ass class provides two pairs of methods for getting at each type of feature. One pair
allows access to a class's public features (including those inherited from its superclasses), while
the other pair allows access to any public or nonpublic item declared within the class (but not
features that are inherited), subject to security considerations. Some examples:

get Fi el ds( ) returns an array of Fi el d objects representing all of a class's public
variables, including those it inherits.

get Decl aredFi el ds( ) returns an array representing all the variables declared in the
class, regardless of their access modifiers (not including variables the security manager
won't let you see), but not including inherited variables.

For constructors, the distinction between "all constructors” and "declared constructors” is
meaningful, so get Constructors( ) and get Decl ared- Constructors( ) differ



only in that the former returns public constructors, while the latter returns all the class's
constructors.

Each pair of methods includes a method for listing all of the items at once (for example,

get Fi el ds( )) and a method for looking up a particular item by name and—for methods and
constructors—by signature (for example, get Fi el d( ), which takes the field nhame as an
argument).

The following listing shows the methods in the Cl ass class:

Field []
get Fi el ds

(0);
Get all public variables, including inherited ones.

Field
getField

(String nane);
Get the specified public variable, which may be inherited.

Field []
get Decl ar edFi el ds

0

Get all public and nonpublic variables declared in this class (not including those inherited
from superclasses).

Field
get Decl aredFi el d

(String nane);

Get the specified variable, public or nonpublic, declared in this class (inherited variables
not considered).

Method []
get Met hods

(0);
Get all public methods, including inherited ones.

Method
get Met hod

(String nane, Class [] ar gunent Types);

Get the specified public method whose arguments match the types listed in
ar gunent Types. The method may be inherited.

Method []
get Decl ar edMet hods

0);



Get all public and nonpublic methods declared in this class (not including those inherited
from superclasses).

Method
get Decl ar edMet hod

(String nane, Class [] ar gunent Types);

Get the specified method, public or nonpublic, whose arguments match the types listed in
ar gunent Types, and which is declared in this class (inherited methods not considered).

Constructor []
get Constructors

(0);
Get all public constructors of this class.

Constructor
get Const ruct or

(Class [] argunent Types);

Get the specified public constructor of this class whose arguments match the types listed
in ar gunent Types.

Constructor []
get Decl aredConstructors

(0);
Get all public and nonpublic constructors of this class.

Constructor
get Decl ar edConst r uct or

(Class [] argunent Types);

Get the specified constructor, public or nonpublic, whose arguments match the types
listed in ar gunent Types.

As a quick example, we'll show how easy it is to list all of the public methods of the
java.util.Cal endar class:

Met hod [] nethods = Cal endar. cl ass. get Met hods( );
for (int i=0; i < nethods.length; i++)
Systemout.println( nethods[i] );

Here we have used the . cl ass notation to get a reference to the Cl ass of Cal endar .
Remember the discussion of the Cl ass class—the reflection methods don't belong to a particular
instance of Cal endar itself; they belong to the | ava. | ang. Cl ass object that describes the

Cal endar class. If we wanted to start from an instance of Cal endar (or, say, an unknown
object), we could have used the get Cl ass( ) method of the object instead:

Met hod [] net hods = myUnknownObj ect . get G ass() . get Met hods( );

7.3.1 Security



Access to the reflection API is governed by a security manager. A fully trusted application has
access to all of the previously discussed functionality—it can gain access to members of classes
at the level of restriction normally granted code within its scope. There is currently no "special”
access granted by the reflection API. It is possible that in the future, the full power of the reflection
API will be available to completely trusted code; currently, user code can see only what it could
have seen at compile time. Untrusted code (for example, an unsigned applet) has the normal
level of access to classes loaded from its own origin (classes sharing its class loader), but can
rely only on the ability to access the public members of public classes that originate elsewhere.

7.3.2 Accessing Fields

The class | ava. | ang. refl ect. Fi el d is used to represent static variables and instance
variables. Fi el d has a full set of accessor methods for all of the base types (for example,
getlnt( ) andsetlnt( ),getBoolean( ) andsetBool ean( ))andget( ) andset (

) methods for accessing members that are object references. For example, consider this class:

cl ass BankAccount {
public int bal ance;
}

With the reflection API, we can read and modify the value of the public integer field bal ance:

BankAccount myBankAccount = ...;

try {
Fi el d bal anceFi el d = BankAccount. cl ass. get Fi el d("bal ance");
Il read it

i nt mybal ance = bal anceFi el d. getl nt ( nyBankAccount );
/'l change it
bal anceFi el d. set I nt ( myBankAccount, 42 );
} catch ( NoSuchFi el dexception e ) {
/1 there is no "balance" field in this class
} catch ( Illegal AccessException e2) {
/1 we don't have perm ssion to access the field
}

In this example, we are assuming that we already know the structure of a BankAccount object.
However the real power of reflection is in examining objects that we've never seen before.

The various methods of Fi el d take a reference to the particular object instance that we want to
access. In the code shown earlier, the get Fi el d( ) method returns a Fi el d object that
represents the bal ance of the BankAccount class; this object doesn't refer to any specific
BankAccount . Therefore, to read or modify any specific BankAccount ,we callget I nt () and
set I nt( ) with areference to nyBankAccount , which is the particular account we want to
work with. An exception occurs if we try to access to a field that doesn't exist, or if we don't have
the proper permission to read or write to the field. If we make bal ance a pri vat e field, we can
still look up the Fi el d object that describes it, but we won't be able to read or write its value.

Therefore, we aren't doing anything that we couldn't have done with static code at compile time;
as long as bal ance is a publ i ¢ member of a class that we can access, we can write code to
read and modify its value. What's important is that we're accessing bal ance at runtime, and
could use this technique to examine the bal ance field in a class that was dynamically loaded.



7.3.3 Accessing Methods

The class | ava. | ang. ref | ect . Met hod represents a static or instance method. Subject to the
normal security rules, a Vet hod object's i nvoke( ) method can be used to call the underlying
object's method with specified arguments. Yes, Java has something like a method pointer!

As an example, we'll write a Java application called | nvoke that takes as command-line
arguments the name of a Java class and the name of a method to invoke. For simplicity, we'll
assume that the method is static and takes no arguments:

/1file: Invoke.java
i nport java.lang.reflect.*;

class I nvoke {
public static void main( String [] args ) {
try {
Class ¢ = Cass.forName( args[0] );
Met hod m = c. get Method( args[1l], new dass [] { } );
bject ret = minvoke( null, null );
System out . println(

"I nvoked static nethod: " + args[1]
+ " of class: " + args[O0]
+ " with no args\nResults: " + ret );

} catch ( C assNot FoundException e ) {
/'l Cass.forNane( ) can't find the class
} catch ( NoSuchMet hodException e2 ) {
/1 that nethod doesn't exist
} catch ( Illegal AccessException e3 ) {
/1 we don't have permi ssion to invoke that nethod
} catch ( InvocationTarget Exception e4 ) {
/'l an exception occurred while invoking that nethod
System out . println(
"Met hod threw an: " + ed. get Target Exception( ) );

}
}

We can run i nvoke to fetch the value of the system clock:

% java I nvoke java.lang. SystemcurrentTimnreMIlis

I nvoked static nmethod: currentTineMIlis of class:
java.l ang. Systemwi th no args

Resul ts: 861129235818

Our first task is to look up the specified Cl ass by name. To do so, we call the f or Narme( )
method with the name of the desired class (the first command-line argument). We then ask for
the specified method by its name. get Vet hod( ) has two arguments: the first is the method
name (the second command-line argument), and the second is an array of Cl ass objects that
specifies the method's signature. (Remember that any method may be overloaded; you must
specify the signature to make it clear which version you want.) Since our simple program calls
only methods with no arguments, we create an anonymous empty array of Cl ass objects. Had
we wanted to invoke a method that takes arguments, we would have passed an array of the
classes of their respective types, in the proper order. For primitive types we would have used the



necessary wrappers. The classes of primitive types are represented by the static TYPE fields of
their respective wrappers; for example, use | nt eger . TYPE for the class of an i nt .

Once we have the Vet hod object, we call its i nvoke( ) method. This calls our target method
and returns the result as an Cbj ect . To do anything nontrivial with this object, you have to cast it
to something more specific. Presumably, since you're calling the method, you know what kind of
object to expect. If the returned value is a primitive type like i nt or bool ean, it will be wrapped
in the standard wrapper class for its type. (Wrappers for primitive types are discussed in Chapter
9.) If the method returns voi d, i nvoke( ) returns a VVoi d object. This is the wrapper class that
represents voi d return values.

The first argument to i nvoke( ) is the object on which we would like to invoke the method. If
the method is static, there is no object, so we set the first argument to nul | . That's the case in
our example. The second argument is an array of objects to be passed as arguments to the
method. The types of these should match the types specified in the call to get Vet hod( ).
Because we're calling a method with no arguments, we can pass nul | for the second argument
toi nvoke( ). As with the return value, you must use wrapper classes for primitive argument

types.

The exceptions shown in the previous code occur if we can't find or don't have permission to
access the method. Additionally, an | nvocat i onTar get Except i on occurs if the method being
invoked throws some kind of exception itself. You can find out what it threw by calling the

get Tar get Excepti on( ) method of | nvocat i onTar get Excepti on.

7.3.4 Accessing Constructors

The j ava. | ang. refl ect. Construct or class represents an object constructor that accepts
arguments. You can use it, subject to the security manager, to create a new instance of an object.
(Recall that you can create instances of a class with Cl ass. newl nst ance( ), but you cannot
specify arguments with that method.)

Here we'll create an instance of | ava. uti | . Dat e, passing a string argument to the constructor:

try {
Constructor ¢ =

Dat e. cl ass. get Constructor(new Class [] { String.class } );
bj ect o = c.new nstance( new Ghject [] { "Jan 1, 2000" } );
Date d = (Date)o;

Systemout. println(d);
} catch ( NoSuchMet hodException e ) {
/1l getConstructor( ) couldn't find the constructor we descri bed
} catch ( InstantiationException e2 ) {
/'l the class is abstract
} catch ( Illegal AccessException e3 ) {
/1 we don't have permission to create an instance
} catch ( InvocationTarget Exception e4 ) {
/'l the construct threw an exception

The story is much the same as with a method invocation; after all, a constructor is really no more
than a method with some strange properties. We look up the appropriate constructor for our Dat e
class—the one that takes a single St r i ng as its argument—by passing get Const ruct or ()
an array containing the St r i ng class as its only element. (If the constructor required more



arguments, we would put additional objects in the array, representing the class of each
argument.) We can then invoke newl nst ance( ), passing it a corresponding array of argument
objects. Again, to pass primitive types, we would wrap them in their wrapper types first. Finally,
we cast the resulting object to a Dat e and print it.

The exceptions from the previous example apply here, too, along with
'l egal Argument Exceptionand | nstanti ati onExcepti on. The latter is thrown if the
class is abst ract, and so can't be instantiated.

7.3.5 What About Arrays?

The reflection API allows you to create and inspect arrays of base types using the
java.lang.refl ect. Array class. The process is very much the same as with the other
classes, so we won't cover it here. For more information, look in your favorite Java language
reference.

7.3.6 Dynamic Interface Adapters

Ideally, Java reflection would allow us to do everything at runtime that we can do at compile time
(without forcing us to generate and compile source into byte-code). But prior to SDK 1.3, there
was an important piece missing from the puzzle. Although we could dynamically load and create
instances of objects at runtime using the Cl ass. f or Nane( ), there was no way to create new
types or implementations of objects—for which no class files pre-exist—on the fly.

In SDK 1.3, the j ava. | ang. ref | ect . Proxy class takes a step towards solving this problem,
by allowing the creation of adapter objects that implement arbitrary interfaces. The Pr oxy class is
a factory that can generate an adapter class implementing any interface you want. When
methods are invoked on the adapter class, they are delegated to a designated

I nvocat i onHandl er object. You can use this to create implementations of any kind of interface
at runtime and handle the method calls anywhere you want. This is particularly important for tools
that work with JavaBeans, which must dynamically register event listeners. (We'll mention this

again in Chapter 19.)

In the following snippet, we take an interface name and construct a proxy implementing the
interface. It will output a message whenever any of the interface's methods is invoked.

i nport java.lang.reflect.*;

I nvocat i onHandl er handl er =
new | nvocati onHandl er( ) {
public Object
i nvoke( bject proxy, Method nethod, Object[] args ) {
Systemout.println( "Method: "+ nethod. getName() +"( )"
+" of interface: "+ interfaceNane
+ " invoked on proxy." );
return null;
}
1

Class clas = Cass.forNanme( interfaceNane );
(bj ect interfaceProxy =

Pr oxy. newPr oxyl nst ance( cl as. get C assLoader( ),
new C ass[] { clas }, handler );



The resulting object, i nt er f acePr oxy, can be cast to the type of the interface we specified in
i nter faceNane. It will call our handler whenever any of its methods is called.

First we make an implementation of | nvocat i onHand! er. This is an object with an i nvoke( )
method that takes as its argument the Vet hod being called and an array of objects representing
the arguments to the method call. Then we fetch the class of the interface that we're going to
implement using Cl ass. f or Nane( ). Finally we ask the proxy to create an adapter for us,
specifying the types of interfaces (you can specify more than one) that we want implemented and
the handler to use. i nvoke( ) is expected to return an object of the correct type for the method
call. If it returns the wrong type, a special runtime exception is thrown. Any primitive types in the
arguments or in the return value should be wrapped in the appropriate wrapper class. (The
runtime system unwraps the return value, if necessary.)

7.3.7 What Is Reflection Good for?

In Chapter 19, we'll learn how reflection is used to dynamically discover capabilities and
features of Java Bean objects. But these are somewhat behind-the-scenes applications. What
can reflection do for us in everyday situations?

Well, we could use reflection to go about acting as if Java had dynamic method invocation and
other useful capabilities; in Chapter 19, we'll also develop a dynamic adapter class using
reflection. But as a general coding practice, dynamic method invocation is a bad idea. One of the
primary features of Java is its strong typing and safety. You abandon much of that when you take
a dip in the reflecting pool.

More appropriately, you can use reflection in situations where you need to work with objects that
you can't know about in advance. Reflection puts Java on a higher plane of programming
languages, opening up possibilities for new kinds of applications. As we hinted earlier, one of the
most important uses for reflection will be in integrating Java with scripting languages. With
reflection, one could write a source code interpreter in Java that could access the full Java APIs,
create objects, invoke methods, modify variables and do all of the other things that a Java
program can do at compile time, while it is running. In fact someone has done this—one of the
authors of this book!

7.3.7.1 The BeanShell application

Pat here . . . | can't resist inserting a plug here for BeanShell—my free, open source, light-weight
Java scripting language. BeanShell is just what | alluded to in the previous section—a Java
application that uses the reflection API to execute Java statements and expressions dynamically.
You can use BeanShell interactively to quickly try out some of the examples in this book
(although you can't create classes per se). BeanShell exercises the Java reflection API to its
fullest and serves as a demonstration of how dynamic the Java runtime environment really is.

You can find a copy of BeanShell on the CD-ROM that accompanies this book, on the book's web
page, http://www.oreilly.com/catalog/learnjava, or at http://www.beanshell.org. See
Appendix B, for more information on getting started. | hope you find it both interesting and
useful!




Chapter 8. Threads

Threads have been around for some time, but few programmers have actually worked with them.
There is even some debate over whether the average programmer can use threads effectively. In
Java, working with threads can be easy and productive (at least for the most common cases). In
fact, threads provide the only reasonable way to handle certain kinds of tasks. So it's important
that you become familiar with threads early in your exploration of Java.

Threads are integral to the way Java works. For example, an applet's pai nt () method isn't
called by the applet itself, but rather by another thread within the Java runtime system. At any
given time, there may be many such background threads, performing activities in parallel with
your application. In fact, it's easy to get half a dozen or more threads running in an applet without
even trying, simply by requesting images, updating the screen, playing audio, and so on. But
these things happen behind the scenes; you don't normally have to worry about them. In this
chapter, we'll talk about writing applications that create and use their own threads explicitly.

8.1 Introducing Threads

Conceptually, a thread is a flow of control within a program. A thread is similar to the more
familiar notion of a process, except that multiple threads within the same application share much
of the same state—in particular, they run in the same address space. It's not unlike a golf course,
which many golfers use at the same time. Sharing the same address space means that threads
share instance variables but not local variables, just like players share the golf course but not
personal things like clubs and balls.

Multiple threads in an application have the same problems as the golfers—in a word,
synchronization. Just as you can't have two sets of players blindly playing the same green at the
same time, you can't have several threads trying to access the same variables without some kind
of coordination. Someone is bound to get hurt. A thread can reserve the right to use an object
until it's finished with its task, just as a golf party gets exclusive rights to the green until it's done.
And a thread that is more important can raise its priority, asserting its right to play through.

The devil is in the details, of course, and those details have historically made threads difficult to
use. Java makes creating, controlling, and coordinating threads much simpler. When creating a
new thread is the best way to accomplish some task, it should be as easy as adding a new
component to your application.

It is common to stumble over threads when you first look at them, because creating a thread
exercises many of your new Java skills all at once. You can avoid confusion by remembering
there are always two players involved in running a thread: a Java language object that represents
the thread itself and an arbitrary target object that contains the method that the thread is to
execute. Later, you will see that it is possible to play some sleight of hand and combine these two
roles, but that special case just changes the packaging, not the relationship.

8.1.1 The Thread Class and the Runnable Interface

A new thread is born when we create an instance of the | ava. | ang. Thr ead class. The

Thr ead object represents a real thread in the Java interpreter and serves as a handle for
controlling and synchronizing its execution. With it, we can start the thread, stop the thread, or
suspend it temporarily. The constructor for the Thr ead class accepts information about where
the thread should begin its execution. Conceptually, we would like to simply tell it what method to
run, but since there are no pointers to methods in Java, we can't specify one directly. Instead, we



have to take a short detour and use the | ava. | ang. Runnabl e interface to create an object that
contains a "runnable” method. Runnable defines a single, general-purpose method:

public interface Runnable {
abstract public void run( );
}

Every thread begins its life by executing the r un( ) method in the Runnabl e object (the "target
object”) that was passed to the thread. The r un( ) method can contain any code, but it must be
public, take no arguments, have no return value, and throw no exceptions.

Any class that contains an appropriate r un( ) method can declare that it implements the
Runnabl e interface. An instance of this class is then a runnable object that can serve as the
target of a new Thr ead. If you don't want to put the r un( ) method directly in your object (and
very often you don't), you can always make an adapter class that serves as the Runnabl e for
you. The adapter's r un( ) method can call any method it wants to after the thread is started.

8.1.1.1 Creating and starting threads

A newly born Thr ead remains idle until we give it a figurative slap on the bottom by calling its
start( ) method. The thread then wakes up and proceeds to execute the r un() method of its
target object. st art () can be called only once in the lifetime of a Thr ead. Once a thread
starts, it continues running until the target object's r un( ) method returns. The st art () method
has a sort of evil twin method called st op( ), which kills the thread permanently. However, this
method is deprecated and should no longer be used. We'll explain why and give some examples
of a better way to stop your threads later in this chapter. We will also look at some other methods
you can use to control a thread's progress while it is running.

Now let's look at an example. The following class, Ani nat i on, implements a run( ) method to
drive its drawing loop:

class Anination inplenments Runnabl e {

public void run( ) {
while ( true ) {
/'l draw Franes

To use it, we create a Thr ead object, passing it an instance of Ani mat | on as its target object,
and invoke its st art () method. We can perform these steps explicitly:

Ani mat i on happy
Thread myThr ead

= new Ani mation("M. Happy");
myThread. start( );

new Thread( happy );

Here we have created an instance of our Ani nmat i on class and passed it as the argument to the
constructor for ny Thr ead. When we call the st art () method, my Thr ead begins to execute
Ani mation'srun( ) method. Let the show begin!



This situation is not terribly object-oriented. More often, we want an object to handle its own
threads, as shown in Figure 8.1, which depicts a Runnabl e object that creates and starts its
own Thr ead. We'll show our Ani mat i on class performing these actions in its constructor,
although in practice it might be better to place them in a more explicit controller method (e.g.,
start Ani mation( )):

Figure 8.1. Interaction between Animation and its thread
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class Anination inplenments Runnabl e {
Thread mnyThr ead;
Animation (String nane) {
myThread = new Thread( this );
myThread. start( );

In this case, the argument we pass to the Thr ead constructor is t hi s, the current object (which
is a Runnabl e). We keep the Thr ead reference in the instance variable ny Thr ead, in case we
want to interrupt the show or exercise some other kind of control later.

The Runnabl e interface lets us make an arbitrary object the target of a thread, as we did earlier.
This is the most important general usage of the Thr ead class. In most situations in which you
need to use threads, you'll create a class (possibly a simple adapter class) that implements the
Runnabl e interface.

8.1.1.2 A natural-born thread

We'd be remiss not to show you the other technique for creating a thread. Another design option
is to make our target class a subclass of a type that is already runnable. As it turns out, the

Thr ead class itself conveniently implements the Runnabl e interface; it has its own r un( )
method, which we can override directly to do our bidding:

class Aninmation extends Thread {

public void run( ) {
while (true ) {
/'l draw Franes

The skeleton of our Ani nat i on class looks much the same as before, except that our class is
now a subclass of Thr ead. To go along with this scheme, the default constructor of the Thr ead



class makes itself the default target. That is, by default, the Thr ead executes its own r un()
method when we call the st art () method, as shown in Figure 8.2. So now our subclass can
just override the r un( ) method in the Thr ead class. (Thr ead itself defines an empty r un( )
method.)

Figure 8.2. Animation as a subclass of Thread
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Now we create an instance of Ani mati on and call its st art () method (which it also inherited
from Thr ead):

Ani mati on bouncy = new Ani mati on("Bouncy");
bouncy.start( );

Alternatively, we can have the Ani nat i on object start its thread when it is created, as before:

class Aninmation extends Thread {

Am mation (String nane) {
start( );
}

Here our Ani mat | on object just calls its own st art () method when an instance is created.
(Again, it's probably better form to start and stop our objects explicitly after they're created, rather
than starting threads as a hidden side effect of object creation.)

Subclassing Thr ead seems like a convenient way to bundle a Thr ead and its target r un( )
method. However, this approach often isn't the best design. If you subclass Thr ead to implement
a thread, you are saying you need a new type of object that is a kind of Thr ead. While there is
something unnaturally satisfying about taking an object that's primarily concerned with performing
a task and making it a Thr ead, the actual situations where you'll want to create a subclass of
Thr ead should not be very common. In most cases, it will be more natural to let the requirements
of your program dictate the class structure. If you find you're subclassing Thr ead left and right,
you may want to examine whether you are falling into the design trap of making objects that are
simply glorified functions.

8.1.1.3 Using an adapter

Finally, as we have suggested, we can build an adapter class to give us more control over how to
structure the code. It is particularly convenient to create an anonymous inner class that
implements Runnabl e and invokes an arbitrary method in our object. This almost gives the feel



of starting a thread and specifying an arbitrary method to run, as if we had method pointers. For
example, suppose that our Ani mat | on class provides a method called st ar t Ani mat i ng( ),
which performs setup (loads the images, etc.) and then starts a thread to perform the animation.
We'll say that the actual guts of the animation loop are in a private method called

dr awkr anes() . We could use an adapter to run dr awFr anes( ) for us:

class Aninmation {

public void startAnimting( ) {
/1l do setup, |oad imges, etc.

/] start a drawi ng thread
myThread = new Thread ( new Runnable( ) {
public void run() { drawFrames( ); }

b
myThread. start( );

}

private void drawFrames( ) {
/1 do animation ...
}

}

In this code, the anonymous inner class implementing Runnabl e is generated for us by the
compiler. We create a Thr ead with this anonymous object as its target and have its r un()
method call our dr awFr anes( ) method. We have avoided implementing a generic r un( )
method in our application code, but at the expense of generating an extra class.

Note that we could be a bit more terse in the previous example by simply having our anonymous
inner class extend Thr ead rather than implement Runnabl e:

myThread = new Thread( ) {
public void run() { drawFrames( ); }

b
myThread. start( );

8.1.2 Controlling Threads

We have seen the st art () method used to bring a newly created Thr ead to life. Several other
instance methods let us explicitly control a Thr ead's execution:

The sl eep( ) method causes the current thread to wait for a designated period of time,
without consuming much (if any) CPU time.

The i nterrupt ( ) method wakes up a thread that is sleeping or is otherwise blocked
on a long I/O operation.™!

B nterrupt () does not work in versions of Java prior to 1.1.

The methods wai t () and | oi n( ) coordinate the execution of two or more threads.
We'll discuss them in detail when we talk about thread synchronization later in this
chapter.



8.1.2.1 Deprecated methods

We should also mention that there are three deprecated thread control methods: st op( ),
suspend(),and resune().The st op() method complements st art ( ) ; it destroys the
thread. st art (), and the deprecated st op( ) method can be called only once in the life cycle
of a Thr ead. By contrast, the deprecated suspend( ) andresune( ) methods were used to
arbitrarily pause and then restart the execution of a Thr ead.

Although these deprecated methods still exist in the latest version of Java, they shouldn't be used
in new code development. The problem with both st op( ) and suspend( ) is that they seize
control of a thread's execution in an uncoordinated and harsh way. This make programming
difficult—it's not always easy for an application to anticipate and properly recover from being
interrupted at an arbitrary point in its execution. Moreover, when a thread is seized using one of
these methods, the Java runtime system must release all of its internal locks used for thread
synchronization. This can cause unexpected behavior and, in the case of suspend( ), can lead
to deadlock situations.

A better way to affect the execution of a thread—which requires just a bit more work on your
part—is by creating some simple logic in your thread's code using monitor variables ( flags),
possibly in conjunction with the i nt er r upt () method, which allows you to wake up a sleeping
thread. In other words, you should cause your thread to stop or resume what it is doing by asking
it to nicely, rather than by pulling the rug out from under it unexpectedly. The thread examples in
this book will use this technique in one way or another.

8.1.2.2 The sleep() method

We often need to tell a thread to sit idle, or "sleep," for a fixed period of time. While a thread is
asleep, or otherwise blocked on input of some kind, it shouldn't consume CPU time or compete
with other threads for processing. For this, we can either call the thread's sl eep( ) instance
method or use the static convenience method Thr ead. sl eep( ). Either way, the call causes
the currently executing thread to delay for a specified number of milliseconds:

try {
// static conveni ence nethod

Thr ead. sl eep( 1000 );
/'l instance nethod
sl eep( 500 );

}
catch ( InterruptedException e ) {

/| someone woke us up prematurely
}

In either case, sl eep( ) throws an | nt err upt edExcept i on if it is interrupted by another
Thread viaits i nt er rupt () method. As you see in the previous code, the thread can catch
this exception and take the opportunity to perform some action—such as checking a variable to
determine whether or not it should exit—or perhaps just perform some housekeeping and then go
back to sleep.

8.1.2.3 The join( ) method
Finally, if you need to coordinate your activities with another thread by waiting for the other thread

to complete its task, you can use the | oi n( ) method. Calling a thread's | oi n( ) method
causes the caller to block until the target thread dies. Alternatively, you can poll the thread by



calling j oi n( ) with a number of milliseconds to wait. This is a very coarse form of thread
synchronization. Later in this chapter, we'll look at a much more general and powerful mechanism
for coordinating the activities of threads: wai t () and not i fy( ).

8.1.3 A Thread's Life
A thread continues to execute until one of the following things happens:

It explicitly returns from its target r un( ) method.
It encounters an uncaught runtime exception.
The evil and nasty deprecated st op( ) method is called.

So what happens if none of these things occurs and the r un( ) method for a thread never
terminates? The answer is that the thread can live on, even after what is ostensibly the part of the
application that created it has finished. This means we have to be aware of how our threads
eventually terminate, or an application can end up leaving orphaned threads that unnecessarily
consume resources.

In many cases, we really want to create background threads that do simple, periodic tasks in an
application. The set Daenon( ) method can be used to mark a Thread as a daemon thread that
should be killed and discarded when no other application threads remain. Normally, the Java
interpreter continues to run until all threads have completed. But when daemon threads are the
only threads still alive, the interpreter will exit.

Here's a devilish example using daemon threads:

class Devil extends Thread {
Devil () {
set Daenmon( true );
start( );
}

public void run( ) {
/'l performevil tasks
}

In this example, the Devi | thread sets its daemon status when it is created. If any Devi |
threads remain when our application is otherwise complete, the runtime system kills them for us.
We don't have to worry about cleaning them up.

Daemon threads are primarily useful in standalone Java applications and in the implementation of
the Java runtime system itself, but not in applets. Since an applet runs inside of another Java
application, any daemon threads it creates could continue to live until the controlling application
exits—probably not the desired effect. A browser or any other application can use

ThreadG oups to contain all of the threads created by subsystems of an application and then
clean them up if necessary.

8.2 Threads in Applets

Applets are embeddable Java applications that are expected to be able to start and stop
themselves on command. Applets may be asked to start and stop themselves any number of



times. A Java-enabled web browser normally starts an applet when the applet is displayed and
stops it when the user moves to another page or (in theory) when the user scrolls the applet out
of view. To conform to the semantics of the API, we would like an applet to cease its nonessential
activity when it is stopped and resume it when started again. (If you're not familiar with applets,
you may want to take a look at Chapter 20, at this point.)

In this section, we will build Updat eAppl et , a simple base class for an applet that maintains a
thread to automatically update its display at regular intervals. Although we're building an applet
here, the general technique is important for all threaded applications.

Updat eAppl et handles the basic starting and stopping behavior for us:

/1file: UpdateApplet.java
publ i c class Updat eAppl et extends java. appl et. Appl et
i npl enents Runnabl e {

private Thread updat eThread,;
int updatelnterval = 1000;

public void run( ) {
while ( updateThread != null ) {

try {
Thr ead. sl eep( updatelnterval );
}

catch (InterruptedException e ) {
return;
}

repaint( );

}

public void start( ) {
if ( updateThread == null ) {
updat eThread = new Thread(this);
updat eThread. start( );

}

public void stop( ) {
if ( updateThread !'= null ) {
Thread runner = updat eThread;
updateThread = null; // flag to quit
runner.interrupt( ); /'l wake up if asleep

}

Updat eAppl et is a Runnabl e object that alternately sleeps and calls its r epai nt () method.
(There's nothing to paint, though, so running this applet is kind of boring. Later in this section,
we'll subclass it to implement a digital clock.) It has two other public methods: st art () and
stop( ). These are methods of the Appl et class we are overriding; don't confuse them with
the similarly named methods of the Thr ead class. These st art () and st op( ) methods are
called by the Java runtime system, to tell the applet when it should and should not be running.



Updat eAppl et illustrates an environmentally friendly way to deal with threads in a simple
applet. Updat eAppl et effectively Kills its thread each time the applet is stopped and recreates it
if the applet is restarted. When Updat eAppl et'sstart( ) method is called, we first check to
make sure there is no currently executing updat eThr ead. We then create one to begin our
execution. When our applet is subsequently asked to stop, we set a flag indicating that it should
stop and then make sure it is awake by invoking its i nt er r upt () method. In our st op( )
method, we set updat eThr ead to nul | , which serves three purposes: it allows the garbage
collector to clean up the dead Thr ead object; it indicates to Updat eAppl et 'sstart () method
that the thread is gone, so that another one can be started when necessary; and we use it as the
flag to indicate to the running thread that it is time to quit. If you feel that we have overburdened
this variable, you might consider using a separate boolean variable for the flag condition.

One thing about Appl et s:in truth, an Appl et 'sstart () and st op( ) methods are
guaranteed to be called in sequence. As a result, we shouldn't have to check for the existence of
updat eThread instart( ). (It should always be null.) However, it's good programming
practice to perform the test. If we didn't, and for some reason st op( ) were to fail at its job, we
might inadvertently start a lot of threads.

With Updat eAppl et doing all of the work for us, we can now create the world's simplest clock
applet with just a few lines of code. Figure 8.3 shows our C! ock. (This might be a good one to
run on your Java wristwatch.)

/1file: Cock.java
public class C ock extends UpdateApplet {
public void paint( java.aw.Gaphics g ) {
g.drawsString( new java.util.Date().toString( ), 10, 25 );
}

Figure 8.3. The Clock applet
Sat Apr 22 09:37:51 MDT 2000

Thejava.util.Date().toString( ) method creates a string that contains the current time.

Our Cl ock applet provides a good example of a simple thread; we don't mind throwing it away
and subsequently rebuilding it if the user should happen to wander on and off of our web page a
few times. But what if the task that our thread handles isn't so simple? What if, for instance, we
have to open a socket and establish a connection with another system? One solution is to use
Thread'ssuspend( ) andresune( ) methods, as we'll show you in a moment.

Now if you're concerned about being so cavalier in creating and discarding Thr ead objects, you
might rightly ask if we couldn't simply do a little more logic and save our thread. Perhaps we
could teach the st art () method to have the existing thread begin again., rather than having to
create a new thread. It should be apparent how to go about this using the wai t () and not i f y(

) methods after you read the next section on thread synchronization.

However, an issue with applets is that we have no control over how a user navigates web pages.
For example, say a user scrolls our applet out of view, and we pause our thread. Now we have no



way of ensuring that the user will bring the applet back into view before moving on to another
page. And actually, the same situation would occur if the user simply moves on to another page
and never comes back. That's not a problem in this simple example, but there may be cases in
which we need to do some application cleanup before we die. For this situation the Applet API
gives us the destroy( ) method. destroy( ) is called by the Java runtime system when the
applet is going to be removed (often from a cache). It provides a place at which we can free up
any resources the applet is holding.

8.3 Synchronization

Every thread has a life of its own. Normally, a thread goes about its business without any regard
for what other threads in the application are doing. Threads may be time-sliced, which means
they can run in arbitrary spurts and bursts as directed by the operating system. On a
multiprocessor system, it is even possible for many different threads to be running simultaneously
on different CPUs. This section is about coordinating the activities of two or more threads, so they
can work together and not collide in their use of the same address space.

Java provides a few simple structures for synchronizing the activities of threads. They are all
based on the concept of monitors, a widely used synchronization scheme developed by C.A.R.
Hoare. You don't have to know the details about how monitors work to be able to use them, but it
may help you to have a picture in mind.

A monitor is essentially a lock. The lock is attached to a resource that many threads may need to
access, but that should be accessed by only one thread at a time. It's not unlike a restroom with a
door that locks. If the resource is not being used, the thread can acquire the lock and access the
resource. By the same token, if the restroom is unlocked, you can enter and lock the door. When
the thread is done, it relinquishes the lock, just as you unlock the door and leave it open for the
next person. However, if another thread already has the lock for the resource, all other threads
have to wait until the current thread finishes and releases the lock. This is just like when the
restroom is locked when you arrive: you have to wait until the current occupant is done and
unlocks the door.

Fortunately, Java makes the process of synchronizing access to resources quite easy. The
language handles setting up and acquiring locks; all you have to do is specify which resources
require locks.

8.3.1 Serializing Access to Methods

The most common need for synchronization among threads in Java is to serialize their access to
some resource (an object)—in other words, to make sure that only one thread at a time can
manipulate an object or variable.’ In Java, every object has a lock associated with it. To be more
specific, every class and every instance of a class has its own lock. The synchr oni zed keyword
marks places where a thread must acquire the lock before proceeding.

21 pon't confuse the term "serialize" in this context with Java object serialization, which is a mechanism for
making objects persistent. But the underlying meaning (to place one thing after another) does apply to both.
In the case of object serialization, it is the object's data which is laid out, byte for byte, in a certain order.

For example, say we implemented a SpeechSynt hesi zer class that contains a say( )
method. We don't want multiple threads calling say( ) at the same time or we wouldn't be able
to understand anything being said. So we mark the say( ) method as synchr oni zed, which
means that a thread has to acquire the lock on the SpeechSynt hesi zer object before it can
speak:



cl ass SpeechSynt hesi zer {
synchroni zed void say( String words ) {
/'l speak
}

Because say( ) is an instance method, a thread has to acquire the lock on the particular
SpeechSynt hesi zer instance it is using before it can invoke the say( ) method. When say(
) has completed, it gives up the lock, which allows the next waiting thread to acquire the lock and
run the method. Note that it doesn't matter whether the thread is owned by the

SpeechSynt hesi zer itself or some other object; every thread has to acquire the same lock,
that of the SpeechSynt hesi zer instance. If say( ) were a class (static) method instead of an
instance method, we could still mark it as synchronized. But in this case as there is no instance
object involved, the lock would be on the class object itself.

Often, you want to synchronize multiple methods of the same class, so that only one of the
methods modifies or examines parts of the class at a time. All static synchronized methods in a
class use the same class object lock. By the same token, all instance methods in a class use the
same instance object lock. In this way, Java can guarantee that only one of a set of synchronized
methods is running at a time. For example, a Spr eadSheet class might contain a number of
instance variables that represent cell values, as well as some methods that manipulate the cells
in a row:

cl ass SpreadSheet {
int cell AL, cell A2, cell A3;

synchroni zed int sumRow( ) {
return cell A1 + cell A2 + cel |l A3;

}

synchroni zed void setRow int al, int a2, int a3 ) {
cell A1 = al;
cell A2 = a2;
cell A3 = a3;

}

In this example, both methods set Row( ) and sunmRow( ) access the cell values. You can see
that problems might arise if one thread were changing the values of the variables in set Row( )
at the same moment another thread were reading the values in sunRow( ). To prevent this, we
have marked both methods as synchr oni zed. When threads are synchronized, only one will be
run at a time. If a thread is in the middle of executing set Row( ) when another thread calls
sunRow( ), the second thread waits until the first one is done executing set Row( ) before it
gets to run sunRow( ) . This synchronization allows us to preserve the consistency of the

Spr eadSheet . And the best part is that all of this locking and waiting is handled by Java; it's
transparent to the programmer.

In addition to synchronizing entire methods, the synchr oni zed keyword can be used in a
special construct to guard arbitrary blocks of code. In this form it also takes an explicit argument
that specifies the object for which it is to acquire a lock:

synchroni zed ( myQbject ) {



/1l Functionality that needs to be synced

This code block can appear in any method. When it is reached, the thread has to acquire the lock
on myObj ect before proceeding. In this way, we can synchronize methods (or parts of methods)
in different classes in the same way as methods in the same class.

A synchronized instance method is, therefore, equivalent to a method with its statements
synchronized on the current object. Thus:

synchroni zed void nyMethod ( ) {
}

is equivalent to:

void myMethod ( ) {
synchronized ( this ) {

}
}

8.3.1.1 Accessing instance variables

In the Spr eadSheet example, we guarded access to a set of instance variables with a
synchronized method, which we did mainly so that we wouldn't change one of the variables while
someone was reading the rest of them. We wanted to keep them coordinated. But what about
individual variable types? Do they need to be synchronized? Normally the answer is no. Almost
all operations on primitives and object reference types in Java happen "atomically": they are
handled by the virtual machine in one step, with no opportunity for two threads to collide. You
can't be in the middle of changing a reference and be only "part way" done when another thread
looks at the reference.

But watch out—we did say "almost.” If you read the Java virtual machine specification carefully,
you will see that the double and long primitive types are not guaranteed to be handled atomically.
Both of these types represent 64-bit values. The problem has to do with how the Java Virtual
Machine's stack handles them. It is possible that this specification will be beefed up in the future.
But for now, if you have any fears, synchronize access to your doubl e and | ong instance
variables through accessor methods.

8.3.2 The wait() and notify() Methods

With the synchr oni zed keyword, we can serialize the execution of complete methods and
blocks of code. The wai t () and noti fy( ) methods of the Chj ect class extend this
capability. Every object in Java is a subclass of Cbj ect , so every object inherits these methods.
By using wai t () and noti fy( ), athread can effectively give up its hold on a lock at an
arbitrary point and then wait for another thread to give it back before continuing.=! All of the
coordinated activity still happens inside of synchronized blocks, and still only one thread is
executing at a given time.

Bl actuality, they don't really pass the lock around; the lock becomes available and, as we'll describe, a
thread that is scheduled to run acquires it.



By executing wai t () from a synchronized block, a thread gives up its hold on the lock and
goes to sleep. A thread might do this if it needs to wait for something to happen in another part of
the application, as we'll see shortly. Later, when the necessary event happens, the thread that is
running it calls not i fy( ) from a block synchronized on the same object. Now the first thread
wakes up and begins trying to acquire the lock again.

When the first thread manages to reacquire the lock, it continues from the point it left off.
However, the thread that waited may not get the lock immediately (or perhaps ever). It depends
on when the second thread eventually releases the lock and which thread manages to snag it
next. Note also that the first thread won't wake up from the wai t () unless another thread calls
noti fy( ). Thereis an overloaded version of wai t (), however, that allows us to specify a
timeout period. If another thread doesn't call not i fy( ) in the specified period, the waiting
thread automatically wakes up.

Let's look at a simple scenario to see what's going on. In the following example, we'll assume
there are three threads—one waiting to execute each of the three synchronized methods of the
My Thi ng class. We'll call them the waiter, notifier, and related threads. Here's a code fragment to
illustrate:

class MyThing {
synchroni zed void waiterMthod( ) {
/1 do sone stuff
wai t( ); /1 now wait for notifier to do sonething
/1 continue where we |left off

}

synchroni zed void notifierMethod( ) {
/1 do sone stuff
notify( ); /1 notify waiter that we've done it
/1 do nore things

}

synchroni zed voi d rel at edMet hod( ) {
/1l do sone related stuff
}

}

Let's assume waiter gets through the gate first and begins executing wai t er - Vet hod( ). The
two other threads are initially blocked, trying to acquire the lock for the My Thi ng object. When
waiter executes the wai t () method, it relinquishes its hold on the lock and goes to sleep. Now
there are now two viable threads waiting for the lock. Which thread gets it depends on several
factors, including chance and the priorities of the threads. (We'll discuss thread scheduling in the
next section.)

Let's say that notifier is the next thread to acquire the lock, so it begins to run

noti fierMethod( ).waiter continues to sleep and related languishes, waiting for its turn.
When notifier executes the call to not i f y( ), the runtime system prods the waiter thread,
effectively telling it something has changed. waiter then wakes up and rejoins related in vying for
the My Thi ng lock. Note that it doesn't receive the lock automatically; it just changes from saying
"leave me alone" to "I want the lock."

At this point, notifier still owns the lock and continues to hold it until the synchronized
noti fierMethod( ) returns—or perhaps executes awai t () itself. At that point, the other



two methods get to fight over the lock. waiter would like to continue executing wai t er Met hod(
) from the point it left off, while related, which has been patient, would like to get started. We'll let
you choose your own ending for the story.

For each call to not i fy( ), the runtime system wakes up just one method that is asleep in a
wal t () call. If there are multiple threads waiting, Java picks a thread on an arbitrary basis,
which may be implementation-dependent. The Cbj ect class also provides a not i f yAl | ()
call to wake up all waiting threads. In most cases, you'll probably want to use not i f yAl | ()
rather than not i fy( ). Keep in mind that not i fy( ) really means "Hey, something related to
this object has changed. The condition you are waiting for may have changed, so check it again."
In general, there is no reason to assume only one thread at a time is interested in the change or
able to act upon it. Different threads might look upon whatever has changed in different ways.

Often, our waiter thread is waiting for a particular condition to change and we will want to sit in a
loop like the following:

while ( condition !'= true )
vait( );

Other synchronized threads call noti fy() ornotifyAl | ( ) when they have modified the
environment so that waiter can check the condition again. Using "wait conditions" like this is the
civilized alternative to polling and sleeping, as you'll see in the following section.

8.3.3 Passing Messages

Now we'll illustrate a classic interaction between two threads: a Pr oducer and a Consuner. A
producer thread creates messages and places them into a queue, while a consumer reads them
out and displays them. To be realistic, we'll give the queue a maximum depth. And to make things
really interesting, we'll have our consumer thread be lazy and run much more slowly than the
producer. This means that Pr oducer occasionally has to stop and wait for Consuner to catch
up. Here are the Pr oducer and Consuner classes:

/1file: Consuner.java
i nport java.util.Vector;

cl ass Producer extends Thread {
static final int MAXQUEUE = 5;
private Vector nessages = new Vector( );

public void run( ) {

try {
while ( true ) {

put Message( );
sl eep( 1000 );

}

catch( InterruptedException e ) { }
}

private synchroni zed void put Message( )
throws | nterruptedException {

whil e ( nessages.size( ) == MAXQUEUE )
vait( );



nmessages. addEl enent ( new java.util.Date().toString( ) );
notify( );

}

/1 called by Consuner
public synchronized String get Message( )
throws | nterruptedException {

notify( );
while ( nessages.size( ) == 0)
wait( );

String nessage = (String)nessages.firstEl ement( );
nmessages. renoveEl enent ( nmessage );
return nessage;

}

} /1 end of class Producer

public class Consuner extends Thread {
Producer producer;

Consuner ( Producer p) {
producer = p;

}
public void run( ) {
try {
while ( true ) {
String nessage = producer. get Message( );
Systemout. println("Got nessage: " + nessage);
sl eep( 2000 );
}
catch( InterruptedException e ) { }
}

public static void main(String args[]) {
Producer producer = new Producer( );

producer.start( );
new Consumner ( producer ).start( );

}

For convenience, we have included a nei n( ) method in the Consuner class that runs the
complete example. It creates a Consuner thatis tied to a Pr oducer and starts the two classes.
You can run the example as follows:

% j ava Consuner

The output is the timestamp messages created by the Pr oducer :

CGot nmessage: Sun Dec 19 03:35:55 CST 1999
Got nmessage: Sun Dec 19 03:35:56 CST 1999
Got nmessage: Sun Dec 19 03:35:57 CST 1999



The timestamps initially show a spacing of one second, although they appear every two seconds.
Our Pr oducer runs faster than our Consuner . Producer would like to generate a new
message every second, while Consuner gets around to reading and displaying a message only
every two seconds. Can you see how long it will take the message queue to fill up? What will
happen when it does?

Let's look at the code. We are using a few new tools here. Pr oducer and Consuner are
subclasses of Thr ead. It would have been a better design decision to have Pr oducer and
Consuner implement the Runnabl e interface, but we took the slightly easier path and
subclassed Thr ead. You should find it fairly simple to use the other technique; you might try it as
an exercise.

The Producer and Consuner classes pass messages through an instance of a
java.util.Vect or object. We haven't discussed the VVect or class yet. Think of this one as a
gueue: we add and remove elements in first-in, first-out order.

The important activity is in the synchronized methods: put Message( ) and get Message( ).
Although one of the methods is used by the Pr oducer thread and the other by the Consuner
thread, they both live in the Pr oducer class so that we can coordinate them simply by declaring
them synchr oni zed. Here they both implicitly use the Pr oducer object's lock. If the queue is
empty, the Consumner blocks in a call in the Pr oducer , waiting for another message.

Another design option would implement the get Message( ) method in the Consuner class and
use a synchroni zed code block to synchronize explicitly on the Pr oducer object. In either
case, synchronizing on the Pr oducer enables us to have multiple Consuner objects that feed
on the same Pr oducer . We'll do that later in this section.

put Message( )'sjobis to add a new message to the queue. It can't do this if the queue is
already full, so it first checks the number of elements in nessages. If there is room, it stuffs in
another timestamp message. If the queue is at its limit, however, put Vessage( ) has to wait
until there's space. In this situation, put Message() executes awai t () and relies on the
consumer to call not i fy( ) to wake it up after a message has been read. Here we have

put Message( ) testing the condition in a loop. In this simple example, the test probably isn't
necessary; we could assume that when put Message( ) wakes up, there is a free spot.
However, this test is another example of good programming practice. Before it finishes,

put Message( ) callsnotify( ) itselfto prod any Consuner that might be waiting on an
empty queue.

get Message( ) retrieves a message for the Consuner . It enters a loop like that of

put Message( ), waiting for the queue to have at least one element before proceeding. If the
gueue is empty, it executes a wai t () and expects the Producer to call noti fy() when more
items are available. Notice that get Message( ) makes its own unconditional call to not i f y(

) . This is a somewhat lazy way of keeping the Pr oducer on its toes, so that the queue should
generally be full. Alternatively, get Message( ) might test to see if the queue had fallen below a
low-water mark before waking up the producer.

Now let's add another consumer to the scenario, just to make things really interesting. Most of the
necessary changes are in the Consuner class; here's the code for the modified class, now called
NanmedConsuner :

/1file: NanedConsuner.java
public class NanedConsuner extends Thread {



Producer producer;
String nane;

NamedConsuner (String nanme, Producer producer) {
thi s. producer = producer;
t hi s. nanme = nane;

}
public void run( ) {
try {
while ( true ) {
String nessage = producer. get Message( );
Systemout.println(name + " got nessage: " + nessage);
sl eep( 2000 );
}
catch( InterruptedException e ) { }
}

public static void main(String args[]) {
Producer producer = new Producer( );
producer.start( );

/] start two this tine
new NanmedConsuner( "One", producer ).start( );
new NanmedConsuner ( "Two", producer ).start( );

}

The NanedConsuner constructor takes a string name, to identify each consumer. The r un()
method uses this name in the call to pri nt| n( ) to identify which consumer received the
message.

The only required modification to the Pr oducer code is to change the noti fy( ) callsto
notifyAll () callsinput Message() and get Message( ). (We could have used

notifyAl |l ( ) inthe first place.) Now, instead of the consumer and producer playing tag with
the queue, we can have many players waiting on the condition of the queue to change. We might
have a number of consumers waiting for a message, or we might have the producer waiting for a
consumer to take a message. Whenever the condition of the queue changes, we prod all of the
waiting methods to reevaluate the situation by calling not i fyAl | ().

Here is some sample output when there are two NanedConsuner s running, as in the nai n( )
method shown previously:

One got nessage: Sat Mar 20 20:00: 01 CST 1999
Two got nessage: Sat Mar 20 20: 00: 02 CST 1999
One got nessage: Sat Mar 20 20:00: 03 CST 1999
Two got nessage: Sat Mar 20 20: 00: 04 CST 1999
One got nessage: Sat Mar 20 20:00: 05 CST 1999
Two got nessage: Sat Mar 20 20: 00: 06 CST 1999
One got nessage: Sat Mar 20 20:00: 07 CST 1999
Two got nessage: Sat Mar 20 20: 00: 08 CST 1999



We see nice, orderly alternation between the two consumers, as a result of the calls to sl eep(
) in the various methods. Interesting things would happen, however, if we were to remove all of
the callsto sl eep( ) and let things run at full speed. The threads would compete and their
behavior would depend on whether the system is using time-slicing. On a time-sliced system,
there should be a fairly random distribution between the two consumers, while on a nontime-
sliced system, a single consumer could monopolize the messages. And since you're probably
wondering about time-slicing, let's talk about thread priority and scheduling.

8.4 Scheduling and Priority

Java makes few guarantees about how it schedules threads. Almost all of Java's thread
scheduling is left up to the Java implementation and, to some degree, the application. Although it
might have made sense (and would certainly have made many developers happier) if Java's
developers had specified a scheduling algorithm, a single scheduling algorithm isn't necessarily
suitable for all of the roles that Java can play. Instead, Sun decided to put the burden on you to
write robust code that works whatever the scheduling algorithm, and let the implementation tune
the algorithm for whatever is best.

Therefore, the priority rules that we'll describe next are carefully worded in the Java language
specification to be a general guideline for thread scheduling. You should be able to rely on this
behavior overall (statistically), but it is not a good idea to write code that relies on very specific
features of the scheduler to work properly. You should instead use the control and
synchronization tools that we have described in this chapter to coordinate your threads.™

1 Java Threads, by Scott Oaks and Henry Wong (O'Reilly & Associates), includes a detailed discussion of
synchronization, scheduling, and other thread-related issues.

Every thread has a priority value. If at any time a thread of a higher priority than the current
thread becomes runnable, it preempts the lower-priority thread and begins executing. By default,
threads at the same priority are scheduled round-robin, which means once a thread starts to run,
it continues until it does one of the following:

Sleeps, by calling Thread. sl eep() orwai t( )

Waits for a lock, in order to run a synchr oni zed method

Blocks on I/O, for example, inaread() oraccept ( ) call

Explicitly yields control, by calling yi el d( )

Terminates, by completing its target method or with a st op( ) call (deprecated)

This situation looks something like Figure 8.4.

Figure 8.4. Priority preemptive, round-robin scheduling
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8.4.1 Time-Slicing

In addition to prioritization, many systems implement time-slicing of threads.™ In a time-sliced
system, thread processing is chopped up, so that each thread runs for a short period of time
before the context is switched to the next thread, as shown in Figure 8.5.

31 As of Java Release 1.0, Sun's Java Interpreter for Windows uses time-slicing, as does the Netscape
Navigator Java environment. Sun's Java 1.0 for the Solaris Unix platforms doesn't.

Higher-priority threads still preempt lower-priority threads in this scheme. The addition of time-
slicing mixes up the processing among threads of the same priority; on a multiprocessor machine,
threads may even be run simultaneously. This can introduce a difference in behavior for
applications that don't use threads and synchronization properly.

Figure 8.5. Priority preemptive, time-sliced scheduling
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Since Java doesn't guarantee time-slicing, you shouldn't write code that relies on this type of
scheduling; any software you write needs to function under the default round-robin scheduling. If
you're wondering what your particular flavor of Java does, try the following experiment:

/1file: Thready.|ava
public class Thready {
public static void main( String args [] ) {
new MyThread("Foo").start( );
new MyThread("Bar").start( );

}
} /1 end of class Thready

class MyThread extends Thread {
String nessage;

MyThread ( String nessage ) {
thi s. nessage = nessage;
}

public void run( ) {
while ( true )
Systemout. println( nessage );

}

The Thr eady class starts up two My Thr ead objects. Thr eady is a thread that goes into a hard
loop (very bad form) and prints its message. Since we don't specify a priority for either thread,



they both inherit the priority of their creator, so they have the same priority. When you run this
example, you will see how your Java implementation does its scheduling. Under a round-robin
scheme, only "Foo" should be printed; "Bar" never appears. In a time-slicing implementation, you
should occasionally see the "Foo" and "Bar" messages alternate.

8.4.2 Priorities

Now let's change the priority of the second thread:

cl ass Thready {
public static void main( String args [] ) {
new MyThread("Foo").start( );
Thread bar = new MyThread("Bar");
bar.setPriority( Thread. NORMPRIORITY + 1 );
bar.start( );

}

As you might expect, this changes how our example behaves. Now you may see a few "Foo"
messages, but "Bar" should quickly take over and not relinquish control, regardless of the
scheduling policy.

Here we have used the set Priority( ) method of the Thr ead class to adjust our thread's
priority. The Thr ead class defines three standard priority values (they're integers):
M N_PRI ORI TY, NORM PRI ORI TY, and MAX_PRI ORI TY.

If you need to change the priority of a thread, you should use one of these values, possibly with a
small increment or decrement. Avoid using values near VAX PRI ORI TY; if you elevate many
threads to this priority level, priority will quickly become meaningless. A slight increase in priority
should be enough for most needs. For example, specifying NORM PRI ORI TY + 1 in our example
is enough to beat out our other thread.

We should also note that in an applet environment you may not have access to maximum priority
because you're limited by the maximum priority of the thread group in which you were created
(see "Thread Groups" later in this chapter).

8.4.3 User-Controlled Time-Slicing

There is a rough technique that you can use to get the effect similar to time-slicing in a Java
application, even if the Java runtime system does not support it directly. The idea is simply to
create a high (maximum) priority thread that does nothing but repeatedly sleep for a short interval
and then wake up. Since the higher-priority thread will (in general) interrupt any lower-priority
threads when it becomes runnable, you will effectively chop up the execution time of your lower-
priority threads, which should then execute in the standard round-robin fashion. We call this
technique rough because of the weakness of the specification for Java threads with respect to
their pre-emptiveness. If you use this technique, you should consider it only a potential
optimization.

8.4.4 Yielding

Whenever a thread sleeps, waits, or blocks on 1/O, it gives up its time slot, and another thread is
scheduled. So as long as you don't write methods that use hard loops, all threads should get their
due. However, a Thr ead can also signal that it is willing to give up its time voluntarily at any point



with the yi el d( ) call. We can change our previous example to include a yi el d( ) on each
iteration:

class MyThread extends Thread {

public void run( ) {
while ( true ) {
Systemout. println( nessage );

yield( );

Now you should see "Foo" and "Bar" messages strictly alternating. If you have threads that
perform very intensive calculations or otherwise eat a lot of CPU time, you might want to find an
appropriate place for them to yield control occasionally. Alternatively, you might want to drop the
priority of your compute-intensive thread, so that more important processing can proceed around
it.

Unfortunately the Java language specification is very weak with respectto yi el d( ). Itis
another one of these things that you should consider an optimization rather than a guarantee. In
the worst case, the runtime system may simply ignore callsto yi el d( ).

8.4.5 Native Threads

We mentioned the possibility that different threads could run on different processors. This would
be an ideal Java implementation. Unfortunately, most implementations don't even allow multiple
threads to run in parallel with other processes running on the same machine. The most common
implementations of threads today effectively simulate threading for an individual process like the
Java interpreter. One feature that you might want to look for in choosing a Java implementation is
called native threads. This means that the Java runtime system is able to use the real (native)
threading mechanism of the host environment, which should perform better and, ideally, can
allow multiprocessor operation.

8.5 Thread Groups

The Thr eadG oup class allows us to deal with threads "wholesale": we can use it to arrange
threads in groups and deal with the groups as a whole. A Thr eadG oup can contain other
ThreadG oups, in addition to individual threads, so our arrangements can be hierarchical.
Thread groups are particularly useful when we want to start a task that might create many
threads of its own. By assigning the task a thread group, we can later identify and control all of
the task's threads. Thr eadG oups are also the subject of restrictions that can be imposed by the
Java Security Manager. So we can restrict a thread's behavior according to its thread group. For
example, we can forbid threads in a particular group from interacting with threads in other groups.
This is one way that web browsers can prevent threads started by Java applets from stopping
important system threads.

When we create a Thr ead, it normally becomes part of the Thr eadG oup that the currently
running thread belongs to. To create a new Thr eadG oup of our own, we can call the
constructor:

ThreadG oup nyTaskG oup = new ThreadG oup("My Task G oup");



The Thr eadG oup constructor takes a name, which a debugger can use to help you identify the
group. (You can also assign names to the threads themselves.) Once we have a group, we can
put threads in the group by supplying the Thr eadG oup object as an argument to the Thr ead
constructor:

Thread nmyTask = new Thread( mnmyTaskG oup, taskPerformer );

Here, nyTaskG oup is the thread group, and t askPer f or ner is the target object (the
Runnabl e object that performs the task). Any additional threads that my Task creates will also
belong to the ny TaskG oup thread group.

8.5.1 Working with the ThreadGroup Class

Creating thread groups isn't interesting unless you do things to them. The Thr eadG oup class
exists so that you can control threads in batches. It has methods that parallel the basic Thr ead
control methods—even the deprecated st op( ), suspend(),andresune( ). These methods
in the Thr eadG oup operate on all of the threads they contain. You can also mark a

ThreadG oup as a "daemon”; a daemon thread group is automatically removed when all of its
children are gone. If a thread group isn't a daemon, you have to call dest roy( ) to remove it
when it is empty.

We can set the maximum priority for any thread in a Thr eadG oup by calling
set Maxi munPriority( ). Thereafter, no threads can be created with a priority higher than the
maximum; threads that change their priority can't set their new priority higher than the maximum.

Finally, you can get a list of all of the threads in a group. The method act i veCount () tells you
how many threads are in the group; the method enuner at e( ) gives you a list of them. The
argument to enuner at e( ) is an array of Thr eads, which enuner at e() fills in with the
group's threads. (Use act i veCount () to make an array of the right size.) Both

activeCount () and enuner at e( ) operate recursively on all thread groups that the group
contains.

It is also the responsibility of the Thr ead G oup to handle uncaught runtime exceptions thrown by
the run( ) methods of its threads. You can override the uncaught Except i on( ) method of
Thr eadG oup when making your own Thr eadG oups to control this behavior.



Chapter 9. Basic Utility Classes

If you've been reading t his book sequentially, you've read all about the core Java language

constructs, including the object-oriented aspects of the language and the use of threads. Now it's
time to shift gears and talk about the Java Application Programming Interface (API), the collection
of classes that comes with every Java implementation. The Java APl encompasses all the public

methods and variables in the classes that make up the core Java packages. Table 9.1 lists the
most important packages in the APl and shows which chapters in this book discuss each of the

packages.
Table 9.1. Packages of the Java API

Package Contents Chapter
j ava. | ang Basic language classes 4,5,6,7,8,9
j ava. | ang. refl ect Reflection 7
j ava.io Input and output 10
j ava. uti | Utilities and collections classes |9, 10, 11
j ava. t ext International text classes 9
j ava. net Sockets and URLs 11, 12
j ava. appl et The applet API 20
j avax. swi ng, j ava. awm Swing and 2D graphics 13, 14, 15, 16, 17
j avax. swi ng. event,java. awt . event |Event classes 13, 14, 15
j ava. aw . i mage 2D image-processing classes |18
j ava. beans JavaBeans API 19
java.rm RMI classes 11

As you can see in Table 9.1, we've already examined some of the classes in | ava.

[ ang in

earlier chapters on the core language constructs. Starting with this chapter, we'll throw open the
Java toolbox and begin examining the rest of the classes in the API.

We'll begin our exploration with some of the fundamental language classes in | ava. | ang,
including strings and math utilities. Figure 9.1 shows the class hierarchy of the | ava. | ang

package.

Figure 9.1. The java.lang package
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We'll cover some of the classes inj ava. uti |, such as classes that support date and time
values, random numbers, vectors, and hashtables. Figure 9.2 shows the class hierarchy of the
j ava. uti | package.

Figure 9.2. The java.util package
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9.1 Strings

In this section, we take a closer look at the Java St ri ng class (or more specifically,

j ava. | ang. St ri ng). Because strings are used so extensively throughout Java (or any
programming language, for that matter), the Java St r i ng class has quite a bit of functionality.
We'll test-drive most of the important features, but before you go off and write a complex parser
or regular expression library, you should refer to a Java class reference manual for additional
details. For example, see Java Fundamental Classes Reference, by Mark Grand and Jonathan
Knudsen (O'Reilly & Associates).

Strings are immutable; once you create a St r i ng object, you can't change its value. Operations
that would otherwise change the characters or the length of a string instead return a new St r i ng
object that copies the needed parts of the original. ( Java implementations make an effort to
consolidate identical strings and string literals in the same class into a shared-string pool.)

9.1.1 String Constructors



To create a string, assign a double-quoted constant to a St r i ng variable:
String quote = "To be or not to be";

Java automatically converts the string literal into a St r i ng object. If you're a C or C++
programmer, you may be wondering if quot e is null-terminated. This question doesn't make any
sense with Java strings. The St ri ng class actually uses a Java character array internally. It's
privat e tothe St ri ng class, so you can't get at the characters and change them. As always,
arrays in Java are real objects that know their own length, so St r i ng objects in Java don't
require special terminators (not even internally). If you need to know the length of a St r i ng, use
the | engt h( ) method:

int length = quote.length( );

Strings can take advantage of the only overloaded operator in Java, the + operator, for string
concatenation. The following code produces equivalent strings:

"John " + "Smth";
"John ".concat("Smth");

String nanme =
String nanme =
Literal strings can't span lines in Java source files, but we can concatenate lines to produce the
same effect:

String poem =
"*Twas brillig, and the slithy toves\n" +
" Did gyre and ginble in the wabe:\n" +
"All mney were the borogoves,\n" +
" And the none raths outgrabe.\n";

Embedding lengthy text in source code should now be a thing of the past, given that we can
retrieve a St r i ng from anywhere on the planet via a URL. In Chapter 12, we'll see how to do
things like this:

String poem= (String) new URL(
"http://nyserver/~dodgson/j abberwocky.txt").get Content( );

In addition to making strings from literal expressions, we can construct a St r i ng from an array of
characters:

char [] data ={ 'L', 'e", 'm, 'm, "i', 'n", 'g },
String lemmng = new String( data );

or from an array of bytes:

byte [] data = { 97, 98, 99 };
String abc = new String(data, "8859 5");

The second argument to the St r i ng constructor for byte arrays is the name of an encoding
scheme. It's used to convert the given bytes to the string's Unicode characters. Unless you know
something about Unicode, you can use the form of the constructor that accepts a byte array only;
the default encoding scheme will be used.™!



7 1n Windows, the default encoding is CP1252; in Solaris, it's 1ISO8859_1.
9.1.2 Strings from Things

We can get the string representation of most things with the static St ri ng. val ueO ()
method. Various overloaded versions of this method give us string values for all of the primitive

types:

String one String.valueOr( 1);
String two String.valueOr( 2.384f );
String notTrue = String.valueO( fal se );

All objects in Java have at oSt ri ng( ) method, inherited from the Obj ect class. For class-
type references, St ri ng. val ueOr () invokes the object'st oSt ri ng( ) method to get its
string representation. If the reference is nul | , the result is the literal string "null™:

String date = String.valueO( new Date( ) );

Systemout.println( date ); /1 "Sun Dec 19 05:45:34 CST 1999"
date = null;
Systemout.println( date ); /[l "null"

9.1.3 Things from Strings

Producing primitives like numbers from St r i ng objects is not a function of the St r i ng class. For
that we need the primitive wrapper classes; they are described in the "Math Utilities" section later
in this chapter. The wrapper classes provide val ueOr () methods that produce an object from
a String, as well as corresponding methods to retrieve the value in various primitive forms. Two
examples are:

int i = Integer.valueO ("123").intValue( );
doubl e d = Doubl e. val ueO ("123. 0") . doubl eVval ue( );

In this code, the | nt eger . val ue () call yields an Integer object that represents the value
123. An | nt eger object can provide its primitive value in the form of an i nt with the
i ntVal ue( ) method.

Although these techniques may work for simple cases, they will not work internationally. Let's
pretend for a moment that we are programming Java in the rolling hills of Tuscany. We would
follow the local customs for representing numbers and write code like the following:

doubl e d = Doubl e. val ueOr (" 1. 234, 56") . doubl evVal ue( ); // oops!

Unfortunately, this code throws a Nunber For mat Except i on. The | ava. t ext package, which
we'll discuss later, contains the tools we need to generate and parse strings for different countries
and languages.

The char At () method of the St ri ng class lets us get at the characters of a St ri ng in an
array-like fashion:

String s = "Newton";
for (int i =0; 1 <s.length( ); i++)



Systemout.printin( s.charAt( i ) );

This code prints the characters of the string one at a time. Alternately, we can get the characters
all at once with t oChar Array( ). Here's a way to save typing a bunch of single quotes:

char [] abcs = "abcdef ghij kl mopgr st uvwxyz".toCharArray( );
9.1.4 Comparisons

Just as in C, you can't compare strings for equality with == because as in C, strings are accessed
by reference. Even the expression " f 00" == "f 00" will return false, unless your Java compiler
happens to coalesce multiple instances of the same string literal to a single string-pool item.
String comparisons with <, >, <=, and >= don't work at all, because Java can't convert references
to integers.

Use the equal s( ) method to compare strings:
String one = "Foo";

char [] c={"F, "o, "0 };
String two = new String ( ¢ );

if ( one.equals( tw ) ) /'l true

An alternative version, equal sl gnoreCase( ), can be used to check the equivalence of strings
in a case-insensitive way:

String one = "FOO';
String two = "foo";
if ( one.equal slgnoreCase( two ) ) /'l true

The conpar eTo( ) method compares the lexical value of the St r i ng against another St ri ng.
It returns an integer that is less than, equal to, or greater than zero, just like the C routine
string( ):

String abc = "abc";
String def = "def";
String num= "123";
if ( abc.conpareTo( def ) < 0) /'l true
if ( abc.conpareTo( abc ) == 0) /'l true
if ( abc.conpareTo( num) > 0 ) /'l true

On some systems, the behavior of lexical comparison is complex, and obscure alternative
character sets exist. Java avoids this problem by comparing characters strictly by their position in
the Unicode specification.

9.1.4.1 The Collator class

In Java 1.1 and later, the | ava. t ext package provides a sophisticated set of classes for
comparing strings, even in different languages. German, for example, has vowels with umlauts
over them and a beta-like character that represents a double "s". How should we sort these?
Although the rules for sorting these characters are precisely defined, you can't assume that the



lexical comparison we used earlier works correctly for languages other than English. Fortunately,
the Col | at or class takes care of these complex sorting problems.

In the following example, we use a Col | at or designed to compare German strings. (We'll talk
about Local es in a later section.) You can obtain a default Col | at or by calling the

Col I'ator. get I nstance( ) method, with no arguments. Once you have an appropriate

Col | at or instance, you can use its conpar e( ) method, which returns values just like
String'sconmpareTo( ) method. The following code creates two strings for the German
translations of "fun" and "later," using Unicode constants for these two special characters. It then
compares them, using a Col | at or for the German locale; the result is that "fun" (Spaf3) sorts
before "later" (spater).

String fun = "Spa\u00df";

String later = "sp\uOOedter";

Col l ator german = Col | at or. get | nstance(Local e. GERVAN) ;
if (german.conpare(fun, later) < 0) // true

Using collators is essential if you're working with languages other than English. In Spanish, for
example, Il and ch are treated as separate characters and alphabetized separately. A collator
handles cases like these automatically.

9.1.5 Searching

The St ri ng class provides several methods for finding substrings within a string. The
startsWth( ) andendsWth( ) methods compare an argument St r i ng with the beginning

and end of the St ri ng, respectively:

String url = "http://foo.bar.com";
if (url.startsWth("http:") ) /'l true

Overloaded versions of i ndexOf () search for the first occurrence of a character or substring:

String abcs = "abcdef ghij kl mopqr st uvwxyz";
int i = abcs.indexOF( 'p' ); /1 15
int i = abcs.indexOr( "def" ); /Il 3

Correspondingly, overloaded versions of | ast | ndexOf () search for the last occurrence of a
character or substring.

9.1.6 Editing

A number of methods operate on the St ri ng and return a new St ri ng as a result. While this is
useful, you should be aware that creating lots of strings in this manner can affect performance. If
you need to modify a string often, you should use the St ri ngBuf f er class, as we'll discuss
shortly.

trin ) isauseful method that removes leading and trailing whitespace (i.e., carriage return,
newline, and tab) from the St r i ng:

String str =" abc "

str = str.trim ); /1 "abc"



In this example, we have thrown away the original St ri ng (with excess whitespace), so it will be
garbage-collected.

The t oUpper Case( ) andt oLower Case( ) methods return a new St r i ng of the appropriate
case:

String down
String up

"FOO'.toLower Case( ); /1 "foo"
down. t oUpper Case( ); /1 "FOO'

substring( ) returns a specified range of characters. The starting index is inclusive; the
ending is exclusive:

String abcs = "abcdef ghij kl mopqr st uvwxyz";
String cde = abcs. substring(2, 5); /1

cde
9.1.7 String Method Summary

Many people complain when they discover that the Java St ri ng classis f i nal (i.e., it can't be
subclassed). There is a lot of functionality in St r i ng, and it would be nice to be able to modify its
behavior directly. Unfortunately, there is also a serious need to optimize and rely on the
performance of St r i ng objects. The Java compiler can optimize f i nal classes by inlining
methods when appropriate. The implementation of f i nal classes can also be trusted by classes
that work closely together, allowing for special cooperative optimizations. If you want to make a
new string class that uses basic St r i ng functionality, use a St r i ng object in your class and
provide methods that delegate method calls to the appropriate St r i ng methods.

Table 9.2 summarizes the methods provided by the St ri ng class.

Table 9.2. String Methods

Method Functionality

char At ( ) Gets at a particular character in the string

conpar eTo( ) Compares the string with another string

concat () Concatenates the string with another string

copyVal ued¥ () Returns a string equivalent to the specified character array

endsWth( ) Checks whether the string ends with a specified suffix

equal s( ) Compares the string with another string

;equal sl gnore- Case( Compares the string with another string, ignoring case

get Bytes( ) Copies characters from the string into a byte array

get Chars( ) Copies characters from the string into a character array

hashCode( ) Returns a hashcode for the string

i ndexcr () Se_arches for the first occurrence of a character or substring in the
string

intern( ) Fetches a unique instance of the string from a global shared string pool

| ast |l ndexOF () Searches for the last occurrence of a character or substring in a string

I ength( ) Returns the length of the string

r egi onMat ches( ) Checks wh_ether a region of the string matches the specified region of
another string

repl ace( ) Replaces all occurrences of a character in the string with another




character
startsWth( ) Checks whether the string starts with a specified prefix
substring( ) Returns a substring from the string
toCharArray( ) Returns the array of characters from the string
t oLower Case( ) Converts the string to lowercase
toString( ) Returns the string value of an object
t oUpper Case( ) Converts the string to uppercase
trin( ) Removes leading and trailing white space from the string
val ueO () Returns a string representation of a value

9.1.8 The java.lang.StringBuffer Class

The j ava. | ang. StringBuf fer class is a growable buffer for characters. It's an efficient
alternative to code like the following:

String ball = "Hello";
ball = ball + " there.";
ball = ball + " How are you?";

This example repeatedly produces new St r i ng objects. This means that the character array
must be copied over and over, which can adversely affect performance. A more economical
alternative is to use a St r i ngBuf f er object and its append( ) method:

StringBuffer ball = new StringBuffer("Hello");
bal | . append(" there.");
bal | . append(" How are you?");

The St ri ngBuf f er class provides a number of overloaded append( ) methods for appending
various types of data to the buffer.

We can geta St ri ng fromthe St ri ngBuf f er withitst oSt ring( ) method:
String nessage = ball.toString( );

You can also retrieve part of a St r i ngBuf f er, as a St ri ng, using one of the substri ng( )
methods.

StringBuffer also provides a number of overloaded i nsert ( ) methods for inserting various
types of data at a particular location in the string buffer. Furthermore, you can remove a single
character or a range of characters with the del et eChar At () and del et e( ) methods.
Finally, you can replace part of the St r i ngBuf f er with the contents of a St r i ng using the
repl ace( ) method.

The St ring and St ri ngBuf f er classes cooperate, so that even in this last operation, no copy
has to be made. The string data is shared between the objects, unless and until we try to change
itinthe St ringBuffer.

So, when should you use a St ri ngBuf f er instead of a St ri ng? If you need to keep adding
characters to a string, use a St r i ngBuf f er ; it's designed to efficiently handle such
modifications. You'll still have to convert the St ri ngBuf f er to a St ri ng when you need to use




any of the methods in the St r i ng class. But you can print a St r i ngBuf f er directly using
Systemout.printlin( ),becauseprintln( ) callsthetoString( ) foryou.

Another thing you should know about St r i ngBuf f er methods is that they are thread-safe, just
like all public methods in the Java API. This means that only one thread at a time can change the
state of a St ri ngBuf f er instance. Any time you modify a St r i ngBuf f er , you don't have to
worry about another thread coming along and messing up the string while you are modifying it.

You might be interested to know that the compiler uses a St ri ngBuf f er to implement St ri ng
concatenation. Consider the following expression:

String foo = "To " + "be " + "or";

This is equivalent to:

String foo = new
StringBuffer().append("To ").append("be ").append("or").toString( );

This kind of chaining of expressions is one of the things operator overloading hides in other
languages.

9.1.9 The java.util.StringTokenizer Class

A common programming task involves parsing a string of text into words or "tokens" that are
separated by some set of delimiter characters. The | ava. uti|. StringTokeni zer classis a
utility that does just this. The following example reads words from the string t ext :

String text = "Nowis the tine for all good nmen (and wonen)...";
StringTokeni zer st = new StringTokeni zer( text );

while ( st.hasMoreTokens( ) ) {
String word = st.nextToken( );

}

First, we create a new St ri ngTokeni zer from the St ri ng. We invoke the hasVor eTokens(
) and next Token( ) methods to loop over the words of the text. By default, we use whitespace
(i.e., carriage return, newline, and tab) as delimiters.

The St ri ngTokeni zer implements the | ava. uti | . Enuner at i on interface, which means
that St ri ngTokeni zer also implements two more general methods for accessing elements:
hasMor eEl enent s( ) and next El enrent () . These methods are defined by the

Enuner at i on interface; they provide a standard way of returning a sequence of values. The
advantage of next Token( ) isthatit returns a St r i ng, while next El enent () returns an
(hj ect . (We'll see an example in the "Properties” section later in this chapter.) The

Enuner at | on interface is implemented by many items that return sequences or collections of
objects. Those of you who have used the C st rt ok( ) function should appreciate how useful
this object-oriented equivalent is.

You can also specify your own set of delimiter characters in the St r i ngTokeni zer constructor,
using another St r i ng argument to the constructor. Any combination of the specified characters
is treated as the equivalent of whitespace for tokenizing:



text = "http://foo.bar.com";
tok = new StringTokenizer( text, "/:" );

if ( tok.countTokens( ) < 2) /1 bad URL
String protocol = tok.nextToken( ); /1 "http"
String host = tok.nextToken( ); /1 "foo.bar.cont

This example parses a URL specification to get at the protocol and host components. The
characters / and : are used as separators. The count Tokens( ) method provides a fast way
to see how many tokens will be returned by next Token( ), without actually creating the

St ri ng objects.

An overloaded form of next Token( ) accepts a string that defines a new delimiter set for that
and subsequent reads. The St ri ngTokeni zer constructor accepts a flag that specifies that
separator characters are to be returned individually as tokens themselves. By default, the token
separators are not returned.

9.2 Math Utilities

Java supports integer and floating-point arithmetic directly. Higher-level math operations are
supported through the | ava. | ang. Mat h class. Java provides wrapper classes for all primitive
data types, so you can treat them as objects if necessary. Java also provides the

j ava. uti | . Randomeclass for generating random numbers.

Java handles errors in integer arithmetic by throwing an Ari t hnet i cExcept i on:
int zero = 0;

try {
int i =72/ zero;

catch ( Arithmeti cException e ) {
/1 division by zero
}

To generate the error in this example, we created the intermediate variable zer o. The compiler is
somewhat crafty and would have caught us if we had blatantly tried to perform a division by a
literal zero.

Floating-point arithmetic expressions, on the other hand, don't throw exceptions. Instead, they
take on the special out-of-range values shown in Table 9.3.

Table 9.3. Special Floating-Point Values

Value Mathematical Representation
POSI TI VE_I NFI NI TY 1.0/0.0
NEGATI VE_I NFI NI TY -1.0/0.0
NaN 0.0/0.0

The following example generates an infinite result:




doubl e
doubl e

Zero =

if (d==

0. 0;
d = 1.0/ zero;

Doubl e. POSI TI VE_I NFI NI TY )

Systemout.println( "Division by zero" );

The special value NaN indicates the result is "not a number." The value NaN has the special
distinction of not being equal to itself (NaN ! = NaN evaluates to t r ue). Use Fl oat . i sNaN( )

or Doubl e. i sNaN(

) to test for Nal.

9.2.1 The java.lang.Math Class

The | ava. | ang. Mat h class provides Java's math library. All its methods are static and used
directly; you don't have to (and you can't) instantiate a Vat h object. We use this kind of
degenerate class when we really want methods to approximate standard C-like functions. While
this tactic defies the principles of object-oriented design, it makes sense in this case, as it
provides a means of grouping some related utility functions in a single class. Table 9.4
summarizes the methods in | ava. | ang. Mat h.

Table 9.4. Methods in java.lang.Math

Method Argument Type(s) Functionality
Mat h. abs(a) idnt . I'ong, Tl oat, Absolute value
oubl e

Mat h. acos(a) doubl e Arc cosine

Mat h. asi n(a) doubl e Arc sine

Mat h. at an( a) doubl e Arc tangent

Mat h. at an2( a, b) ldoubl e Angle part of rectangular-to-polar coordinate
transform

Mat h. cei | (a) doubl e Smallest whole number greater than orequal to a

Mat h. cos(a) doubl e Cosine

Mat h. exp(a) doubl e MVat h. E to the power a

Mat h. fl oor(a) |doubl e Largest whole number less than or equal to a

Mat h. | og(a) doubl e Natural logarithm of a

Mat h. max(a, b) | nt, Long, Tl oat, Maximum

doubl e

Mat h. min(a, b) 'dng: ona, float, Minimum

Mat h. pow(a, b) |double a to the power b

Mat h. randon( ) |None Random-number generator

Mat h. rint (a) doubl e Converts double value to integral value in double
format

Mat h. round(a) |fl oat, doubl e Rounds to whole number

Mat h. si n(a) doubl e Sine

Mat h. sqrt (a) doubl e Square root

Mat h. t an( a) doubl e Tangent

[ og(),pow(),andsqrt () canthrowan Arithneti cException.abs(), max( ),and m n(
) are overloaded for all the scalar values, | nt, | ong, f| oat, or doubl e, and return the




corresponding type. Versions of Vat h. round( ) accept either f | oat or doubl e and return
i nt orl ong, respectively. The rest of the methods operate on and return doubl e values:

double irrational = Math.sqrt( 2.0 );
int bigger = Math.max( 3, 4 );
| ong one = Mat h.round( 1.125798 );

For convenience, VAt h also contains the static final double values E and PI :

doubl e circunference = dianeter * Math. Pl;
9.2.2 The java.math Class

Ifal ong oradoubl e justisn't big enough for you, the | ava. nat h package provides two
classes, Bi gl nt eger and Bi gDeci mal , that support arbitrary-precision numbers. These are
full-featured classes with a bevy of methods for performing arbitrary-precision math. In the
following example, we use Bi gDeci mal to add two numbers:

try {
Bi gDeci mal twentyone = new Bi gDeci mal ("21");
Bi gDeci mal seven = new Bi gDecimal ("7");
Bi gDeci mal sum = twentyone. add(seven);

i nt answer= sum i ntVal ue( ); /1 28

}
catch (Nunber For mat Exception nfe) { }

catch (Arithneti cException ae) { }

If you implement cryptographic algorithms for fun, Bi gl nt eger is crucial. But other than that,
you're not likely to need these classes.

9.2.3 Wrappers for Primitive Types

In languages like Smalltalk, numbers and other simple types are objects, which makes for an
elegant language design, but has trade-offs in efficiency and complexity. By contrast, there is a
schism in the Java world between class types (i.e., objects) and primitive types (i.e., numbers,
characters, and boolean values). Java accepts this trade-off simply for efficiency reasons. When
you're crunching numbers, you want your computations to be lightweight; having to use objects
for primitive types would seriously affect performance. For the times you want to treat values as
objects, Java supplies a wrapper class for each of the primitive types, as shown in Table 9.5.

Table 9.5. Primitive Type Wrappers

Primitive Wrapper

voi d j ava. | ang. Voi d

bool ean j ava. | ang. Bool ean

char j ava. | ang. Char act er

byt e j ava. | ang. Byt e

short j ava. | ang. Short

i nt j ava. | ang. | nt eger

| ong j ava. | ang. Long

fl oat j ava. | ang. Fl oat




doubl e i ava. | ang. Doubl e

An instance of a wrapper class encapsulates a single value of its corresponding type. It's an
immutable object that serves as a container to hold the value and let us retrieve it later. You can
construct a wrapper object from a primitive value or from a St r i ng representation of the value.
The following statements are equivalent:

Fl oat pi
Fl oat pi

new Float( 3.14 );
new Float( "3.14" );

Wrapper classes throw a Nunber For mat Except i on when there is an error in parsing a string:

try {
Doubl e bogus = new Doubl e( "huh?" );
}
catch ( Nunber For mat Exception e ) { /1 bad nunber
}

You should arrange to catch this exception if you want to deal with it. Otherwise, since it's a
subclass of Runt i meExcept i on, it will propagate up the call stack and cause a runtime error if
not caught.

Sometimes you'll use the wrapper classes simply to parse the St ri ng representation of a
number:

String sheep = get Paraneter("sheep");
int n = new Integer( sheep ).intValue( );

Here we are retrieving the value of the sheep parameter. This value is returned as a St r i ng, so
we need to convert it to a numeric value before we can use it. Every wrapper class provides
methods to get primitive values out of the wrapper; we are using i nt Val ue( ) to retrieve an

i nt outof | nt eger . Since parsing a St r i ng representation of a number is such a common
thing to do, the | nt eger and Long classes also provide the static methods

I nteger. parselnt () and Long. parselLong( ) thatread a Stri ng and return the
appropriate type. So the second line in the previous example is equivalent to:

int n = Integer.parselnt( sheep );

Likewise, the FI oat and Doubl e classes provide the static methods Fl oat . par seFl oat ()
and Doubl e. par seDoubl e( ), for parsing strings into floating-point primitives.

All wrappers provide access to their values in various forms. You can retrieve scalar values with
the methods doubl eVal ue() , fl oat Val ue(),l ongVal ue( ),andintVal ue( ):

Doubl e size = new Double ( 32.76 );

doubl e d = size. doubl eval ue( ); /1 32.76
float f = size.floatValue( ); /1 32.76
long | = size.longVval ue( ); /1 32
int i = size.intValue( ); /Il 32

This code is equivalent to casting the primitive double value to the various types.



You also need a wrapper when you want to use a primitive value in a situation that requires an
object. As you'll see shortly, a Vect or is an extensible array of Obj ect s. We can use wrappers
to hold numbers in a Vect or, along with other objects:

Vect or myNunmbers = new Vector( );
Integer thirtyThree = new Integer( 33 );
myNunber s. addEl emrent ( thirtyThree );

Here we have created an | nt eger wrapper object so that we can insert the number into the
Vect or, using addEl ement () . Later, when we are extracting elements from the Vect or , we
can recover the i nt value as follows:

I nt eger theNunber = (Integer)nyNunbers.firstEl ement( );
int n = theNunber.intValue( ); /1 33

9.2.4 Random Numbers

You can use the | ava. ut i | . Randomclass to generate random values. It's a pseudo-random
number generator that can be initialized with a 48-bit seed.? The default constructor uses the
current time as a seed, but if you want a repeatable sequence, specify your own seed with:

[21 The generator uses a linear congruential formula. See The Art of Computer Programming, Volume 2,
"Semi-numerical Algorithms," by Donald Knuth (Addison-Wesley).

| ong seed = nySeed;
Random rnuns = new Random( seed );

This code creates a random-number generator. Once you have a generator, you can ask for
random values of various types using the methods listed in Table 9.6.

Table 9.6. Random Number Methods

Method Range
next Bool ean( ) true or false
nextlnt( ) -2147483648 to 2147483647
next I nt(int n) 0 to (n - 1) inclusive
next Long( ) -9223372036854775808 to 9223372036854775807
next Fl oat ( ) -1.0t0 1.0
next Doubl e( ) -1.0t0 1.0

By default, the values are uniformly distributed. You can use the next Gaussi an( ) method to
create a Gaussian (bell curve) distribution of doubl e values, with a mean of 0.0 and a standard
deviation of 1.0.

The st at | ¢ method Vat h. randon{ ) retrieves a random doubl e value. This method
initializes a pr i vat e random-number generator in the Vat h class, using the default Random
constructor. So every call to Vat h. randon{ ) corresponds to a call to next Doubl e( ) on that
random-number generator.

9.3 Dates




Working with dates and times without the proper tools can be a chore.®! In SDK 1.1 and later, you
get three classes that do all the hard work for you. The j ava. uti | . Dat e class encapsulates a
point in time. The | ava. uti | . G- egori anCal endar class, which descends from the abstract
java. util . Cal endar, translates between a point in time and calendar fields like month, day,
and year. Finally, the | ava. t ext . Dat eFor mat class knows how to generate and parse string
representations of dates and times.™

B3I For a wealth of information about time and world time-keeping conventions, see
http://tycho.usno.navy.mil, the U.S. Navy Directorate of Time. For a fascinating history of the Gregorian
and Julian calendars, try http://www.magnet.ch/serendipity/hermetic/cal_stud/cal_art.htm.

41 1n Java 1.0.2, the Dat e class performed all three functions. In Java 1.1 and later, most of its methods
have been deprecated, so that the only purpose of the Dat e class is to represent a point in time.

The separation of the Dat e class and the G- egor i anCal endar class is analogous to having a
class representing temperature and a class that translates that temperature to Celsius units.
Conceivably, we could define other subclasses of Cal endar, say Jul i anCal endar or

Lunar Cal endar .

The default G egor i anCal endar constructor creates an object that represents the current time,
as determined by the system clock:

G egori anCal endar now = new G egori anCal endar( );

Other constructors accept values to specify the point in time. In the first statement in the following
code, we construct an object representing August 9, 1996; the second statement specifies both a
date and a time, yielding an object that represents 9:01 a.m., April 8, 1997.

G egori anCal endar daphne =
new & egori anCal endar (1996, Cal endar. AUGUST, 9);
G egori anCal endar sonetine =
new & egori anCal endar (1997, Calendar.APRIL, 8, 9, 1); // 9:01 AM

We can also create a G- egor i anCal endar by setting specific fields using the set ( ) method.
The Cal endar class contains a torrent of constants representing both calendar fields and field
values. The first argument to the set () method is a field constant; the second argument is the
new value for the field.

G egori anCal endar kristen = new G egori anCal endar( );
kri sten. set (Cal endar. YEAR, 1972);

kri sten. set (Cal endar. MONTH, Cal endar. MAY) ;

kri sten. set (Cal endar. DATE, 20);

A G egori anCal endar is created in the default time zone. Setting the time zone of the
calendar is as easy as obtaining the desired Ti neZone and giving it to the

G egori anCal endar:

Gregori anCal endar snokey = new G egori anCal endar( );
snokey. set Ti neZone( Ti meZone. get Ti neZone(" MsT") ) ;

To represent a G egor i anCal endar's date as a string, first create a Dat e object:

Dat e nydate = snokey.getTinme( );



To create a string representing a point in time, create a Dat eFor mat object and apply its
format () method to a Dat e object. Although Dat eFor nat itself is abstract, it has several
static (“factory") methods that return useful Dat eFor mat subclass instances. To get a default
Dat eFor mat , simply call get | nst ance( ):

Dat eFormat pl ai n = Dat eFor mat . get | nstance( );
String now = plain.format(new Date( )); /1 4/12/ 00 6: 06 AM

You can generate a date string or a time string, or both, using the get Dat el nst ance(),

get Ti nel nstance(), and get Dat eTi nel nst ance( ) factory methods. The argument to
these methods describes what level of detail you'd like to see. Dat eFor nat defines four
constants representing detail levels: they are SHORT, VEDI UV, LONG, and FULL. There is also a
DEFAULT, which is the same as VEDI UM The following code creates three Dat eFor nat
instances: one to format a date, one to format a time, and one to format a date and time together.
Note that get Dat eTi nel nst ance( ) requires two arguments: the first specifies how to format
the date, the second how to format the time:

/1 12- Apr- 00

Dat eFor mat df Dat eFor mat . get Dat el nst ance( Dat eFor mat . DEFAULT) ;

/1 9:18:27 AM
Dat eFormat tf = DateFormat. get Ti nel nst ance( Dat eFor mat . DEFAULT) ;

/'l Wednesday, April 12, 2000 9:18:27 o' clock AM EDT
Dat eFormat dtf =
Dat eFor mat . get Dat eTi nel nst ance( Dat eFor mat . FULL, Dat eFormat. FULL) ;

We're showing only how to create the Dat eFor nmat objects here; to actually generate a St ri ng
from a date, you'll need to call the f or mat () method of these objects.

Formatting dates and times for other countries is just as easy. Overloaded factory methods
accept a Local e argument:

/1 12 avr. 00
Dat eFor mat df =
Dat eFor mat . get Dat el nst ance( Dat eFor mat . DEFAULT, Local e. FRANCE) ;

/1 9:27:49
Dat eFormat tf =
Dat eFor mat . get Ti el nst ance( Dat eFor mat . DEFAULT, Local e. GERVANY) ;

/1 mercoledi 12 aprile 2000 9.27.49 GMI-04: 00
Dat eFormat dtf =
Dat eFor mat . get Dat eTi el nst ance(
Dat eFor mat . FULL, DateFormat. FULL, Locale. |TALY);

To parse a string representing a date, we use the par se( ) method of the Dat eFor nat class.
The result is a Dat e object. The parsing algorithms are finicky, so it's safest to parse dates and
times that are in the same format that is produced by the Dat eFor nmat . The par se( ) method
throws a Par seExcept i on if it doesn't understand the string you give it. All of the following calls
to parse( ) succeed except the last; we don't supply a time zone, but the format for the time is
LONG. Other exceptions are occasionally thrown from the par se( ) method. To cover all the
bases, catch Nul | Poi nt er Excepti ons and St ri ngl ndexCut O BoundsExcept i ons, also.



try {
Date d;

Dat eFor mat df ;

df = Dat eFor mat . get Dat eTi nel nst ance(
Dat eFor mat . FULL, Dat eFor mat. FULL);
d = df.parse("Wdnesday, April 12, 2000 2:22:22 o'clock PMEDT");

df = Dat eFor mat . get Dat eTi nel nst ance(
Dat eFor mat . MEDI UM Dat eFor nat . MEDI UM ;
d = df.parse("12-Apr-00 2:22:22 PM);

df = Dat eFor mat . get Dat eTi nel nst ance(
Dat eFor mat . LONG, Dat eFor mat . LONG) ;
d = df.parse("April 12, 2000 2:22:22 PM EDT");

/1 throws a ParseException; detail |evel msnmatch
d = df.parse("12-Apr-00 2:22:22 PM);

}

catch (Exceptione) { ... }

9.4 Timers

The Java 2 SDK 1.3 includes two handy classes for timed code execution. If you write a clock
application, for example, you want to update the display every second or so. Or you might want to
play an alarm sound at some predetermined time. You could accomplish these tasks with multiple
threads and calls to Thr ead. sl eep( ). Butit's simpler to use the j ava. uti| . Ti ner and

java.util.Timer Task classes.

Instances of Ti ner watch the clock and execute Ti ner Tasks at appropriate times. You could,
for example, schedule a task to run at a specific time like this:

i mport java.util.*;

public class Y2K {
public static void main(String[] args) {
Timer timer = new Tiner( );

Ti mer Task task = new Ti mer Task( ) {
public void run( ) {
System out . printl n("Boom");

}
}s

Cal endar ¢ = new Gregori anCal endar (2000, Cal endar.JANUARY, 1);
timer.schedul e(task, c.getTime( ));

}
}

Ti mer Task implements the Runnabl e interface. To create a task, you can simply subclass

Ti mer Task and supply a r un( ) method. Here we've created a simple anonymous subclass of
Ti mer Task, which prints a message to Syst em out . Using the schedul e( ) method of

Ti mer, we've asked that the task be run on January 1, 2000. (Oops—too late! But you get the
idea.)



There are some other varieties of schedul e( ) ; you can run tasks once or at recurring
intervals. There are two kinds of recurring tasks—fixed delay and fixed rate. Fixed delay means
that a fixed amount of time elapses between the end of the task's execution and the beginning of
the next execution. Fixed rate means that the task should begin execution at fixed time intervals.

You could, for example, update a clock display every second with code like this:
Timer tinmer = new Tinmer( );

Ti mer Task task = new TinerTask( ) {
public void run( ) {
repaint( ); // update the clock display
}

}

ti mer.schedul e(task, 0, 1000);

Ti mer can't really make any guarantees about exactly when things are executed; you'd need a
real-time operating system for that kind of precision. However, Ti ner can give you reasonable
assurance that tasks will be executed at particular times, provided the tasks are not overly
complex; with a slow-running task, the end of one execution might spill into the start time for the
next execution.

9.5 Collections

Collections are a fundamental idea in programming. Applications frequently need to keep track of
many related things, like a group of employees or a set of images. To support the concept of
many at a fundamental level, of course, Java includes the concept of arrays. Since a one-
dimensional array has a fixed length, arrays are awkward for sets of things that grow and shrink
over the lifetime of an application. Ever since SDK 1.0, the Java platform has had two handy
classes for keeping track of sets. The | ava. ut i | . Vect or class represents a dynamic list of
objects, and the | ava. ut i | . Hasht abl e class is a set of key/value pairs. The Java 2 platform
introduces a more comprehensive approach to collections called the Collections Framework. The
Vect or and Hasht abl e classes still exist, but they are now a part of the framework.

If you work with dictionaries or associative arrays in other languages, you should understand how
useful these classes are. If you are someone who has worked in C or another static language,
you should find collections to be truly magical. They are part of what makes Java powerful and
dynamic. Being able to work with lists of objects and make associations between them is an
abstraction from the details of the types. It lets you think about the problems at a higher level and
saves you from having to reproduce common structures every time you need them.

The Collections Framework is based around a handful of interfaces in the | ava. ut i | package.
These interfaces are divided into two hierarchies. The first hierarchy descends from the

Col | ect i on interface. This interface (and its descendants) represents a box that holds other
objects. The second hierarchy is based on the Vap interface, which represents a group of
key/value pairs.

9.5.1 The Collection Interface

The mother of all collections is an interface appropriately named Col | ect i on. It serves as a box
that holds other objects, its elements. It doesn't specify whether duplicate objects are allowed or



whether the objects will be ordered in some way. These kinds of details are left to child interfaces.
Nevertheless, the Col | ect i on interface does define some basic operations:

public boolean
add

(Object 0)

This method adds the supplied object to this collection. If the operation succeeds, this
method returns t r ue. If the object already exists in this collection and the collection does
not permit duplicates, f al se is returned. Furthermore, some collections are read-only.
These collections will throw an Unsupport edOper at i onExcept i on if this method is
called.

public boolean
renove

(Object 0)

This method removes the supplied object from this collection. Like the add( ) method,
this method returns t r ue if the object is removed from the collection. If the object doesn't
exist in this collection, f al se is returned. Read-only collections throw an

Unsupport edCper ati onExcept i on if this method is called.

public boolean
cont ai ns

(Object 0)
This method returns t r ue if the collection contains the specified object.

public int
si ze

()

Use this method to find the number of elements in this collection.

public boolean
i SEnpty
()

This method returns t r ue if there are no elements in this collection.

public Iterator
iterator

0)
Use this method to examine all the elements in this collection. This method returns an

| t erat or, which is an object that you can use to step through the collection’'s elements.
We'll talk more about iterators in the next section.

As a special convenience, the elements of a collection can be placed into an array using the
following methods:

public Qbject][]



t OArr ay

()

public Qbject][]
t OArr ay
(Goject[] a)

These methods return an array that contains all the elements in this collection. The second
version of this method returns an array of the same type as the array a.

Remember, these methods are common to every Col | ect i on implementation. Any class that
implements Col | ect i on or one of its child interfaces will have these methods.

A Col | ecti on is a dynamic array; it can grow to accommodate new items. For example, a Li st
is a kind of Col | ect i on that implements a dynamic array. You can insert and remove elements
at arbitrary positions within a Li st . Col | ect i ons work directly with the type Cbj ect, so we can
use Col | ect i ons with instances of any class.®! We can even put different kinds of Cbj ect s in

a Col | ect i on together; the Col | ect i on doesn't know the difference.

1 |n C++, where classes don't derive from a single Obj ect class that supplies a base type and common
methods, the elements of a collection would usually be derived from some common collectable class. This
forces the use of multiple inheritance and brings its associated problems.

As you might guess, this is where things get tricky. To do anything useful with an Obj ect after
we take it back out of a Col | ect i on, we have to cast it back (narrow it) to its original type. This
can be done safely in Java because the cast is checked at runtime. Java throws a

Cl assCast Except i on if we try to cast an object to the wrong type. However, this need for
casting means that your code must remember types or methodically test them with i nst anceof .
That is the price we pay for having a completely dynamic collection class that operates on all
types.

You might wonder if you can implement Col | ect i on to produce a class that works on just one
type of element in a type-safe way. Unfortunately, the answer is no. We could implement

Col | ect i on's methods to make a Col | ect i on that rejects the wrong type of element at
runtime, but this does not provide any new compile time, static type safety. In C++, templates
provide a safe mechanism for parameterizing types by restricting the types of objects used at
compile time. For a glimpse at Java language work in this area, see
http://www.math.luc.edu/pizza/qj.

9.5.2 lterators

What does the j ava. uti| .| terator interface do? An |t er at or is an object that lets you
step through another object's data.

[81 | you're familiar with earlier versions of Java, it will help you to know that | t er at or is the successor to
Enumer at i on, kind of an Enuner at i on on steroids.

public Object
next

0)

This method returns the next element of the associated Collection.

public boolean



hasNext
0)

This method returns t r ue if you have not yet stepped through all of the Col | ect i on's
elements. In other words, it returns t r ue if you can call next () to get the next
element.

The following example shows how you could use an | t er at or to print out every element of a
collection:

public void printEl ements(Collection c, PrintStreamout) {
Iterator iterator = c.iterator( );

while (iterator.hasNext( ))
out.println(iterator.next( ));

Finally, | t er at or offers the ability to remove an element from a collection:

public void
renove

()

This method removes the last object returned from next () from the associated

Col | ecti on. Not all iterators implement r enove( ) . It doesn't make sense to be able
to remove an element from a read-only collection, for example. If element removal is not
allowed, an Unsupport edOper at i onExcept i on is thrown from this method. If you call
renove( ) before first calling next (), orifyou call renove( ) twice in a row, you'l
getan ||| egal St at eExcepti on.

9.5.3 Collection Flavors

The Col | ect i on interface has two child interfaces: Set represents a collection in which
duplicate elements are not allowed, and Li st is a collection whose elements have a specific
order.

Set has no methods besides the ones it inherits from Col | ect i on. It does, however, enforce
the rule that duplicate elements are not allowed. If you try to add an element that already exists in
a Set , the add( ) method will return false.

Sort edSet adds only a few methods to Set . As you call add() and renove( ), the set
maintains its order. You can retrieve subsets (which are also sorted) using the subSet () ,
headSet (),andtai |l Set () methods. Thefirst() ,last(),andconparator( ) methods
provide access to the first element, the last element, and the object used to compare elements
(more on this later).

The last child interface of Col | ecti onis Li st . The Li st interface adds the ability to
manipulate elements at specific positions in the list:

public void
add

(int i ndex, Object el enent)



This method adds the given object at the supplied list position. If the position is less than
zero or greater than the list length, an | ndexOut Of BoundsExcept i on will be thrown.
The element that was previously at the supplied position and all elements after it will be
moved up by one index position.

public void
renove

(int i ndex)

This method removes the element at the supplied position. All subsequent elements will
move down by one index position.

public void
get
(int i ndex)

This method returns the element at the given position.

public void
set

(int i ndex, Object el enent)
This method changes the element at the given position to be the supplied object.
9.5.4 The Map Interface

The Collections Framework also includes the concept of a Vap, which is a collection of key/value
pairs. Another way of looking at a map is that it is a dictionary, similar to an associative array.
Maps store and retrieve elements with key values; they are very useful for things like caches and
minimalist databases. When you store a value in a map, you associate a key object with that
value. When you need to look up the value, the map retrieves it using the key.

The j ava. uti | . Map interface specifies a map that, like Col | ect i on, operates on the type
(hj ect . A Vap stores an element of type Cbj ect and associates it with a key, also of type

(hj ect . In this way, we can index arbitrary types of elements using arbitrary types as keys. As
with Col | ect i on, casting is generally required to narrow objects back to their original type after
pulling them out of a map.

The basic operations are straightforward:

public Object
put
(Object key, Object val ue)

This method adds the specified key/value pair to the map. If the map already contains a
value for the specified key, the old value is replaced.

public Object
get
(Object key)

This method retrieves the value corresponding to key from the map.



public Object
renove

(Object key)
This method removes the value corresponding to key from the map.

public int
si ze

0)

Use this method to find the number of key/value pairs in this map.
You can retrieve all the keys or values in the map:

public Set
key Set

0)

This method returns a Set that contains all of the keys in this map.

public Collection
val ues

0)

Use this method to retrieve all of the values in this map. The returned Col | ect i on can
contain duplicate elements.

Vap has one child interface, Sor t edVap . Sort edVap maintains its key/value pairs in sorted
order according to the key values. It provides subNMap() , headVap( ),andtai | Map( )
methods for retrieving sorted map subsets. Like Sor t edSet , it also provides a conpar at or ()
method that returns an object that determines how the map keys are sorted. We'll talk more about
this later.

9.5.5 Implementations

Up until this point, we've talked only about interfaces. But you can't instantiate interfaces. The
Collections Framework includes useful implementations of the collections interfaces. These
implementations are listed in Table 9.7, according to the interface they implement.

Table 9.7. Collections Framework Implementation Classes

Interface Implementation
Set HashSet
Sor t edSet Tr eeSet
Li st Arrayli st, Li nkedLi st, Vect or
Map HashMap, Hasht abl e
Sort edMap Tr eeMap

ArraylLi st offers good performance if you add to the end of the list frequently, while
Li nkedLi st offers better performance for frequent insertions and deletions. \Vect or has been
around since SDK 1.0; it's now retrofitted to implement the Li st methods. Vect or offers the




advantage (and overhead) of synchr oni zed methods, which is essential for multithreaded
access. The old Hasht abl e has been updated so that it now implements the Vap interface. It
also has the advantage and overhead of synchronized operations. As you'll see, there are other,
more general ways to get synchronized collections.

9.5.5.1 Hashcodes and key values

If you've used a hashtable before, you've probably guessed that there's more going on behind the
scenes with maps than we've let on. An element in a hashtable is not associated with a key
strictly by the key object's identity, but rather by the key's contents. This allows keys that are
equivalent to access the same object. By "equivalent,” we mean those objects that compare
true with equal s( ). So, if you store an object in a Hasht abl e using one object as a key, you
can use any other object that equal s( ) tells you is equivalent to retrieve the stored object.

It's easy to see why equivalence is important if you remember our discussion of strings. You may
create two St ri ng objects that have the same text in them but that come from different sources
in Java. In this case, the == operator will tell you that the objects are different, but the equal s(

) method of the St ri ng class will tell you that they are equivalent. Because they are equivalent,
if we store an object in a Hasht abl e using one of the St ri ng objects as a key, we can retrieve
it using the other.

Since Hasht abl es have a notion of equivalent keys, what does the hashcode do? The
hashcode is like a fingerprint of the object's data content. The Hasht abl e uses the hashcode to
store the objects so that they can be retrieved efficiently. The hashcode is nothing more than a
number (an integer) that is a function of the data. The number always turns out the same for
identical data, but the hashing function is intentionally designed to generate as random a number
as possible for different combinations of data. That is, a very small change in the data should
produce a big difference in the number. It is unlikely that two similar data sets will produce the
same hashcode.

A Hasht abl e really just keeps a number of lists of objects, but it puts objects into the lists based
on their hashcode. So when it wants to find the object again, it can look at the hashcode and
know immediately how to get to the appropriate list. The Hasht abl e still might end up with a
number of objects to examine, but the list should be short. For each object it finds, it does the
following comparison to see if the key matches:

if ((keyHashcode == st oredKeyHashcode) && key. equal s(storedKey))
return object;

There is no prescribed way to generate hashcodes. The only requirement is that they be
somewhat randomly distributed and reproducible (based on the data). This means that two
objects that are not the same could end up with the same hashcode by accident. This is unlikely
(there are 2732 possible integer values); moreover, it doesn't cause a problem, because the
Hasht abl e ultimately checks the actual keys, as well as the hashcodes, to see if they are equal.
Therefore, even if two objects have the same hashcode, they can still co-exist in the hashtable.

Hashcodes are computed by an object's hashCode( ) method, which is inherited from the

(hj ect class if it isn't overridden. The default hashCode( ) method simply assigns each object
instance a unique number to be used as a hashcode. If a class does not override this method,
each instance of the class will have a unique hashcode. This goes along well with the default
implementation of equal s( ) in Cbj ect, which only compares objects for identity using ==.



You must override equal s( ) in any classes for which equivalence of different objects is
meaningful. Likewise, if you want equivalent objects to serve as equivalent keys, you need to
override the hashCode( ) method, as well, to return identical hashcode values. To do this, you
need to create some suitably complex and arbitrary function of the contents of your object. The
only criterion for the function is that it should be almost certain to return different values for
objects with different data, but the same value for objects with identical data.

9.5.6 Slam Dunking with Collections

The java. util. Col | ecti ons class is full of handy static methods that operate on Set s and
Maps. (It's not the same as the | ava. ut i | . Col | ect i on interface, which we've already talked
about.) Since all the static methods in Col | ect | ons operate on interfaces, they will work
regardless of the actual implementation classes you're using. This is pretty powerful stuff.

The Col | ect i ons class includes these methods:

public static Collection
synchroni zedCol | ecti on
(Col I ectionc)

public static Set
synchroni zedSet

(Set s)

public static List
synchroni zedLi st

(List list)

public static Map
synchroni zedMVap

(Map m

public static SortedSet
synchroni zedSor t edSet
(SortedSet s)

public static SortedMap
synchroni zedSor t edvap
(SortedVap m

These methods create synchronized, thread-safe versions of the supplied collection. This is
useful if you're planning to access the collection from more than one thread. We'll talk a more
about this later in this chapter.

Furthermore, you can use the Col | ect i ons class to create read-only versions of any collection:

public static Collection
unnodi fi abl eCol | ecti on
(Col I ectionc)

public static Set
unnodi fi abl eSet

(Set s)

public static List
unnodi fi abl eLi st

(List list)

public static Map
unnodi fi abl eMap

(Map m

public static SortedSet



unnodi fi abl eSort edSet
(SortedSet s)

public static SortedMap
unnodi fi abl eSort edMVap
(SortedVap m

9.5.7 Sorting for Free

Col | ect i ons includes other methods for performing common operations like sorting. Sorting
comes in two varieties:

public static void
sort

(List |ist)

This method sorts the given list. You can use this method only on lists whose elements
implement the | ava. | ang. Conpar abl e interface. Luckily, many classes already
implement this interface, including St ri ng, Dat e, Bi gl nt eger, and the wrapper
classes for the primitive types (I nt eger, Doubl e, etc.).

public static void
sort

(List |ist, Comparator c)

Use this method to sort a list whose elements don't implement the Conpar abl e
interface. The supplied j ava. uti | . Conpar at or does the work of comparing elements.
You might, for example, write an | nagi nar yNurber class and want to sort a list of
them. You would then create a Conpar at or implementation that knew how to compare
two imaginary numbers.

Col | ect i ons gives you some other interesting capabilities, too. If you're interested in finding out
more, check out the mi n( ), max( ), binarySearch( ),andreverse( ) methods.

9.5.8 A Thrilling Example

Collections is a bread-and-butter topic, which means it's hard to make exciting examples about it.
The example in this section reads a text file, parses all its words, counts the number of
occurrences, sorts them, and writes the results to another file. It will give you a good feel for how
to use collections in your own programs.

//1file: WrdSort.java
i nport java.io.?*;
i nport java.util.?*;

public class WrdSort {
public static void main(String[] args) throws | Oexception {

/'l get the command-1ine argunents

if (args.length < 2) {
Systemout. println("Usage: WrdSort inputfile outputfile");
return;

}

String inputfile = args[O0];

String outputfile = args[1];



/* Create the word map. Each key is a word and each value is an
* Integer that represents the nunber of tines the word occurs
* in the input file.

*/

Map map = new TreeMap( );

/1l read every line of the input file
Buf f eredReader in =

new Buf f er edReader (new Fi | eReader (i nputfile));
String |ine;

while ((line = in.readLine( )) != null) {
/1 exam ne each word on the l|ine
StringTokeni zer st = new StringTokeni zer(line);
whil e (st.hasMreTokens( )) {
String word = st.next Token( );
hj ect o = map. get (word);
/1 if there's no entry for this word, add one
if (0o ==null) map.put(word, new Integer(1l));
/1 otherw se, increnment the count for this word
el se {
I nteger count = (Integer)o;
map. put (word, new Integer(count.intValue( ) + 1));

}

in.close( );

/1 get the map's keys and sort them
Li st keys = new ArraylLi st (map. keySet( ));
Col I ections. sort (keys);

/1 wite the results to the output file
PrintWiter out = new PrintWiter(new FileWiter(outputfile));
Iterator iterator = keys.iterator( );
while (iterator.hasNext( )) {
oj ect key = iterator.next( );
out.println(key + " : " + map. get(key));

out.close( );

}
}

Suppose, for example, that you have an input file named lan Moore.txt:

Vll it was ny |love that kept you goi ng
Kept you strong enough to fal

And it was ny heart you were breaking
VWhen he hurt your pride

So how does it fee
How does it fee
How does it fee



How does it feel

You could run the example on this file using the following command line:

java WrdSort "lan Moore.txt" count.txt

The output file, count.txt, looks like this:

And : 1
How : 3
Kept : 1
So: 1
wll @ 1
Wien : 1
breaking : 1
does : 4
enough : 1
fall : 1
feel : 4
going : 1
he : 1
heart : 1
how : 1
hurt : 1
it : 6
kept : 1
love : 1
n . 2
pride : 1
strong : 1
that : 1
to: 1

was @ 2
were @ 1
you : 3
your : 1

The results are case-sensitive: "How" is recorded separately from "how". You could modify this
behavior by converting words to all lowercase after retrieving them from the St r i ngTokeni zer:

String word = st.nextToken().toLowerCase( );
9.5.9 Thread Safety and lterators

If a collection will be accessed by more than one thread (see Chapter 8), things get a little tricky.
Operations on the collection should be fast, but on the other hand, you need to make sure that
different threads don't step on each other's toes with respect to the collection.

The Col | ect i ons class provides methods that will create a thread-safe version of any
Col | ect i on. There are methods for each subtype of Col | ect i on. The following example
shows how to create a thread-safe Li st :

List list = new ArrayList( );
Li st syncList = Collections.synchroni zedLi st(list);



Although synchronized collections are thread-safe, the | t er at or s returned from them are not.
This is an important point. If you obtain an | t er at or from a collection, you should do your own
synchronization to ensure that the collection does not change as you're iterating through its
elements. You can do this with the synchr oni zed keyword:

synchroni zed(synclList) {
Iterator iterator = syncList.iterator( );
/1 do stuff with the iterator here

9.5.10 WeakHashMap: An Interesting Variation

WeakHashMap is an especially interesting collection. In some respects, it looks and behaves like
a HashlMap . What's interesting is that the key values in \\eakHashMap are allowed to be
harvested by the garbage collector.

WeakHashMap makes use of weak references. As you'll recall, objects in Java are garbage-
collected when there are no longer any references to them. A weak reference is a special kind of
reference that doesn't prevent the garbage collector from cleaning up the referenced object.
Weak references and their siblings, soft references and phantom references, are implemented in
thej ava. | ang. r ef package. We won't go into detail here; just the concept of a weak reference
is important.

Why is WWeak HashVap useful? It means you don't have to remove key/value pairs from a Vap
when you're finished with them. Normally if you removed all references to a key object in the rest
of your application, the Vap would still contain a reference and keep the object "alive."
WeakHashMap changes this; once you remove references to a key object in the rest of the
application, the \\eak HashVap lets go of it too.

9.6 Properties

The java. uti| . Properties class is a specialized hashtable for strings. Java uses the
Properti es object to replace the environment variables used in other programming
environments. You can use a Pr operti es object (or "table) to hold arbitrary configuration
information for an application in an easily accessible format. The Pr oper t i es object can also
load and store information using streams (see Chapter 10, for information on streams).

Any string values can be stored as key/value pairs in a Pr opert i es table. However, the
convention is to use a dot-separated naming hierarchy to group property names into logical
structures, as is done with X Window System resources on Unix systems./! The

J ava. | ang. Syst emclass provides system-environment information in this way, through a
system Properti es table we'll describe shortly.

[T Unfortunately, this is just a naming convention right now, so you can't access logical groups of properties
as you can with X resources.

Create an empty Proper ti es table and add St r i ng key/value pairs just as with any
Hasht abl e:

Properties props = new Properties( );
props. put (" nyApp. xsi ze", "52");
props. put ("nyApp. ysi ze", "79");



Thereafter, you can retrieve values with the get Property( ) method:
String xsize = props.getProperty( "nyApp. xsi ze" );

If the named property doesn't exist, get Property( ) returns nul | . You can get an
Enuner at | on of the property names with the pr oper t yNanes( ) method:

for ( Enuneration e = props. propertyNanmes( ); e.hasMreEl enents; ) {
String nane = e.nextEl enment( );

}

9.6.1 Default Values

When you create a Pr oper ti es table, you can specify a second table for default property
values:

Properties defaults;

Properties props = new Properties( defaults );

Now when you call get Property( ), the method searches the default table if it doesn't find the
named property in the current table. An alternative version of get Property( ) also accepts a
default value; this value instead of nul | is returned, if the property is not found in the current list
or in the default list:

String xsize = props. getProperty( "nyApp.xsize", "50" );
9.6.2 Loading and Storing

You can save a Properti es table to an Out put St r eamusing the save( ) method. The
property information is output in flat ASCII format. Continuing with the previous example, output
the property information to Syst em out as follows:

props. save( Systemout, "Application Paraneters" );

System out is a standard output stream similar to C's st dout . We could also save the
information to a file by using a Fi | eCQut put St r eamas the first argument to save( ). The
second argumentto save( ) isa St ring thatis used as a header for the data. The previous
code outputs something like the following to Syst em out :

#Application Paraneters

#Mon Feb 12 09:24:23 CST 1999
myApp. ysi ze=79

my App. Xsi ze=52

The | oad( ) method reads the previously saved contents of a Pr operti es object from an
| nput St ream

Fil el nput Stream fin;

Properties props = new Properties( )



props.load( fin);

The | i st () method is useful for debugging. It prints the contents to an Cut put St r eamin a
format that is more human-readable but not retrievable by | oad( ). It truncates long lines with
an ellipsis (. . .).

9.6.3 System Properties

The j ava. | ang. Syst emclass provides access to basic system environment information
through the static Syst em get Property( ) method. This method returns a Pr operti es table
that contains system properties. System properties take the place of environment variables in
some programming environments. Table 9.8 summarizes system properties that are guaranteed
to be defined in any Java environment.

Table 9.8. System Properties

System Property Meaning
j ava. vendor Vendor-specific string
j ava. vendor . ur | URL of vendor
j ava. ver si on Java version
j ava. hone Java installation directory
j ava. cl ass. versi on Java class version
j ava. cl ass. path The class path
0S. nane Operating system name
0s. arch Operating system architecture
0S. version Operating system version
file.separator File separator (such as/ or\)
pat h. separ at or Path separator (such as : or ;)
| i ne. separ at or Line separator (suchas\nor\r\n)
user. nane User account name
user. hone User's home directory
user.dir Current working directory

Applets are, by current web browser conventions, prevented from reading the following
properties: j ava. hone, j ava. cl ass. pat h, user. nane, user . hone, and user. di r. As
you'll see later, these restrictions are implemented by a Secur i t yManager object.

Your application can set system properties with the static method Syst em set Property( ).
You can also set system properties when you run the Java interpreter, using the - D option:

% ava - Df oo=bar - Dcat =Booj um MyApp

Since it is common to use system properties to provide parameters such as numbers and colors,
Java provides some convenience routines for retrieving property values and parsing them into
their appropriate types. The classes Bool ean, | nt eger, Long, and Col or each come with a
"get" method that looks up and parses a system property. For example,

I nteger.getlnteger("foo") looks for a system property called f oo and then returns it as
an | nteger. Col or.get Col or ("foo") parses the property as an RGB value and returns a
Col or object.




9.6.4 Observers and Observables

Thejava. util.Observer interface and | ava. util . Coservabl e class are relatively small
utilities, but they provide a peek at a fundamental design pattern. The concept of observers and
observables is part of the MVC (Model View Controller) framework. It is an abstraction that lets a
number of client objects (the observers) be notified whenever a certain object or resource (the
observable) changes in some way. We will see this pattern used extensively in Java's event
mechanism.

The basic idea behind observers and observables is that the Coser vabl e object has a method
that an Cbser ver calls to register its interest. When a change happens, the Coser vabl e sends
a natification by calling a method in each of the Cbser ver s. The observers implement the
Obser ver interface, which specifies that notification causes an Coser ver object's updat e( )
method to be called.

In the following example, we create a MessageBoar d object that holds a St r i ng message.
MessageBoar d extends Ooser vabl e, from which it inherits the mechanism for registering
observers (addCbser ver () ) and notifying observers (not i f yChservers( )). To observe
the MessageBoar d, we have St udent objects that implement the Coser ver interface so that
they can be notified when the message changes:

/1file: MessageBoard.java
i nport java.util.?*;

public class MessageBoard extends Cbservabl e {
private String nessage;

public String get Message( ) {
return nessage;
}

public void changeMessage( String nessage ) {
thi s. nessage = nessage;
set Changed( );
noti fyCbservers( nessage );

public static void main( String [] args ) {
MessageBoard board = new MessageBoard( );
St udent bob = new Student( );
St udent joe = new Student( );
boar d. addCbserver ( bob );
boar d. addCbserver( joe );
boar d. changeMessage(" More Honewor k! ") ;

} // end of class MessageBoard

class Student inplenments Cbserver {
public void update(Qoservable o, Cbject arg) {
Systemout.println( "Message board changed:
}

+targ );
}

Our MessageBoar d object extends Coser vabl e, which provides a method called
addObserver ( ). Each of our St udent objects registers itself using this method and receives
updates via its updat e( ) method. When a new message string is set, using the



MessageBoar d's changeMessage( ) method, the Coser vabl e calls the set Changed() and
noti fyCoservers( ) methods to notify the observers. not i f yCbservers( ) cantake as an
argument an Cbj ect to pass along as an indication of the change. This object, in this case the
St ri ng containing the new message, is passed to the observer's updat e( ) method, as its
second argument. The first argument to updat e( ) is the Coser vabl e object itself.

The mai n( ) method of MessageBoar d creates a MessageBoar d and registers two St udent
objects with it. Then it changes the message. When you run the code, you should see each
St udent object print the message as it is notified.

You can imagine how you could implement the observer/observable relationship yourself using a
Vect or to hold the list of observers. In Chapter 13, and beyond, we'll see that the Swi ng event
model extends this design patttern to use strongly typed notification objects and observers; these
are events and event listeners.

9.7 The Security Manager

A Java application's access to system resources, such as the display, the filesystem, threads,
external processes, and the network, can be controlled at a single point with a security manager.
The class that implements this functionality in the Java API is the

java. | ang. Securit yManager class.

As you saw in Chapter 3, the Java 2 platform provides a default security manager that you can
use with the Java interpreter. For many applications, this default security manager is sufficient; for
some types of applications, such as those that do custom class loading, you may need to write
your own security manager.

An instance of the Securi t yManager class can be installed once, and only once, in the life of
the Java runtime environment. Thereafter, every access to a fundamental system resource is
filtered through specific methods of the Secur i t yManager object by the core Java packages.
By installing a specialized Secur i t yManager , we can implement arbitrarily complex (or simple)
security policies for allowing access to individual resources.

When the Java runtime system starts executing, it's in a wide-open state until a

Secur i tyManager is installed. The "null" security manager grants all requests, so the Java
runtime system can perform any activity with the same level of access as other programs running
under the user's authority. If the application that is running needs to ensure a secure
environment, it can install a Secur i t yManager with the static

System set Securi tyManager () method. For example, a Java-enabled web browser such
as Netscape Navigator installs a Secur i t yManager before it runs any Java applets.

java. l ang. SecurityManager must be subclassed to be used. This class does not actually
contain any abstract methods; it's abst r act as an indication that its default implementation is
not very useful. By default, each security method in Securi t yManager is implemented to
provide the strictest level of security. In other words, the default Secur i t yManager simply
rejects all requests.

The following example, My App, installs a trivial subclass of Secur it yManager as one of its first
activities:

cl ass Fasci st SecurityManager extends SecurityManager { }



public class M/App {
public static void main( String [] args ) {

Syst em set Securi t yManager ( new Fasci st SecurityManager( ) );
/'l no access to files, network, w ndows, etc.

}

In this scenario, My App does little aside from reading from Syst em i n and writing to
Syst em out . Any attempt to read or write files, access the network, or even open a window
results ina Secur i t yExcept i on being thrown.

After this draconian Secur i t yManager is installed, it's impossible to change the
SecurityManager in any way. The security of this feature is not dependent on the

Securi tyManager itself; it's built into the Java runtime system. You can't replace or modify the
Securi t yManager under any circumstances. The upshot of this is that you have to install one
that handles all your needs up front.

To do something more useful, we can override the methods that are consulted for access to
various kinds of resources. Table 9.9 lists some of the more important access methods. You
should not normally have to call these methods yourself, although you could. They are called by
the core Java classes before granting particular types of access.

Table 9.9. SecurityManager Methods

Method Canl...
checkAccess(Thread g) Access this thread?
checkExit(int status) Execute a Systemexit( )?
checkExec(String cnd) exec( ) this process?
checkRead(String file) Read a file?
checkWite(String file) Write a file?
checkDel ete(String file) Delete a file?
checkConnect (String host, int port) Connect a socket to a host?
checkLi sten(int port) Create a server socket?
checkAccept (String host, int port) Accept this connection?
checkPropertyAccess(String key) Access this system property?
checkTopLevel W ndow( Gbj ect w ndow) Create this new top-level window?

Most of these methods simply return to grant access. If access is not granted, they throw a
Securi tyException. checkTopLevel W ndow( ) is different; it returns a boolean value:
t r ue indicates the access is granted; f al se indicates the access is granted, but with the
restriction that the new window should provide a warning border that serves to identify it as an
untrusted window.

Let's implement a silly Secur i t yManager that allows only files whose names begin with foo to
be read:

cl ass FooFil eSecurityManager extends SecurityManager {

public void checkRead( String s ) {
if ( s.startsWth("foo") ) {




return true;
} else {
t hrow new SecurityException("Access to non-foo file:
+ s + " not allowed.” );

Once the FooFi | eSecuri t yManager is installed, any attempt to read a badly named file from
any class will fail and cause a Secur i t yExcept i on to be thrown. All other security methods are
inherited from Secur i t yManager , so they are left at their default restrictiveness.

As we've shown, security managers can make their decisions about what to allow and disallow
based on any kind of criterion. One very powerful facility that the Secur i t yManager class
provides is the cl assDept h() method. cl assDept h( ) takes as an argument the name of a
Java class; it returns an integer indicating the depth of that class if it is present on the Java stack.
The depth indicates the number of nested method invocations that occurred between the call to
cl assDept h( ) and the last method invocation from the given class. This can be used to
determine what class required the security check.

For example, if a class shows a depth of 1, the security check must have been caused by a
method in that class—there are no method calls intervening between the last call to that class
and the call requiring the check. You could allow or refuse an operation based on the knowledge
that it came from a specific class.

All restrictions placed on applets by an applet-viewer application are enforced through a

Secur it yManager , including whether to allow untrusted code loaded from over the network to
be executed. The Appl et Securi t yManager is responsible for applying the various rules for
untrusted applets and allowing user configured access to trusted (signed) applets.

9.8 Internationalization

In order to deliver on the promise "write once, run anywhere," the engineers at Java designed the
famous Java Virtual Machine. True, your program will run anywhere there is a JVM, but what
about users in other countries? Will they have to know English to use your application? Java 1.1
answers that question with a resounding "no," backed up by various classes that are designed to
make it easy for you to write a "global" application. In this section, we'll talk about the concepts of
internationalization and the classes that support them.

9.8.1 The java.util.Locale Class

Internationalization programming revolves around the Local e class. The class itself is very
simple; it encapsulates a country code, a language code, and a rarely used variant code.
Commonly used languages and countries are defined as constants in the Local e class. (It's
ironic that these names are all in English.) You can retrieve the codes or readable names, as
follows:

Local e | = Local e. | TALI AN,

System out . println(l.getCountry( )); 11T
Systemout.println(l.getD splayCountry( )); /Il ltaly
Systemout. println(l.getlLanguage( )); Il it
Systemout. println(l.getD splayLanguage( )); /1 Ttalian



The country codes comply with ISO3166. A complete list of country codes is at
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html. The language codes
comply with ISO639. A complete list of language codes is at
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt. There is no official set of variant
codes; they are designated as vendor-specific or platform-specific.

Various classes throughout the Java API use a Local e to decide how to represent themselves.
We have already seen how the Dat eFor mat class uses Local es to determine how to format
and parse strings.

9.8.2 Resource Bundles

If you're writing an internationalized program, you want all the text that is displayed by your
application to be in the correct language. Given what you have just learned about Locale, you
could print out different messages by testing the Local e. This gets cumbersome quickly,
however, because the messages for all Local es are embedded in your source code.

Resour ceBundl e and its subclasses offer a cleaner, more flexible solution.

A Resour ceBundl e is a collection of objects that your application can access by name, much
like a Hasht abl e with St ri ng keys. The same Resour ceBundl e may be defined for many
different Local es. To get a particular Resour ceBund! e, call the factory method

Resour ceBundl e. get Bundl e( ), which accepts the name of a Resour ceBundl| e and a
Local e. The following example gets the Resour ceBundl e named "Message" for two Local es;
from each bundle, it retrieves the message whose key is "HelloMessage" and prints the message.

//1file: Hello.java
i nport java.util.?*;

public class Hello {
public static void main(String[] args) {
Resour ceBundl e bun;
bun = ResourceBundl e. get Bundl e( " Message", Local e.| TALY);
Systemout. println(bun.getString("Hell oMessage"));
bun = Resour ceBundl e. get Bundl e(" Message", Local e. US);
Systemout. println(bun.getString("Hell oMessage"));

}
}

The get Bundl e( ) method throws the runtime exception M ssi ngResour ceExcept i on if an
appropriate Resour ceBundl e cannot be located.

Local es are defined in three ways. They can be standalone classes, in which case they will be
either subclasses of Li st Resour ceBundl e or direct subclasses of Resour ceBund| e. They
can also be defined by a property file, in which case they will be represented at runtime by a
PropertyResour ceBundl e object. Resour ceBundl e. get Bundl e( ) returns either a
matching class or an instance of Pr opert yResour ceBundl e corresponding to a matching
property file. The algorithm used by get Bundl e( ) is based on appending the country and
language codes of the requested Local e to the name of the resource. Specifically, it searches
for resources in this order:

name_| anguage_country_vari ant
name_| anguage_country
name_| anguage



name
nanme_def aul t - | anguage_def aul t-country_defaul t -vari ant
name_def aul t - | anguage_def aul t-country

name_def aul t - | anguage

In this example, when we try to get the Resour ceBund| e named Message, specific to
Local e. | TALY, it searches for the following names (no variant codes are in the Local es we
are using):

Message it IT
Message it
Message
Message_en_US
Message_en

Let's define the Message it | T Resour ceBundl e now, using a subclass of
Li st Resour ceBundl e:

i nport java.util.?*;
public class Message it |IT extends ListResourceBundle {

public Object[][] getContents( ) {
return contents;

}

static final oject[][] contents = {
{"Hel | oMessage", "Buon giorno, world!"},
{"CQ her Message", "Ci ao."},

1

}

Li st Resour ceBundl e makes it easy to define a Resour ceBundl e class; all we have to do is
override the get Cont ent s( ) method. This method simply returns a two-dimensional array
containing the names and values of its resources. In this example, cont ent s[ 1] [ 0] is the
second key (Ot her Message), and contents [ 1] [ 1] is the corresponding message (C ao. ).

Now let's define a Resour ceBundl e for Local e. US. This time, we'll make a property file. Save
the following data in a file called Message en US. properti es:

Hel | oMessage=Hel | o, worl d!
O her Message=Bye.

So what happens if somebody runs your program in Local e. FRANCE, and no

Resour ceBundl| e is defined for that Local e? To avoid a runtime

M ssi ngResour ceExcept i on, it's a good idea to define a default Resour ceBundl e. So in our
example, you could change the name of the property file to Vessage. proper ti es. That way, if
a language- or country-specific Resour ceBund! e cannot be found, your application can still run.

9.8.3 The java.text Class

The | ava. t ext package includes, among other things, a set of classes designed for generating
and parsing string representations of objects. We have already seen one of these classes,



Dat eFor mat . In this section we'll talk about the other format classes: Nunber For mat ,
Choi ceFor mat , and MessageFor mat .

The Nunber For mat class can be used to format and parse currency, percents, or plain old
numbers. Like Dat eFor mat , Nunber For mat is an abstract class. However, it has several useful
factory methods. For example, to generate currency strings, use get Currencyl nst ance( ):

doubl e salary = 1234. 56;

String here = /1 $1,234.56
Nunber For mat . get Currencyl nstance( ).format (sal ary);
String italy = /1 L 1.234,56

Nunber For mat . get Currencyl nst ance(Local e. | TALY) . fornat (sal ary) ;

The first statement generates an American salary, with a dollar sign, a comma to separate
thousands, and a period as a decimal point. The second statement presents the same string in
Italian, with a lire sign, a period to separate thousands, and a comma as a decimal point.
Remember that Nunber For mat worries about format only; it doesn't attempt to do currency
conversion. (Among other things, that would require access to a dynamically updated table and
exchange rates—a good opportunity for a Java Bean but too much to ask of a simple formatter.)

Likewise, get Per cent | nst ance( ) returns a formatter you can use for generating and parsing
percents. If you do not specify a Local e when calling a get | nst ance( ) method, the default
Local e is used:

i nt progress = 44,

Nunber For mat pf = Number For nat . get Percent | nst ance( );
Systemout. println(pf.format(progress)); Il "44%
try {

System out. println(pf.parse("77.2%)); /1 "0.772"
}

catch (ParseException e) {}

And if you just want to generate and parse plain old numbers, use a Nunber For mat returned by
get I nstance() orits equivalent, get Nurmber | nst ance( ):

Nunber For mat gui seppe = Nunber For nat . get | nst ance( Local e. | TALY) ;

/'l defaults to Local e.US
Nunber For mat j oe = Nunber For mat . get |l nstance( );

try {
doubl e theVal ue = gui seppe. parse("34. 663, 252") . doubl eVal ue( );

Systemout . println(joe.format(thevalue)); // "34,663.252"

catch (ParseException e) {}

We use gui seppe to parse a number in Italian format (periods separate thousands, comma is
the decimal point). The return type of par se( ) is Nunber, so we use the doubl eVal ue( )
method to retrieve the value of the Nunber as a doubl e. Then we use | oe to format the number
correctly for the default (U.S.) locale.

Here's a list of the factory methods for text formatters in the | ava. t ext package:



Dat eFor mat .
Dat eFor nat .
Dat eFor nat .
Dat eFor nat .
Dat eFor nat .
Dat eFor nat .
aLocal e)

Dat eFor mat
Dat eFor nat .
Dat eFor nat .
Dat eFor nat .

get Dat el nst ance( )

get Dat el nst ance(int style)
get Dat el nst ance(int style,
get Dat eTi nel nst ance( )

get Dat eTi nel nst ance(i nt dateStyl e,
get Dat eTi nel nst ance(i nt dateStyl e,

Local e alocal e)

int tinmeStyle)

int timeStyle, Locale

.getlnstance( )

get Ti mel nst ance( )

get Ti mel nstance(int style)
get Ti mel nstance(int style,
Nunber For mat .
Nunber For mat .
Nunber For mat .
Nunber For mat .
Nunber For mat .
Nunber For mat .
Nunber For mat .
Nunber For mat .

Local e alLocal e)
get Currencyl nstance( )

get Currencyl nstance(Local e i nLocal e)

get I nstance( )

get I nstance(Local e i nLocal e)

get Nunber I nst ance( )

get Nunber I nst ance( Local e i nLocal e)

get Per cent I nstance( )

get Per cent | nst ance(Local e i nLocal e)

Thus far we've seen how to format dates and numbers as text. Now we'll take a look at a class,

Choi ceFor mat

, that maps numerical ranges to text. Choi ceFor mat is constructed by

specifying the numerical ranges and the strings that correspond to them. One constructor accepts
an array of doubl es and an array of St r i ngs, where each string corresponds to the range
running from the matching number up through (but not including) the next number:

doubl e[ ]
String[]
Choi ceFor mat

Systemout. println(cf.format(12));
System out. println(cf.format(26));

limts
| abel s

{0, 20, 40};

{"young", "less young",
new Choi ceFormat (limts,
/1 young

/'l less young

"ol d"};
| abel s);

cf

You can specify both the limits and the labels using a special string in an alternative
Choi ceFor nmat constructor:

Choi ceFor mat

System out. println(cf.format(40));
System out. println(cf.format(50));

cf = new Choi ceFor mat (" 0#young| 20#l ess young| 40#ol d") ;
/] old
/] old

The limit and value pairs are separated by vertical bar (| ) characters; the number sign (#)
separates each limit from its corresponding value.

To complete our discussion of the formatting classes, we'll take a look at another class,
MessageFor nat , that helps you construct human-readable messages. To construct a
MessageFor nat , pass it a pattern string. A pattern string is a lot like the string you feed to
printf( ) inC, although the syntax is different. Arguments are delineated by curly brackets
and may include information about how they should be formatted. Each argument consists of a
number, an optional type, and an optional style. These are summarized in Table 9.10.

Table 9.10. MessageFormat Arguments

Type

Styles

choi ce

pattern

dat e

short, medi um | ong, f ul | , pattern




nunber i nt eger, percent, currency, pattern

time short, medi um | ong, f ul | , pattern

Let's use an example to clarify all of this:

MessageFormat nf = new MessageFor nat (" You have {0} nessages.");
Object[] argunents = {"no"};
System out.println(nf.format(argunments)); // "You have no nessages."

We start by constructing a MessageFor nat object; the argument to the constructor is the pattern
on which messages will be based. The special incantation { 0} means "in this position, substitute
element 0 from the array passed as an argument to the f or mat () method." Thus, we construct
a MessageFor nat object. When we generate a message, by calling f or mat (), we pass in
values to replace the placeholders ({ 0}, { 1}, ...) in the template. In this case, we pass the
array ar gunent s[ | tonf . fornat;this substitutes ar gunent s| 0] , yielding the result You
have no nessages.

Let's try this example again, except we'll show how to format a number and a date instead of a
string argument:

MessageFormat nf = new MessageFor mat (
"You have {0, nunber, integer} nessages on {1, date, long}.");
bject[] argunments = {new Integer(93), new Date( )};

/1 "You have 93 nessages on April 10, 1999."
Systemout. println(nf.formt(argunents));

In this example, we need to fill in two spaces in the template, and therefore we need two
elements in the ar gunent s| | array. Element 0 must be a number and is formatted as an
integer. Element 1 must be a Dat e and will be printed in the long format. When we call f or mat (
), the ar gunent s[ | array supplies these two values.

This is still sloppy. What if there is only one message? To make this grammatically correct, we
can embed a Choi ceFor mat -style pattern string in our VessageFor mat pattern string:

MessageFormat nf = new MessageFor mat (
"You have {0, nunber, integer} nessage{0, choice, O#s|1#|2#s}.");
bj ect[] argunments = {new Integer(1)};

/1l "You have 1 nessage."”
Systemout. println(nf.formt(argunents));

In this case, we use element 0 of ar gunent s[ | twice: once to supply the number of messages,
and once to provide input to the Choi ceFor mat pattern. The pattern says to add an s if
argument 0 has the value zero or is two or more.

Finally, a few words on how to be clever. If you want to write international programs, you can use
resource bundles to supply the strings for your VessageFor mat objects. This way, you can
automatically format messages that are in the appropriate language with dates and other
language-dependent fields handled appropriately.




In this context, it's helpful to realize that messages don't need to read elements from the array in
order. In English, you would say "Disk C has 123 files"; in some other language, you might say
"123 files are on Disk C." You could implement both messages with the same set of arguments:

MessageFormat ml = new MessageFor mat (

"Disk {0} has {1, nunber, integer} files.");
MessageFormat n2 = new MessageFor mat (

"{1, nunber, integer} files are on disk {0}.");
bject[] argunments = {"C', new Integer(123)};

In real life, the code could be even more compact; you'd only use a single VessageFor nat
object, initialized with a string taken from a resource bundle.



Chapter 10. Input/Output Facilities

In this chapter, we'll continue our exploration of the Java API by looking at many of the classes in
the j ava. i o package. Figure 10.1 shows the class hierarchy of the | ava. | o package.

Figure 10.1. The java.io package
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We'll start by looking at the stream classes in | ava. i 0; these classes are all subclasses of the
basic | nput St r eam Qut put St ream Reader,and Wi t er classes. Then we'll examine the
Fi | e class and discuss how you can interact with the filesystem using classes in | ava. i o.
Finally, we'll take a quick look at the data compression classes provided in j ava. uti | . zi p.

10.1 Streams

All fundamental 1/0O in Java is based on streams. A stream represents a flow of data, or a channel
of communication with (at least conceptually) a writer at one end and a reader at the other. When
you are working with terminal input and output, reading or writing files, or communicating through
sockets in Java, you are using a stream of one type or another. So that you can see the forest
without being distracted by the trees, we'll start by summarizing the classes involved with the
different types of streams:

InputStream/OutputStream

Abstract classes that define the basic functionality for reading or writing an unstructured
sequence of bytes. All other byte streams in Java are built on top of the basic
| nput St reamand Qut put St r eam

Reader/Writer

Abstract classes that define the basic functionality for reading or writing a sequence of
character data, with support for Unicode. All other character streams in Java are built on
top of Reader and Witer.

InputStreamReader/ OutputStreamWriter

"Bridge" classes that convert bytes to characters and vice versa. Remember: in Unicode,
a character is not a byte!

DatalnputStream/ DataOutputStream

Specialized stream filters that add the ability to read and write simple data types, such as
numeric primitives and St r i ng objects, in a universal format.

ObjectinputStream/ObjectOutputStream

Specialized stream filters that are capable of writing serialized Java objects and
reconstructing them.

BufferedinputStream/BufferedOutputStream/BufferedReader/BufferedWriter
Specialized stream filters that add buffering for additional efficiency.
PrintWriter
A specialized character stream that makes it simple to print text.

PipedinputStream/PipedOutputStream/PipedReader/PipedWriter



"Double-ended" streams that normally occur in pairs. Data written into a
Pi pedQut put St r eamor Pi pedW i t er is read from its corresponding
Pi pedl nput St r eamor Pi pedReader .

FilelnputStream/FileOutputStream/FileReader/FileWriter

Implementations of | nput St r eany Cut put St r eam Reader,and Wi t er that read
from and write to files on the local filesystem.

Streams in Java are one-way streets. The | ava. | o input and output classes represent the ends
of a simple stream, as shown in Figure 10.2. For bidirectional conversations, we use one of
each type of stream.

Figure 10.2. Basic input and output stream functionality
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I nput St reamand Qut put St r eamare abstract classes that define the lowest-level interface
for all byte streams. They contain methods for reading or writing an unstructured flow of byte-level
data. Because these classes are abstract, you can't create a generic input or output stream. Java
implements subclasses of these for activities like reading from and writing to files and
communicating with sockets. Because all byte streams inherit the structure of | nput St r eamor
Cut put St r eam the various kinds of byte streams can be used interchangeably. A method
specifying an | nput St r eamas an argument can, of course, accept any subclass of

I nput St r eam Specialized types of streams can also be layered to provide features, such as
buffering, filtering, or handling larger data types.

In Java 1.1, new classes based around Reader and W i t er were added to the | ava. i o
package. Reader and Wi t er are very much like | nput St r eamand Cut put St r eam except
that they deal with characters instead of bytes. As true character streams, these classes correctly
handle Unicode characters, which was not always the case with the byte streams. However,
some sort of bridge is needed between these character streams and the byte streams of physical
devices like disks and networks. | nput St r eanReader and Qut put St reamV it er are special
classes that use an encoding scheme to translate between character and byte streams.

We'll discuss all of the interesting stream types in this section, with the exception of

Fi l el nput Stream Fi | eQut put St ream Fi | eReader,and Fi | eW it er.We'll postpone the
discussion of file streams until the next section, where we'll cover issues involved with accessing
the filesystem in Java.

10.1.1 Terminal /O
The prototypical example of an | nput St r eamobject is the "standard input” of a Java application.

Like st di nin C or ci n in C++, this object reads data from the program's environment, which is
usually a terminal window or a command pipe. The | ava. | ang. Syst emclass, a general



repository for system-related resources, provides a reference to standard input in the static
variable i n. Syst emalso provides objects for standard output and standard error in the out and
er r variables, respectively. The following example shows the correspondence:

| nput Stream stdin = System i n;
Qut put St ream st dout = System out;
Qut put Stream stderr = Systemerr;
This example hides the fact that Syst em out and Syst em err aren't really Out put St r eam
objects, but more specialized and useful Pri nt St r eamobjects. We'll explain these later, but for
now we can reference out and er r as Qut put St r eamobjects, since they are a kind of

CQut put St reamas well.

We can read a single byte at a time from standard input with the | nput St reanis read( )
method. If you look closely at the API, you'll see that the r ead( ) method of the base

[ nput St r eamclass is an abst r act method. What lies behind Syst em i n is a particular
implementation of | nput St r eam—the subclass provides a real implementation of the r ead( )
method.

try {
int val = Systemin.read( );
}
catch ( 1 Oexception e ) {
}

As is the convention in C, r ead( ) provides a byte of information, but its return type is i nt . A
return value of - 1 indicates a normal end of stream has been reached; you'll need to test for this
condition when using the simple r ead( ) method. If an error occurs during the read, an

| OExcept i on is thrown. All basic input and output stream commands can throw an

| OExcept i on, so you should arrange to catch and handle them appropriately.

To retrieve the value as a byte, perform a cast:
byte b = (byte) val;
Be sure to check for the end-of-stream condition before you perform the cast.

An overloaded form of r ead( ) fills a byte array with as much data as possible up to the
capacity of the array, and returns the number of bytes read:

byte [] bity = new byte [1024];
int got = Systemin.read( bity );

We can also check the number of bytes available for reading on an | nput St r eamwith the
aval | abl e( ) method. Using that information, we could create an array of exactly the right
size:

int waiting = Systemin.available( );
if ( waiting >0) {
byte [] data = new byte [ waiting ];



Systemin.read( data );

However, the reliability of this technique depends on the ability of the underlying stream
implementation to detect how much data is arriving.

I nput St r eamprovides the ski p( ) method as a way of jumping over a number of bytes.
Depending on the implementation of the stream, skipping bytes may be more efficient than
reading them. The cl ose( ) method shuts down the stream and frees up any associated
system resources. It's a good idea to close a stream when you are done using it.

10.1.2 Character Streams

Some | nput St r eamand Cut put St r eamsubclasses of early versions of Java included
methods for reading and writing strings, but most of them operated by assuming that a 16-bit
Unicode character was equivalent to an 8-bit byte in the stream. This works only for Latin-1 (ISO
8859-1) characters, so the character stream classes Reader and Wi t er were introduced in
Java 1.1. Two special classes, | nput St r eanReader and Out put St reamW i t er, bridge the
gap between the world of character streams and the world of byte streams. These are character
streams that are wrapped around an underlying byte stream. An encoding scheme is used to
convert between bytes and characters. An encoding scheme name can be specified in the
constructor of | nput St r eanReader or Cut put St ream/f i t er. Or the default constructor can
be used, which uses the system's default encoding scheme. For example, let's parse a human-
readable string from the standard input into an integer. We'll assume that the bytes coming from
System i n use the system's default encoding scheme:

try {
| nput St reanReader converter = new | nput StreanReader (Systemin);

Buf f eredReader in = new BufferedReader (converter);

String text = in.readLine( );
int i = Nunmber Fornat. getlnstance(). parse(text).intValue( );

}
catch ( |1 Oexception e ) { }
e)

catch ( ParseException p

{}

First, we wrap an | nput St r eanReader around Syst em | n. This object converts the incoming
bytes of Syst em i n to characters using the default encoding scheme. Then, we wrap a

Buf f er edReader around the | nput St r eanReader . Buf f er edReader gives us the

readLi ne( ) method, which we can use to convert a full line of text into a St r i ng. The string is
then parsed into an integer using the techniques described in Chapter 9.

We could have programmed the previous example using only byte streams, and it would have
worked for users in the United States, at least. So why go to the extra trouble of using character
streams? Character streams were introduced in Java 1.1 to correctly support Unicode strings.
Unicode was designed to support almost all of the written languages of the world. If you want to
write a program that works in any part of the world, in any language, you definitely want to use
streams that don't mangle Unicode.

So how do you decide when you need a byte stream (| nput St r eamor Out put St r earr) and
when you need a character stream? If you want to read or write character strings, use some
variety of Reader or Wit er. Otherwise, a byte stream should suffice. Let's say, for example,



that you want to read strings from a file that was written by an earlier Java application. In this
case, you could simply create a Fi | eReader , which will convert the bytes in the file to
characters using the system's default encoding scheme. If you have a file in a specific encoding
scheme, you can create an | nput St r eanReader with the specified encoding scheme wrapped
around a Fi | el nput St r eamand read characters from it.

Another example comes from the Internet. Web servers serve files as byte streams. If you want to
read Unicode strings with a particular encoding scheme from a file on the network, you'll need an
appropriate | nput St r eanReader wrapped around the | nput St r eamof the web server's
socket.

10.1.3 Stream Wrappers

What if we want to do more than read and write a sequence of bytes or characters? We can use
a "filter" stream, which is a type of | nput St r eanj Qut put St r eam Reader, or Wit er that
wraps another stream and adds new features. A filter stream takes the target stream as an
argument in its constructor and delegates calls to it after doing some additional processing of its
own. For example, you could construct a Buf f er edl nput St r eamto wrap the system standard
input:

I nput Stream bufferedln = new Bufferedl nput Stream( Systemin );

The Buf f er edl nput St r eamis a type of filter stream that reads ahead and buffers a certain
amount of data. (We'll talk more about it later in this chapter.) The Buf f er edl nput Sr eamwraps
an additional layer of functionality around the underlying stream. Figure 10.3 shows this
arrangment for a Dat al nput St r eam.

As you can see from the previous code snippet, the Buf f er edl nput St r eamfilter is a type of

I nput St r eam Because filter streams are themselves subclasses of the basic stream types, they
can be used as arguments to the construction of other filter streams. This allows filter streams to
be layered on top of on another to provide different combinations of features. For example, we
could first wrap our Syst em | n with a Buf f er edl nput St r eamand then wrap the

Buf f er edl nput Sr eamwith a Dat al nput St r eamfor reading special data types.

There are four superclasses corresponding to the four types of filter streams:
FilterlnputStream,FilterQutputStream,FilterReader,andFilterWiter.The
first two are for filtering byte streams, and the last two are for filtering character streams. These
superclasses provide the basic machinery for a "no op" filter (a filter that doesn't do anything) by
delegating all of their method calls to their underlying stream. Real filter streams subclass these
and override various methods to add their additional processing. We'll make a filter stream a little
later in this chapter.

Figure 10.3. Layered streams
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10.1.3.1 Data streams

Dat al nput St r eamand Dat aCut put St r eamare filter streams that let you read or write strings
and primitive data types that comprise more than a single byte. Dat al nput St r eamand

Dat aCut put St r eamimplement the Dat al nput and Dat aCut put interfaces, respectively.
These interfaces define the methods required for streams that read and write strings and Java
primitive numeric and boolean types in a machine-independent manner.

You can construct a Dat al nput St r eamfrom an | nput St r eamand then use a method like
readDoubl e( ) to read a primitive data type:

Dat al nput Stream di s = new Dat al nput Strean{ Systemin );
double d = dis.readDouble( );

This example wraps the standard input stream in a Dat al nput St r eamand uses it to read a
double value. r eadDoubl e( ) reads bytes from the stream and constructs a doubl e from
them. The Dat al nput St r eammethods expect the bytes of numeric data types to be in network
byte order, a standard that specifies that the high order bytes are sent first.

The Dat aCut put St r eamclass provides write methods that correspond to the read methods in
Dat al nput St r eam For example, wri t el nt () writes an integer in binary format to the
underlying output stream.

The readUTF( ) andw it eUTF( ) methods of Dat al nput St r eamand Dat aOut put St ream
read and write a Java St r i ng of Unicode characters using the UTF-8 "transformation format."
UTF-8 is an ASCIIl-compatible encoding of Unicode characters commonly used for the
transmission and storage of Unicode text. This differs from the Reader and Wi t er streams,
which can use arbitrary encodings and may not preserve all of the Unicode characters.

We can use a Dat al nput St r eamwith any kind of input stream, whether it be from a file, a
socket, or standard input. The same applies to using a Dat aCut put St r eam or, for that matter,
any other specialized streams in | ava. i 0.

10.1.3.2 Buffered streams

The Buf f er edl nput St r eam Buf f er edQut put St r eam Buf f er edReader, and
Buf feredW it er classes add a data buffer of a specified size to the stream path. A buffer can



increase efficiency by reducing the number of physical read or write operations that correspond to
read( ) orwite( ) method calls. You create a buffered stream with an appropriate input or
output stream and a buffer size. (You can also wrap another stream around a buffered stream, so
that it benefits from the buffering.) Here's a simple buffered input stream:

Buf f eredl nput Stream bis =
new Buf f er edl nput St r eam( nyl nput St ream 4096) ;

b| s read( );

In this example, we specify a buffer size of 4096 bytes. If we leave off the size of the buffer in the
constructor, a reasonably sized one is chosen for us. On our first call to r ead( ), bi s tries to fill
the entire 4096-byte buffer with data. Thereafter, calls to r ead( ) retrieve data from the buffer,
which is refilled as necessary.

A Buf f er edQut put St r eamworks in a similar way. Callstow i t e( ) store the data in a
buffer; data is actually written only when the buffer fills up. You can also use the f | ush( )
method to wring out the contents of a Buf f er edCut put St r eamat any time. The f | ush( )
method is actually a method of the Cut put St r eamclass itself. It's important because it allows
you to be sure that all data in any underlying streams and filter streams has been sent (before, for
example, you wait for a response).

Some input streams like Buf f er edl nput St r eamsupport the ability to mark a location in the
data and later reset the stream to that position. The nar k( ) method sets the return point in the
stream. It takes an integer value that specifies the number of bytes that can be read before the
stream gives up and forgets about the mark. The r eset () method returns the stream to the
marked point; any data read after the call to mar k( ) is read again.

This functionality is especially useful when you are reading the stream in a parser. You may
occasionally fail to parse a structure and so must try something else. In this situation, you can
have your parser generate an error (a homemade Par seExcept i on) and then reset the stream
to the point before it began parsing the structure:

Buf f er edl nput St ream i nput ;

try {
i nput . mar k( MAX_DATA STRUCTURE_SI ZE ) ;
return( parseDataStructure( input ) );

}

catch ( ParseException e ) {
i nput.reset( );

The Buf f er edReader and Buf f eredW i t er classes work just like their byte-based
counterparts, but operate on characters instead of bytes.

10.1.3.3 Print streams
Another useful wrapper streamis | ava. i o. Print Wit er. This class provides a suite of

overloaded pri nt () methods that turn their arguments into strings and push them out the
stream. A complementary set of pri nt | n( ) methods adds a newline to the end of the strings.



Print Wi ter isanunusual character stream because it can wrap either an Qut put St r eamor
another Witer.

PrintWiter isthe more capable big brother of the Pri nt St r eambyte stream. The
System out and Syst em err streams are Pri nt St r eamobjects; you have already seen such
streams strewn throughout this book:

Systemout.print("Hello world...\n");
Systemout.printin("Hello world...");
Systemout.println( "The answer is: " + 17 );
Systemout.println( 3.14 );

PrintWiter and Print St r eamhave a strange, overlapping history. Early versions of Java
did not have the Reader and Wi t er classes and streams like Pri nt St r eam which must of
necessity convert bytes to characters simply made assumptions about the character encoding. As
of Java 1.1, the Pri nt St r eamclass was enhanced to translate characters to bytes using the
system's default encoding scheme. For all new development, however, use a Pri nt Wi ter
instead of a Pri nt St r eam Because a Pri nt Wit er can wrap an Qut put St r eam the two
classes are more or less interchangeable.

When you create a Pri nt Wit er object, you can pass an additional boolean value to the
constructor. If this value is t r ue, the Pri nt Wit er automatically performs af| ush( ) on the
underlying Cut put St reamor W i t er each time it sends a newline:

bool ean aut oFl ush = true;
PrintWiter p = new PrintWiter( nmyQutputStream autoFlush );

When this technique is used with a buffered output stream, it corresponds to the behavior of
terminals that send data line by line.

Unlike methods in other stream classes, the methods of Print Wi ter and Print St r eamdo
not throw | OExcept i ons. This makes life a lot easier for printing text, which is a very common
operation. Instead, if we are interested, we can check for errors with the checkError ( )
method:

Systemout.println( reallyLongString );
if ( Systemout.checkError( ) ) /1 uh oh

10.1.4 Pipes

Normally, our applications are directly involved with one side of a given stream at a time.

Pi pedl nput St r eamand Pi pedCQut put St r eam(or Pi pedReader and Pi pedWiter ),
however, let us create two sides of a stream and connect them together, as shown in Figure
10.4. This can be used to provide a stream of communication between threads, for example, or
as a "loop-back" for testing.

Figure 10.4. Piped streams
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To create a byte stream pipe, we use both a Pi pedl nput St r eamand a Pi pedQut put St r eam
We can simply choose a side and then construct the other side using the first as an argument:

Pi pedl nput Stream pi n = new Pi pedl nput Strean( );
Pi pedCQut put St ream pout = new Pi pedQut put Stream pin );

Alternatively:

Pi pedCQut put St ream pout = new Pi pedQut put Streamnm( );
Pi pedl nput Stream pi n = new Pi pedl nput Strean{ pout );

In each of these examples, the effect is to produce an input stream, pi n, and an output stream,
pout , that are connected. Data written to pout can then be read by pi n. It is also possible to
create the Pi pedl nput St r eamand the Pi pedCut put St r eamseparately, and then connect
them with the connect () method.

We can do exactly the same thing in the character-based world, using Pi pedReader and
Pi pedW it er in place of Pi pedl nput St r eamand Pi pedQut put St ream

Once the two ends of the pipe are connected, use the two streams as you would other input and
output streams. You can use r ead( ) to read data from the Pi ped| nput St r eam(or

Pi pedReader)and w i te( ) towrite data to the Pi pedCut put St r eam(or Pi pedWiter). If
the internal buffer of the pipe fills up, the writer blocks and waits until space is available.
Conversely, if the pipe is empty, the reader blocks and waits until some data is available.

One advantage to using piped streams is that they provide stream functionality in our code,
without compelling us to build new, specialized streams. For example, we can use pipes to create
a simple logging facility for our application. We can send messages to the logging facility through
an ordinary Print Wi t er, and then it can do whatever processing or buffering is required
before sending the messages off to their ultimate location. Because we are dealing with string
messages, we use the character-based Pi pedReader and Pi pedW i t er classes. The
following example shows the skeleton of our logging facility:

/1file: LoggerDaenon.java
i nport java.io.?*;

cl ass Logger Daenon extends Thread {
Pi pedReader in = new Pi pedReader( );

Logger Daermon( ) {
start( );
}



public void run( ) {
Buf f eredReader bin = new BufferedReader( in );
String s;

try {
while ( (s = bin.readLine( )) !'= null ) {

/'l process line of data
/1

}

}
catch (1 Oexception e ) { }
}

PrintWiter getWiter( ) throws | OException {
return new PrintWiter( new PipedWiter( in) );
}

}

class nyApplication {
public static void main ( String [] args ) throws | Oexception {
PrintWiter out = new LoggerDaenon().getWiter( );

out.println("Application starting...");
...

out.println("Warning: does not conpute!");
/1

}

Logger Daenon reads strings from its end of the pipe, the Pi pedReader named i n.

Logger Daenon also provides a method, get Witer( ),thatreturnsaPi pedWiter thatis
connected to its input stream. To begin sending messages, we create a hew Logger Daenon and
fetch the output stream.

In order to read strings with the r eadLi ne( ) method, Logger Daenon wraps a
Buf f er edReader around its Pi pedReader . For convenience, it also presents its output pipe as
aPrintWiter, rather than a simple Witer.

One advantage of implementing Logger Daenon with pipes is that we can log messages as
easily as we write text to a terminal or any other stream. In other words, we can use all our
normal tools and techniques. Another advantage is that the processing happens in another
thread, so we can go about our business while the processing takes place.

There is nothing stopping us from connecting more than two piped streams. For example, we
could chain multiple pipes together to perform a series of filtering operations. Note that in this
example, there is nothing to prevent messages printed to the pipe from different threads being
mixed together. To do that we might have to create a number of pipes, one for each thread, in the
get Witer( ) method.

10.1.5 Strings to Streams and Back

St ringReader is another useful stream class; it essentially wraps stream functionality around a
St ring. Here's how to use a St ri ngReader :



String data = "There once was a nan from Nantucket...";
StringReader sr = new StringReader( data );

char T = (char)sr.read( );
char h = (char)sr.read( );
char e = (char)sr.read( );

Note that you will still have to catch | CExcept i ons thrown by some of the St ri ngReader's
methods.

The St ri ngReader class is useful when you want to read data in a St r i ng as if it were coming
from a stream, such as a file, pipe, or socket. For example, suppose you create a parser that
expects to read tokens from a stream. But you want to provide a method that also parses a big
string. You can easily add one using St r i ngReader .

Turning things around, the St ri ngW i t er class lets us write to a character buffer through an
output stream. The internal buffer grows as necessary to accommodate the data. When we are
done we can fetch the contents of the buffer as a St r i ng. In the following example, we create a
StringWiter andwrapitina Print Witer for convenience:

StringWiter buffer = new StringWiter( );
PrintWiter out = new PrintWiter( buffer );

out.println("A noose once bit ny sister.");
out.println("No, really!");

String results = buffer.toString( );

First we print a few lines to the output stream, to give it some data, then retrieve the results as a
string with the t oSt ri ng( ) method. Alternately, we could get the results as a St r i ngBuf f er
object using the get Buf f er () method.

The St ri ngWi ter class is useful if you want to capture the output of something that normally
sends output to a stream, such as a file or the console. A Pri nt Wit er wrapped around a
StringWiter isaviable alternative to using a St r i ngBuf f er to construct large strings piece
by piece.

10.1.6 The rot13InputStream Class

Before we leave streams, let's try our hand at making one of our own. | mentioned earlier that
specialized stream wrappers are built on top of the Fi | t er | nput St r eamand

Fi | t er Qut put St r eamclasses. It's quite easy to create our own subclass of

Fi | terlnput St reamthat can be wrapped around other streams to add new functionality.

The following example, r ot 131 nput St r eany performs a rot13 (rotate by 13 letters) operation on
the bytes that it reads. rot13 is a trivial obfuscation algorithm that shifts alphanumeric letters to
make them not quite human-readable; it's cute because it's symmetric. That is, to "un-rot13"
some text, simply rot13 it again. We'll use the r ot 131 nput St r eamclass again in the cr ypt
protocol handler example in , so we've put the class in the | ear ni ngj ava. | o package to
facilitate reuse. Here's our r ot 13| nput St r eamclass:

//file: rotl3lnputStreamjava
package | earni ngj ava.i o;



i nport java.io.?*;
public class rot 13l nputStream extends FilterlnputStream {

public rot13lnputStream ( InputStreami ) {
super( i );
}

public int read( ) throws | CException {
return rot13( in.read( ) );
}

private int rotl3 ( int ¢ ) {
if ( (c>"A) & (c <="'2Z") )
c=(((c-"A)+13)9%26) +' A’ ;
if ( (c>"'"a") & (c <="'2") )
c=(((c-"a")+13)w6) +" a';
return c;

}

The Fi | t er I nput St r eamneeds to be initialized with an | nput St r eany this is the stream to be
filtered. We provide an appropriate constructor for the r ot 131 nput St r eamclass and invoke the
parent constructor with a call to super ( ). Fi | ter | nput St r eamcontains a protected instance
variable, i n, where it stores a reference to the specified InputStream, making it available to the
rest of our class.

The primary feature of a Fi | t er | nput St r eamis that it delegates its input tasks to the
underlying | nput St r eam So, for instance, acallto Fi | t er | nput St reansread( ) simply
turns around and calls the r ead( ) method of the underlying | nput St r eam to fetch a byte.

Filtering amounts to doing extra work (such as encryption) on the data as it passes through. In
our example, the r ead( ) method to fetches a byte from the underlying | nput St r eam I n, and
then performs the rot13 shift on the byte before returning it. Note that the r ot 13( ) method
shifts alphabetic characters, while simply passing all other values, including the end-of-stream
value (- 1). Our subclass is now a rot13 filter.

run( ) istheonly | nput St r eammethod that Fi | t er | nput St r eamoverrides. All other
normal functionality of an | nput St r eam like ski p( ) and avai | abl e( ), is unmodified, so
calls to these methods are answered by the underlying | nput St r eam

Strictly speaking, r ot 131 nput St r eamworks only on an ASCII byte stream, since the underlying
algorithm is based on the Roman alphabet. A more generalized character-scrambling algorithm
would have to be based on Fi | t er Reader to handle 16-bit Unicode classescorrectly. (Anyone
want to try rot32768 ?)

10.2 Files

Unless otherwise restricted, a Java application can read and write to the host filesystem with the
same level of access as the user who runs the Java interpreter. Java applets and other kinds of
untrusted applications can, of course, be restricted by the security policy and cut off from these
services. We'll discuss applet access at the end of this section. First, let's take a look at the tools
for basic file access.



Working with files in Java is still somewhat problematic. The host filesystem lies outside of Java's
virtual environment, in the real world, and can therefore still suffer from architecture and
implementation differences. Java tries to mask some of these differences by providing information
to help an application tailor itself to the local environment; we'll mention these areas as they
occur.

10.2.1 The java.io.File Class

The j ava. i 0. Fi | e class encapsulates access to information about a file or directory entry in
the filesystem. It can be used to get attribute information about a file, list the entries in a directory,
and perform basic filesystem operations like removing a file or making a directory. While the

Fi | e object handles these tasks, it doesn't provide direct access for reading and writing file data;
there are specialized streams for that purpose.

10.2.1.1 File constructors
You can create an instance of Fi | e from a St r i ng pathname:

File fooFile = new File( "/tnp/foo.txt" );
File barDir = new File( "/tnp/bar" );

You can also create a file with a relative path:
File f = new File( "foo" );

In this case, Java works relative to the current directory of the Java interpreter. You can
determine the current directory by checking the user . di r property in the Syst em Properties
list:

System get Property("user.dir"));

An overloaded version of the Fi | e constructor lets you specify the directory path and filename as
separate St ri ng objects:

File fooFile = new File( "/tnmp", "foo.txt" );

With yet another variation, you can specify the directory with a Fi | e object and the filename with
astring:

File tnmpDir = new File( "/tnmp" );
File fooFile = new File ( tnpDir, "foo.txt" );

None of the Fi | e constructors throw any exceptions. This means the object is created whether or
not the file or directory actually exists; it isn't an error to create a Fi | e object for a nonexistent
file. You can use the object's exi st s( ) instance method to find out whether the file or directory
exists. The Fi | e object simply exists as a handle for getting information about what is (potentially
at least) a file or directory.

10.2.1.2 Path localization

One of the reasons that working with files in Java is problematic is that pathnames are expected
to follow the conventions of the local filesystem. Java's designers intend to provide an abstraction



that deals with most system-dependent filename features, such as the file separator, path
separator, device specifier, and root directory. Unfortunately, not all these features are
implemented in the current version.

On some systems, Java can compensate for differences such as the direction of the file separator
slashes in a pathname. For example, in the current implementation on Windows platforms, Java
accepts paths with either forward slashes or backslashes. However, under Solaris, Java accepts

only paths with forward slashes.

Your best bet is to make sure you follow the flename conventions of the host filesystem. If your
application is just opening and saving files at the user's request, you should be able to handle
that functionality with the Swing JFi | eDi al og class. This class encapsulates a graphical file-
selection dialog box. The methods of the JFi | eDi al og take care of system-dependent filename
features for you.

If your application needs to deal with files on its own behalf, however, things get a little more
complicated. The Fi | e class contains a few st at i ¢ variables to make this task possible.

Fi | e. separ at or defines a St ri ng that specifies the file separator on the local host (e.g.,/ on
Unix and Macintosh systems and \ on Windows systems); Fi | e. separ at or Char provides the
same information as a char . Fi | e. pat hSepar at or defines a St ri ng that separates items in
a path (e.g., : on Unix systems and ; on Macintosh and Windows systems);

Fi | e. pat hSepar at or Char provides the information as a char .

You can use this system-dependent information in several ways. Probably the simplest way to
localize pathnames is to pick a convention you use internally, for instance the forward slash, and
do a St ri ng replace to substitute for the localized separator character:

/1 we'll use forward slash as our standard
String path = "mail/1999/june/ nerle";

path = path.replace('/', File.separatorChar);
File mail box = new File( path );

Alternately, you could work with the components of a pathname and build the local pathname
when you need it:

String [] path = { "pmil™", "1999", "june", "nmerle" };

StringBuffer sb = new StringBuffer(path[0]);
for (int i=1; i< path.length; i++)

sb. append( File.separator + path[i] );
File mail box = new File( sb.toString( ) );

One thing to remember is that Java interprets the backslash character (\ ) as an escape character
when used ina St ri ng. To get a backslash ina St ri ng, you have to use \ \ .

Another issue to grapple with is that some operating systems use special identifiers for the "roots”
of filesystems. For example, Windows uses C: \ . Should you need it, the Fi | e class provides the
static method | | st Root s( ), which returns an array of Fi | e objects corresponding to the
filesystem root directories.

10.2.1.3 File operations



Once we have a Fi | e object, we can use it to ask for information about the file or directory and
to perform standard operations on it. A number of methods let us ask certain questions about the
Fi | e. For example, i sFi | e( ) returnstr ue if the Fi | e represents a file, while
isDirectory( ) returnstrue ifit's a directory. i sAbsol ut e( ) indicates if the Fi | e has an
absolute or relative path specification.

Components of the Fi | e pathname are available through the following methods: get Nane( ),
get Pat h( ), get Absol utePat h( ), and get Parent ( ).get Nane( ) returnsa Stri ng for
the filename without any directory information; get Pat h( ) returns the directory information
without the filename. If the Fi | e has an absolute path specification, get Absol ut ePat h( )
returns that path. Otherwise it returns the relative path appended to the current working directory.
get Parent () returns the parent directory of the Fi | e.

Interestingly, the string returned by get Pat h( ) or get Absol ut ePat h( ) may not follow the
same case-conventions as the underlying filesystem. You can retrieve the filesystem's own or
"canonical” version of the file's path using the method get Canoni cal Pat h( ). In Windows, for
example, you can create a Fi | e object whose get Absol ut ePat h( ) is C:\ Aut oexec. bat,
but whose get Canoni cal - Pat h( ) is C:\ AUTOEXEC. BAT. This is useful for comparing
filenames that may have been supplied with different case conventions.

You can get or set the modification time of a file or directory with | ast Mbdi fi ed() and

set Last Modi fi1 ed( ) methods. The value is a | ong that is the number of milliseconds since
the epoch ( Jan 1, 1970, 00:00:00 GMT). We can also get the size of the file in bytes with
length( ).

Here's a fragment of code that prints some information about a file:

File fooFile = new File( "/tnp/boofa" );
String type = fooFile.isFile( ) ? "File " : "Directory ";
String nane = fooFile.getNanme( );

long len = fooFile.length( );
Systemout.printin(type + nane + ", " + len +

bytes " );

If the Fi | e object corresponds to a directory, we can list the files in the directory with the | i st (
) method orthe | i st Fi | es( ) method:

String [] fileNanes = fooFile.list( );
File [] files = fooFile.listFiles( );

[ 1st( ) returns an array of St ri ng objects that contains filenames. | i st Fi | es( ) returns an
array of Fi | e objects. Note that in neither case are the files guaranteed to be in any kind of order
(alphabetical, for example).

If the Fi | e refers to a nonexistent directory, we can create the directory with nikdi r () or
mkdirs( ). nkdir( ) creates a single directory; mkdi r s( ) also creates all of the intervening
directories in a Fi | e specification. Use r enaneTo( ) to rename a file or directory and del et e(
) to delete a file or directory.

Note that using the Fi | e object itself isn't generally the way to create a file; that's normally done
implicitly with a Fi | eQut put St reamor Fi | eW it er, as we'll discuss in a moment. The
exception is the cr eat eNewri | e( ) method, which can be used to attempt to create a new



zero-length file at the location pointed to by the Fi | e object. The useful thing about this method
is that the operation is guaranteed to be "atomic" with respect to all other file creation.
creat eNewi | e( ) returns a boolean value which tells you whether the file was created.

You can use this to implement file locking from Java. This is useful in combination with

del et eOnExi t (), which flags the file to be automatically removed when the Java Virtual
Machine exits. Another file creation method related to the Fi | e class itself is the static method
createTenpFi | e( ), which creates a file in a specified location using an automatically
generated unigue name. This, too, is useful in combination with del et eOnExi t ().

The t oURL( ) method converts a file pathtoa fi | e: URL object. We'll talk about URLSs in

Chapter 12. They are an abstraction that allows you to point to any kind of object anywhere on
the Net. Converting a Fi | e reference to a URL may be useful for consistency with more general
routines that deal with URLs.

Table 10.1 summarizes the methods provided by the Fi | e class.

Table 10.1. File Methods

Return

Method Type Description
canRead( ) bool ean Is the file (or directory) readable?
canWite( ) bool ean Is the file (or directory) writable?
createNewFile() bool ean Creates a new file
createTempFile (String pf x, static File Creates a new file, with the specified prefix and
String sf x) suffix, in the default temp-file directory
delete( ) bool ean Deletes the file (or directory)
deleteONEXit() void ;/i\llgen it exits, Java runtime system will delete the
exi sts( ) bool ean Does the file (or directory) exist?
get Absol ut ePat h( ) String Returns the absolute path of the file (or directory)
get Canoni cal Pat h( ) String Returns the absolute, case-correct path of the file

(or directory)

get Name( ) String Returns the name of the file (or directory)

Returns the name of the parent directory of the file

get Parent () String (or directory)

get Pat h( ) String Returns the path of the file (or directory)

i sAbsol ute( ) bool ean Is the filename (or directory name) absolute?

isDirectory( ) bool ean Is the item a directory?

isFile( ) bool ean Is the item a file?

| ast Modi fi ed( ) | ong Returns the last modification time of the file (or
directory)

l engt h( ) | ong Returns the length of the file

list( ) String [] |Returns a list of files in the directory

listfiles() File[] (F)zfelt:LiJrlnz ?t;ec(ggtents of the directory as an array

nmkdir( ) bool ean Creates the directory

mkdirs( ) bool ean Creates all directories in the path

renaneTo(Fil e dest) bool ean Renames the file (or directory)




setLastModified() boolean Sets the last-modified time of the file (or directory)

setReadOnly() boolean Sets the file to read-only status

toURL() java.net. URL Senerates a URL object for the Thefile (or
irectory)

10.2.2 File Streams

Java provides two specialized streams for reading and writing files in the filesystem:

Fi l el nput St reamand Fi | eCut put St r eam These streams provide the basic | nput St r eam
and Qut put St r eamfunctionality applied to reading and writing the contents of files. They can be
combined with the filter streams described earlier to work with files in the same way we do other
stream communications.

Because Fi | el nput St r eamis a subclass of | nput St r ean it inherits all standard

I nput St r eamfunctionality for reading the contents of a file. Fi | el nput St r eamprovides only a
low-level interface to reading data, however, so you'll typically wrap it with another stream, such
as a Dat al nput St ream

You can create a Fi | el nput St r eamfrom a St ri ng pathname or a Fi | e object:

Fil el nput Stream foois = new Fil el nput Strean{ fooFile );
Fi | el nput Stream passwdis = new Fil el nput Stream( "/etc/passwd" );

When you create a Fi | el nput St r eam the Java runtime system attempts to open the specified
file. Thus, the Fi | el nput St r eamconstructors can throw a Fi | eNot FoundExcept i on if the
specified file doesn't exist, or an | O=xcept i on if some other I/O error occurs. Be sure to catch
and handle these exceptions in your code. When the stream is first created, its avai | abl e( )
method and the Fi | e object's | engt h( ) method should return the same value. Be sure to call
the cl ose( ) method when you are done with the file.

To read characters from a file, you can wrap an | nput St r eanReader around a

Fi | el nput St ream If you want to use the default character-encoding scheme, you can use the
Fi | eReader class instead, which is provided as a convenience. Fi | eReader works just like
Fi | el nput St r eam except that it reads characters instead of bytes and wraps a Reader
instead of an | nput St ream

The following class, Li st | t , is a small utility that sends the contents of a file or directory to
standard output:

//file: Listlt.java
i nport java.io.?*;

class Listlt {
public static void main ( String args[] ) throws Exception {

File file = new File( args[O0] );

if ( !'file.exists() || !file.canRead( ) ) {
Systemout.printin( "Can't read " + file );
return;

}

if ( file.isDirectory( ) ) {




String [] files = file.list( );
for (int i=0; i< files.length; i++)
Systemout.printin( files[i] );
}

el se

try {
Fi | eReader fr = new Fil eReader ( file );

Buf f eredReader in = new BufferedReader( fr );
String line;

while ((line = in.readLine( )) !'= null)
Systemout.println(line);

}

catch ( Fil eNot FoundException e ) {
Systemout.println( "File D sappeared" );

}

}

Li stlt constructs a Fi | e object from its first command-line argument and tests the Fi | e to see
whether it exists and is readable. If the Fi | e is a directory, Li st | t outputs the names of the files
in the directory. Otherwise, Li st | t reads and outputs the file.

Fi | eCut put St r eamis a subclass of Cut put St r eam so it inherits all the standard

Qut put St r eamfunctionality for writing to a file. Just like Fi | el nput St r eamthough,

Fi | eCut put St r eamprovides only a low-level interface to writing data. You'll typically wrap
another stream, like a Dat aCQut put St reamor a Pri nt Wi t er, around the

Fi | eQut put St r eamto provide higher-level functionality.

You can create a Fi | eCut put St r eamfrom a St ri ng pathname or a Fi | e object. Unlike

Fi | el nput St r eam however, the Fi | eCut put St r eamconstructors don't throw a

Fi | eNot FoundExcept i on. If the specified file doesn't exist, the Fi | eCut put St r eamcreates
the file. The Fi | eQut put St r eamconstructors can throw an | O=xcept i on if some other I/O
error occurs, so you still need to handle this exception.

If the specified file does exist, the Fi | eCut put St r eamopens it for writing. When you
subsequently call the wri t e( ) method, the new data overwrites the current contents of the file.
If you need to append data to an existing file, you should use a different constructor that accepts
an append flag:

Fil el nput Stream foois = new Fil eQutput Stream fooFile, true);
Fil el nput Stream psis = new Fi |l eQut put Strean("/etc/passwd”, true);

Another way to append data to files is with a RandomAccessFi | e, as we'll discuss shortly.

To write characters (instead of bytes) to a file, you can wrap an Cut put St ream i t er around a
Fi | eCut put St ream If you want to use the default character-encoding scheme, you can use
instead the Fi | eW i t er class, which is provided as a convenience. Fi | eW i t er works just like
Fi | eQut put St r eamm except that it writes characters instead of bytes and wrapsa W i t er
instead of an Qut put St ream

The following example reads a line of data from standard input and writes it to the file /tmp/foo.txt:

String s = new BufferedReader (



new | nput St reanReader ( Systemin ) ). readLine( );
File out = new File( "/tnp/foo.txt" );
FileWiter fw=new FileWiter ( out );
PrintWiter pw = new PrintWiter( fw)
pw.printin( s );
fw. close( );

Notice how we have wrapped a Pri nt Wit er aroundthe Fi | eW i t er to facilitate writing the
data. Also, to be a good filesystem citizen, we've called the cl ose( ) method when we're done
withthe Fi l eWiter.

10.2.3 The java.io.RandomAccessFile Class

The j ava. i 0. RandonAccessFi | e class provides the ability to read and write data from or to
any specified location in a file. RandomAccessFi | e implements both the Dat al nput and

Dat aCut put interfaces, so you can use it to read and write strings and primitive types. In other
words, RandomAccessFi | e defines the same methods for reading and writing data as

Dat al nput St r eamand Dat aCut put St r eam However, because the class provides random,
rather than sequential, access to file data, it's not a subclass of either | nput St r eamor

Qut put St ream

You can create a RandomAccessFi | e from a St ri ng pathname or a Fi | e object. The
constructor also takes a second St r i ng argument that specifies the mode of the file. Use "r " for
a read-only file or "r w" for a read-write file. Here's how we would start to create a simple
database to keep track of user information:

try {
RandomAccessFil e users =
new RandonmAccessFile( "Users", "rw' );
}
catch (1 Oexceptione) { ... }

When you create a RandonAccessFi | e in read-only mode, Java tries to open the specified file.
If the file doesn't exist, RandomAccessFi | e throws an | OExcept i on. If, however, you are
creating a RandomAccessFi | e in read-write mode, the object creates the file if it doesn't exist.
The constructor can still throw an | OExcept | on if some other I/O error occurs, so you still need
to handle this exception.

After you have created a RandonmAccessFi | e, call any of the normal reading and writing
methods, just as you would with a Dat al nput St r eamor Dat aOut put St r eam If you try to write
to a read-only file, the write method throws an | OExcept i on.

What makes a RandomAccessFi | e special is the seek( ) method. This method takes a | ong

value and uses it to set the location for reading and writing in the file. You can use the

get Fi | ePoi nter( ) method to get the current location. If you need to append data to the end

of the file, use | engt h( ) to determine that location, then seek( ) toit. You can write or seek

beyond the end of a file, but you can't read beyond the end of a file. The r ead( ) method throws
an ECFExcept i on if you try to do this.

Here's an example of writing some data to our user database:



users. seek( userNum * RECCRDSI ZE ) ;
users.witeUTF( userNane );
users.witelnt( userlD);

One caveat to notice with this example is that we need to be sure that the St ri ng length for
user Nare, along with any data that comes after it, fits within the specified record size.

10.2.4 Applets and Files

For security reasons, untrusted applets and applications are not permitted to read from and write
to arbitrary places in the filesystem. The ability of untrusted code to read and write files, as with
any kind of system resource, is under the control of the system security policy, through a
Securi tyManager object. A SecurityManager is installed by the application that is running
the untrusted code, such as appletviewer or a Java-enabled web browser. All filesystem access
must first pass the scrutiny of the Secur it yManager .

For example, Sun's HotJava web browser allows even untrusted applets to have access to
specific files designated by the user in an access-control list. Netscape Navigator, on the other
hand, currently doesn't allow untrusted applets any access to the filesystem. In both cases,
trusted applets can be given arbitrary access to the filesystem, just like a standalone Java
application.

Itisn't unusual to want an applet to maintain some kind of state information on the system on
which it's running. But for a Java applet that is restricted from access to the local filesystem, the
only option is to store data over the network on its server. Applets have at their disposal powerful
general means for communicating data over networks. The only limitation is that, by convention,
an applet's network communication is restricted to the server that launched it. This limits the
options for where the data will reside.

Currently, the only way for a Java program to send data to a server is through a network socket
or tools like RMI, which run over sockets. In Chapter 11, we'll take a detailed look at building
networked applications with sockets. With the tools described in that chapter, it's possible to build
powerful client/server applications. Sun also has a Java extension called WebNFS, which allows
applets and applications to work with files on an NFS server in much the same way as the
ordinary File API.

10.2.5 Loading Application Resources

We often have data files and other objects that we want our programs to use. Java provides
many ways to access these resources. In a standalone application, we can simply open files and
read the bytes. In both standalone applications and applets, we can construct URLSs to well-
known locations. The problem with these methods is that we have to know where our application
lives in order to find our data. This is not always as easy as it seems. What is needed is a
universal way to access resources associated with our application and our application's individual
classes. The Cl ass class's get Resour ce( ) method provides just this.

What does get Resour ce( ) do for us? To construct a URL to a file, we normally have to figure
out a home directory for our code and construct a path relative to that. In an applet, we could use
get CodeBase( ) orget Docunent Base( ) to find the base URL, and use that base to create
the URL for the resource we want. But these methods don't help a standalone application—and
there's no reason that a standalone application and an applet shouldn't be able to share classes
anyway. To solve this problem, the get Resour ce( ) method provides a standard way to get
objects relative to a given class file or to the system classpath. get Resour ce( ) returns a



special URL that uses the class's class loader. This means that no matter where the class came
from—a web server, the local filesystem, or even a JAR file—we can simply ask for an object, get
a URL for the object, and use the URL to access the object.

get Resour ce( ) takes as an argument a slash-separated pathname for the resource and
returns a URL. There are two kinds of paths: absolute and relative. An absolute path begins with
a slash. For example: /foo/bar/blah.txt. In this case, the search for the object begins at the top of
the class path. If there is a directory foo/bar in the class path, get Resour ce( ) searches that
directory for the blah.txt file. A relative URL does not begin with a slash. In this case, the search
begins at the location of the class file, whether it is local, on a remote server, or in a JAR file
(either local or remote). So if we were calling get Resour ce( ) on a class loader that loaded a
class inthe f oo. bar package, we could refer to the file as blah.txt. In this case, the class itself
would be loaded from the directory foo/bar somewhere on the class path, and we'd expect to find
the file in the same directory.

For example, here's an application that looks up some resources:

//1file: FindResources.java
package mypackage;

i nport java. net. URL;

i nport java.io.|OException;

public class FindResources {
public static void main( String [] args ) throws | Cexception {
/'l absolute fromthe classpath
URL url = FindResources.cl ass. get Resource("/ nypackage/ foo.txt");
/'l relative to the class location
url = FindResources. cl ass. get Resource("foo.txt");
/1l another relative docunent
url = FindResources. cl ass. get Resource("docs/ bar.txt");

The Fi ndResour ces class belongs to the nmypackage package, so its class file will live in a
mypackage directory somewhere on the class path. Fi ndResour ces locates the document
foo.txt using an absolute and then a relative URL. At the end, Fi ndResour ces uses a relative
path to reach a document in the mypackage/docs directory. In each case we refer to the

Fi ndResour ces's Cl ass object using the static . ¢l ass notation. Alternatively, if we had an
instance of the object, we could use its get Cl ass( ) method to reach the Cl ass object.

For an applet, the search is similar but occurs on the host from which the applet was loaded.
get Resour ce( ) first checks any JAR files loaded with the applet, and then searches the
normal remote applet class path, constructed relative to the applet's codebase URL.

get Resour ce( ) returns a URL for whatever type of object you reference. This could be a text
file or properties file that you want to read as a stream, or it might be an image or sound file or
some other object. If you want the data as a stream, the Cl ass class also provides a

get Resour ceAsStrean( ) method. In the case of an image, you'd probably hand the URL
over to the get | mage( ) method of the Appl et class or one of the components of the Swing
package for loading.

10.3 Serialization



Using a Dat aCut put St r ean} you could write an application that saves the data content of an
arbitrary object as simple types. However Java provides an even more powerful mechanism
called object serialization that does almost all of the work for you. In its simplest form, object
serialization is an automatic way to save and load the state of an object. However, object
serialization has depths that we cannot plumb within the scope of this book, including complete
control over the serialization process and interesting conundrums like class versioning.

Basically, an object of any class that implements the Seri al | zabl e interface can be saved and
restored from a stream. Special stream subclasses, Cbj ect | nput St r eamand

Chj ect Qut put St r eany are used to serialize primitive types and objects. Subclasses of

Serial i zabl e classes are also serializable. The default serialization mechanism saves the
value of an object's nonstatic and nontransient (see the following explanation) member variables.

One of the most important (and tricky) things about serialization is that when an object is
serialized, any object references it contains are also serialized. Serialization can capture entire
"graphs"” of interconnected objects and put them back together on the receiving end (we'll
demonstrate this in an upcoming example). The implication is that any object we serialize must
contain only references to other Ser i al | zabl e objects. We can take control by marking
nonserializable members as t r ansi ent or overriding the default serialization mechanisms. The
transi ent modifier can be applied to any instance variable to indicate that its contents are not
useful outside of the current context and should never be saved.

In the following example, we create a Hasht abl e and write it to a disk file called h.ser. The
Hasht abl e object is serializable because it implements the Ser i al i zabl e interface.

//file: Save.java
i nport java.io.?*;
i nport java.util.?*;

public class Save {
public static void main(String[] args) {
Hasht abl e h = new Hashtabl e( );
h.put("string", "Gabriel Garcia Marquez");
h.put("int", new Integer(26));
h. put ("doubl e", new Doubl e(Math. Pl));

try {
FileQutputStreamfileQut = new Fil eQut put Strean{"h.ser");

(bj ect Qut put St ream out = new Cbj ect Qut put Strean(fil eCQut);
out.witeoject(h);

}

catch (Exception e) {
Systemout.println(e);

}

}
}

First we construct a Hasht abl e with a few elements in it. Then, in the three lines of code inside
the t r y block, we write the Hasht abl e to a file called h.ser, using the wr i t eCbj ect ()
method of Chj ect Qut put St ream The Obj ect Qut put St r eamclass is a lot like the

Dat aCut put St r eamclass, except that it includes the powerful wri t eCbj ect () method.



The Hasht abl e we created has internal references to the items it contains. Thus, these
components are automatically serialized along with the Hasht abl e. We'll see this in the next
example when we deserialize the Hasht abl e.

//file: Load.java
i nport java.io.?*;
i nport java.util.?*;

public class Load {
public static void nmain(String[] args) {

try {
FilelnputStreamfileln = new Fil el nput Stream"h. ser");

bj ectlnputStreamin = new CbjectlnputStrean(fileln);
Hasht able h = (Hashtable)in.readObject( );
Systemout.println(h.toString( ));

}
catch (Exception e) {
Systemout.println(e);
}
}
}

In this example, we read the Hasht abl e from the h.ser file, using the r eadChj ect () method
of Obj ect | nput St ream The Obj ect | nput St r eamclass is a lot like Dat al nput St r eam
except that it includes the r eadOhj ect () method. The return type of r eadObj ect () is

(hj ect, so we need to cast it to a Hasht abl e. Finally, we print out the contents of the

Hasht abl e usingitst oSt ri ng( ) method.

We'll show more examples of serialization at work in Chapter 19, when we discuss JavaBeans.
There we'll see that it is even possible to serialize graphical GUI components in mid-use and
bring them back to life later.

10.4 Data Compression

The j ava. uti | . zi p package contains classes you can use for data compression. In this
section, we'll talk about how to use these classes. We'll also present two useful example
programs that build on what you have just learned about streams and files.

The classes inthe | ava. uti | . zi p package support two widespread compression formats:
GZIP and ZIP. Both of these are based on the ZLIB compression algorithm, which is discussed in
RFC 1950, RFC 1951, and RFC 1952. These documents are available at
http://www.fags.org/rfcs. But you don't need to read them unless you want to implement your
own compression algorithm or otherwise extend the functionality of the j ava. uti | . zip
package.

10.4.1 Compressing Data

The j ava. uti| . zi p class provides two Fi | t er Cut put St r eamsubclasses to write
compressed data to a stream. To write compressed data in the GZIP format, simply wrap a
&Z| PQut put St r eamaround an underlying stream and write to it. The following is a complete
example that shows how to compress a file using the GZIP format:

/[1file: XZip.java



i mport java.io.*;
i mport java.util.zip.*;

public class (Zp {
public static int sChunk = 8192;

public static void main(String[] args) {
if (args.length !'=1) {
Systemout. println("Usage: GZip source");
return;

/1 create output stream
String zipnane = args[0] +
&I PQut put St ream zi pout ;
try {
Fi | eQut put St ream out = new Fi | eQut put St rean{ zi pnane) ;
zi pout = new &ZI PQut put St rean(out);

.gz";

}
catch (1 OCException e) {

Systemout.println("Couldn't create " + zipnane + ".");
return;
}
byte[] buffer = new byte[sChunk];
/1 conpress the file
try {
FilelnputStreamin = new Fil el nput Strean(args[0]);
int length;
while ((length = in.read(buffer, 0, sChunk)) != -1)

zipout.wite(buffer, 0, length);
in.close( );

catch (1 OException e) {
Systemout. println("Coul dn't conpress
}

try { zipout.close( ); }
catch (1 Oexception e) {}

}
}

"+ args[0] + ".");

First we check to make sure we have a command-line argument representing a filename. Then
we construct a GZI PCut put St r eamwrapped around a Fi | eCut put St r eamrepresenting the
given filename, with the .gz suffix appended. With this in place, we open the source file. We read
chunks of data from it and write them into the GZI PCut put St r eam Finally, we clean up by
closing our open streams.

Writing data to a ZIP file is a little more involved but still quite manageable. While a GZIP file
contains only one compressed file, a ZIP file is actually a collection of files, some (or all) of which
may be compressed. Each item in the ZIP file is represented by a Zi pEnt r y object. When
writing to a Zi pCut put St r eam you'll need to call put Next Ent ry( ) before writing the data
for each item. The following example shows how to create a Zi pCut put St r eam You'll notice it's
just like creating a GZI PQut put St r eam

Zi pCQut put St r eam zi pout ;

try {
Fi |l eQut put Stream out = new Fi | eQut put Strean{("archi ve. zi p");



zi pout = new Zi pQut put St rean{out);

}
catch (1 Oexception e) {}

Let's say we have two files we want to write into this archive. Before we begin writing, we need to
call put Next Entry( ). We'll create a simple entry with just a name. There are other fields in
Zi pEnt ry that you can set, but most of the time you won't need to bother with them.

try {
ZipEntry entry = new ZipEntry("First");
zi pout . put Next Entry(entry);

}
catch (1 Oexception e) {}

At this point, you can write the contents of the first file into the archive. When you're ready to write
the second file into the archive, simply call put Next Entry( ) again:

try {
ZipEntry entry = new Zi pEntry("Second");

zi pout . put Next Entry(entry);

}
catch (1 Cexception e) {}
10.4.2 Decompressing Data

To decompress data, you can use one of the two Fi | t er | nput St r eamsubclasses provided in
java.util.zip. Todecompress data in the GZIP format, simply wrap a GZ| Pl nput St r eam
around an underlying Fi | el nput St r eamand read from it. The following is a complete example
that shows how to decompress a GZIP file:

[Ifile: GUnzip.java
i mport java.io.*;
i mport java.util.zip.*;

public class Gnzip {
public static int sChunk = 8192;
public static void main(String[] args) {
if (args.length !'=1) {
System out. println("Usage: GUnzip source");
return;
}
/] create input stream
String zi pnane, source
if (args[0].endsWth(".gz")) {
zi pname = args[0];
source = args[O0].substring(0, args[O].length( ) - 3);
}
el se {
zi pnane = args[0] +
source = args[O0];

.gz";

}
&I Pl nput St ream zi pi n;

try {
FilelnputStreamin = new Fil el nput St rean(zi pnane);



zZi pin = new G&ZI Pl nput Strean{in);

}
catch (1 Oexception e) {

Systemout.println("Couldn't open " + zipnane + ".");
return;

}

byte[] buffer = new byte[ sChunk];

/'l deconpress the file

try {
Fi l eCQut put Stream out = new Fi | eQut put St rean{ source);
int length;
while ((length = zipin.read(buffer, 0, sChunk)) != -1)

out.wite(buffer, 0, length);
out.close( );
}
catch (1 Oexception e) {
Systemout. println("Coul dn't deconpress
}

try { zipin.close( ); }
catch (1 Oexception e) {}
}
}

+args(0] +".");

First we check to make sure we have a command-line argument representing a filename. If the
argument ends with .gz, we figure out what the filename for the uncompressed file should be.
Otherwise, we use the given argument and assume the compressed file has the .gz suffix. Then
we construct a GZI Pl nput St r eamwrapped around a Fi | el nput St r eam representing the
compressed file. With this in place, we open the target file. We read chunks of data from the
&ZI Pl nput St r eamand write them into the target file. Finally, we clean up by closing our open
streams.

Again, the ZIP archive presents a little more complexity than the GZIP file. When reading from a
Zi pl nput St ream you should call get Next Entry( ) before reading each item. When

get Next Entry( ) returns nul |, there are no more items to read. The following example
shows how to create a Zi pl nput St r eam You'll notice it's just like creating a

&ZI Pl nput St ream

Zi pl nput St ream zi pi n;

try {
FilelnputStreamin = new Fil el nput Strean("archive. zi p");
Zi pin = new Ziplnput Strean(in);

}

catch (1 Oexception e) {}

Suppose we want to read two files from this archive. Before we begin reading, we need to call
get Next Entry( ). At the least, the entry will give us a name of the item we are reading from
the archive:

try {
ZipEntry first = zipin.getNextEntry( );

}
catch (1 Cexception e) {}



At this point, you can read the contents of the first item in the archive. When you come to the end
of the item, the r ead( ) method will return - 1. Now you can call get Next Ent ry( ) again to
read the second item from the archive:

try {
Zi pEntry second = zipin.getNextEntry( );

}
catch (1 Cexception e) {}

If you call get Next Entry( ) and it returns nul | , there are no more items, and you have
reached the end of the archive.



Chapter 11. Network Programming with Sockets
and RMI

The network is the soul of Java. Most of what is new and exciting about Java centers around the
potential for new kinds of dynamic, networked applications. In this chapter, we'll start our
discussion of the | ava. net package, which contains the fundamental classes for
communications and working with networked resources. We'll also talk about the | ava. r mi
package, which provides Java's powerful, high-level, Remote Method Invocation facilities.

The classes of | ava. net fall into two categories: the sockets API and tools for working with
Uniform Resource Locators (URLs). Figure 11.1 shows the | ava. net package.

Figure 11.1. The java.net package
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Java's sockets API provides access to the standard network protocols used for communications
between hosts on the Internet. Sockets are the mechanism underlying all other kinds of portable



networked communications. Sockets are a low-level tool—you can use sockets for any kind of
communications between client and server server or peer applications on the Net, but you have
to implement your own application-level protocols for handling and interpreting the data. Higher-
level networking tools, like remote method invocation and other distributed object systems, are
implemented on top of sockets.

Java remote method invocation (RMI) is a powerful tool that leverages Java object serialization,
allowing you to transparently work with objects on remote machines as if they were local. With
RMI it is easy to write distributed applications in which clients and servers work with each other's
data as full-fledged Java objects, rather than streams or packets of data.

In this chapter, we'll provide some simple and practical examples of Java network programming
at both levels, using sockets and RMI. In the next chapter, we'll look at the other half of the

] ava. net package, which works with URLSs, content handlers, and protocol handlers; we'll also
cover servlets, which allow you to write application components for web servers.

11.1 Sockets

Sockets are a low-level programming interface for networked communications. They send
streams of data between applications that may or may not be on the same host. Sockets
originated in BSD Unix and are, in other languages, hairy and complicated things with lots of
small parts that can break off and choke little children. The reason for this is that most socket
APIs can be used with almost any kind of underlying network protocol. Since the protocols that
transport data across the network can have radically different features, the socket interface can
be quite complex.t

1 For a discussion of sockets in general, see Unix Network Programming, by Richard Stevens (Prentice-
Hall). For a complete discussion of network programming in Java, see Java Network Programming, by
Elliotte Rusty Harold (O'Reilly & Associates).

Java supports a simplified object-oriented interface to sockets that makes network
communications considerably easier. If you have done network programming using sockets in C
or another structured language, you should be pleasantly surprised at how simple things can be
when objects encapsulate the gory details. If this is the first time you've come across sockets,
you'll find that talking to another application over the network can be as simple as reading a file or
getting user input from a terminal. Most forms of 1/O in Java, including most network 1/O, use the
stream classes described in Chapter 10. Streams provide a unified 1/O interface; reading or
writing across the Internet is similar to reading or writing a file on the local system.

Java provides different kinds of sockets to support three different distinct classes of underlying
protocols. In this first section, we'll look at Java's basic Socket class, which uses a connection-
oriented protocol. A connection-oriented protocol gives you the equivalent of a telephone
conversation; after establishing a connection, two applications can send data back and forth—the
connection stays in place even when no one is talking. The protocol ensures that no data is lost
and that whatever you send always arrives in order that you sent it. In the next section, we'll look
at the Dat agr anSocket class, which uses a connectionless protocol. A connectionless protocol
is more like the postal service. Applications can send short messages to each other, but no end-
to-end connection is set up in advance and no attempt is made to keep the messages in order. It
is not even guaranteed that the messages will arrive at all. A Mul t | cast Socket is a variation of
a Dat agr anSocket that can be used to send data to multiple recipients (multicasting). Working
with multicast sockets is very much like working with datagram sockets. However, multicasting is
not widely supported across the Internet at this time, so we will not cover it here.



Again, in theory, just about any protocol family can be used underneath the socket layer: Novell's
IPX, Apple's AppleTalk, even the old ChaosNet protocols. But in practice, there's only one
protocol family people care about on the Internet, and only one protocol family Java supports: the
Internet Protocol, IP. The Socket class speaks TCP, and the Dat agr anSocket class speaks
UDP, both standard Internet protocols. These protocols are generally available on any system
that is connected to the Internet.

11.1.1 Clients and Servers

When writing network applications, it's common to talk about clients and servers. The distinction
is increasingly vague, but the side that initiates the conversation is usually considered the client.
The side that accepts the request to talk is usually the server. In the case where there are two
peer applications using sockets to talk, the distinction is less important, but for simplicity we'll use
this definition.

For our purposes, the most important difference between a client and a server is that a client can
create a socket to initiate a conversation with a server application at any time, while a server must
prepare to listen for incoming conversations in advance. The | ava. net . Socket class
represents one side of an individual socket connection on both the client and server. In addition,
the server uses the | ava. net . Ser ver Socket class to listen for connections from clients. An
application (or thread) acting as a server creates a Ser ver Socket object and waits, blocked in a
calltoits accept () method, until a connection arrives. When it does, the accept ( ) method
creates a Socket object the server uses to communicate with the client. A server may carry on
conversations with multiple clients at once; in this case there will still be only a single

Server Socket but the server will have multiple Socket objects—one associated with each

client, as shown in Figure 11.2.
Figure 11.2. Clients and servers, Sockets and ServerSockets
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A client needs two pieces of information to locate and connect to another server on the Internet: a
hostname (used to find the host's network address) and a port number. The port number is an
identifier that differentiates between multiple clients or servers on the same host. A server
application listens on a prearranged port while waiting for connections. Clients select the port
number assigned to the service they want to access. If you think of the host computers as hotels
and the applications as guests, then the ports are like the guests' room numbers. For one person
to call another, he or she must know the other party's hotel name and room number.

11.1.1.1 Clients



A client application opens a connection to a server by constructing a Socket that specifies the
hostname and port number of the desired server:

try {
Socket sock = new Socket ("wupost.wust!.edu", 25);

catch ( UnknownHost Exception e ) {
Systemout.printin("Can't find host.");

}
catch ( 1 Oexception e ) {

Systemout.println("Error connecting to host.");
}

This code fragment attempts to connect a Socket to port 25 (the SMTP mail service) of the host
wupost.wustl.edu. The client handles the possibility that the hosthame can't be resolved
(UnknownHost Except i on) and that it might not be able to connect to it (| OExcept i on). As an
alternative to using a hostname, you can provide a string version of the host's IP address:

Socket sock = new Socket ("22.66.89.167", 25);

Once a connection is made, input and output streams can be retrieved with the Socket
get I nput Strean( ) and get Cut put St rean{ ) methods. The following (rather arbitrary)
code sends and receives some data with the streams:

try {
Socket server = new Socket ("foo. bar.coni, 1234);

Input Streamin = server.getlnputStrean( );
Qut put St ream out = server.get Qut put Strean( );

/'l wite a byte
out.wite(42);

/1 wite a newine or carriage return delimted string
PrintWiter pout = new PrintWiter( out, true );
pout.println("Hello!");

/1l read a byte
byte back = (byte)in.read( );

/1 read a newine or carriage return delimted string
Buf f er edReader bin =

new Buf f er edReader ( new | nput StreanReader( in ) );
String response = bin.readLine( );

/1 send a serialized Java object

hj ect Qut put St ream oout = new Obj ect Qut put Stream out );
oout.witeQoject( new java.util.Date( ) );

oout . flush( );

server.close( );

}
catch (1 Cexception e ) { ... }

In this exchange, the client first creates a Socket for communicating with the server. The
Socket constructor specifies the server's hostname ( foo.bar.com) and a prearranged port



number (1234). Once the connection is established, the client writes a single byte to the server
using the Qut put St reams wr i t e( ) method. It then wraps a Pri nt Wit er around the

Qut put St r eamin order to send a string of text more easily. Next, it performs the complementary
operations: reading a byte from the server using | nput St r eanis r ead( ) and then creating a
Buf f er edReader from which to get a full string of text. Finally, we do something really funky
and send a serialized Java object to the server, using an Coj ect Qut put St r eam (We'll talk in
depth about sending serialized objects later in this chapter.) The client then terminates the
connection with the cl ose( ) method. All these operations have the potential to generate

| OExcept i ons; the cat ch clause is where our application would deal with these.

11.1.1.2 Servers

After a connection is established, a server application uses the same kind of Socket object for its
side of the communications. However, to accept a connection from a client, it must first create a
Server Socket , bound to the correct port. Let's re-create the previous conversation from the
server's point of view:

/1 meanwhil e, on foo.bar.com..

try {
Server Socket |istener = new Server Socket( 1234 );

while ( !finished ) {
Socket client = listener.accept( ); // wait for connection

InputStreamin = client.getlnputStrean( );

Qut put Stream out = client.getCQutputStrean( );

/'l read a byte
byte soneByte = (byte)in.read( );

/1 read a newWine or carriage-return-delimted string
Buf f er edReader bin =

new Buf f er edReader ( new | nput StreanReader( in ) );
String soneString = bin.readLine( );

/1 wite a byte
out.wite(43);

/'l say goodbye
PrintWiter pout = new PrintWiter( out, true );
pout . println(" Goodbye!");

/'l read a serialized Java object
oj ect I nput Stream oi n = new Qbj ectl nputStreanm( in );
Date date = (Date)oin.readCbject( );

client.close( );

}

listener.close( );

}
catch (1 Cexception e ) { ... }
catch (Cl assNot FoundException e2 ) { ... }



First, our server creates a Ser ver Socket attached to port 1234. On some systems, there are
rules about what ports an application can use. Port numbers below 1024 are usually reserved for
system processes and standard, well-known services, so we pick a port number outside of this
range. The Ser ver Socket need be created only once; thereafter we can accept as many
connections as arrive.

Next we enter a loop, waiting for the accept () method of the Ser ver Socket to return an
active Socket connection from a client. When a connection has been established, we perform
the server side of our dialog, then close the connection and return to the top of the loop to wait for
another connection. Finally, when the server application wants to stop listening for connections
altogether, it calls the cl ose( ) method of the Ser ver Socket .

This server is single-threaded; it handles one connection at a time, not calling accept ( ) to
listen for a new connection until it's finished with the current connection. A more realistic server
would have a loop that accepts connections concurrently and passes them off to their own
threads for processing. (Our tiny web server example later in this chapter will do just this.)

11.1.1.3 Sockets and security

The previous examples presuppose that the client has permission to connect to the server, and
that the server is allowed to listen on the specified socket. This is not always the case.
Specifically, applets and other untrusted applications run under the auspices of a
SecurityManager that can impose arbitrary restrictions on what hosts they may or may not talk
to, and whether or not they can listen for connections.

The security policy imposed on applets by the SDK appl et vi ewer and the current version of
Netscape allows untrusted applets to open socket connections only to the host that served them.
That is, they can talk back only to the server from which their class files were retrieved. Untrusted
applets are not allowed to open server sockets themselves. Now, this doesn't mean that an
untrusted applet can't cooperate with its server to communicate with anyone, anywhere. The
applet's server could run a proxy that lets the applet communicate indirectly with anyone it likes.
What this security policy prevents is malicious applets roaming around inside corporate firewalls,
making connections to trusted services. It places the burden of security on the originating server,
and not the client machine. Restricting access to the originating server limits the usefulness of
"trojan” applications that do annoying things from the client side. (You probably won't let your
proxy mail-bomb people, because you'll be blamed.)

While fully trusted code and applications that are run without any security manager can perform
any kind of activities, the default security policy that comes with SDK 1.2 and later dissallows
most network access. So if you are going to run your application under the default security
manager (using the - Oj ava. securi ty. manager option on the command line or by manually
installing the security manager within your application) you will have to modify the policy file to
grant the appropriate permissions to your code. (See Section 3.2 in Chapter 3.)

The following policy file fragment sets the socket permissions to allow connections to or from any
host, on any nonprivileged port:

grant {
perm ssi on java. net. Socket Perm ssi on
"*.1024-", "listen,accept, connect";

}



When starting the Java interpreter, you can install the security manager and use this file (call it
mysecurity.policy):

java - D ava. security. nanager
-Djava. security. policy=nysecurity.policy M/Application

11.1.2 The DateAtHost Client

Many networked workstations run a time service that dispenses their local clock time on a well-
known port. This was a precursor of NTP, the more general Network Time Protocol. In the next
example, Dat eAt Host , we'll make a specialized subclass of | ava. uti | . Dat e that fetches the
time from a remote host instead of initializing itself from the local clock. (See Chapter 9, for a
complete discussion of the Dat e class.)

Dat eAt Host connects to the time service (port 37) and reads four bytes representing the time on
the remote host. These four bytes are interpreted as an integer representing the number of
seconds since the beginning of the 20th century. Dat e At Host converts this to Java's variant of
the absolute time (milliseconds since January 1, 1970, a date that should be familiar to Unix
users). The conversion first creates a | ong value, which is the unsigned equivalent of the integer
t i me. It subtracts an offset to make the time relative to the epoch ( January 1, 1970) rather than
the century, and multiplies by 1000 to convert to milliseconds. It then uses the converted time to
initialize itself:

/1file: DateAtHost.java
i nport java. net. Socket;
i nport java.io.?*;

public class Dat eAt Host extends java.util.Date {
static int timePort = 37;
/'l seconds fromstart of 20th century to Jan 1, 1970 00: 00 GMVI
static final long offset = 2208988800L;

public DateAtHost( String host ) throws | Oexception {
this( host, tinePort );
}

public DateAtHost( String host, int port ) throws | OException {
Socket server = new Socket( host, port );
Dat al nput Stream di n =
new Dat al nput Stream( server.getlnputStreanm( ) );
int time = din.readlnt( );
server.close( );

setTime( (((1L << 32) + tine) - offset) * 1000 );

}

That's all there is to it. It's not very long, even with a few frills. We have supplied two possible
constructors for Dat eAt Host . Normally we'd expect to use the first, which simply takes the name
of the remote host as an argument. The second constructor specifies the hostname and the port
number of the remote time service. (If the time service were running on a nonstandard port, we
would use the second constructor to specify the alternate port number.) This second constructor
does the work of making the connection and setting the time. The first constructor simply invokes
the second (using the t hi s( ) construct) with the default port as an argument. Supplying



simplified constructors that invoke their siblings with default arguments is a common and useful
technique; that is the only reason we've shown it here.

The second constructor opens a socket to the specified port on the remote host. It creates a

Dat al nput St r eamto wrap the input stream and then reads a four-byte integer using the

readl nt () method. It's no coincidence that the bytes are in the right order. Java's

Dat al nput St r eamand Dat aCut put St r eamclasses work with the bytes of integer types in
network byte order (most significant to least significant). The time protocol (and other standard
network protocols that deal with binary data) also uses the network byte order, so we don't need
to call any conversion routines. Explicit data conversions would probably be necessary if we were
using a nonstandard protocol, especially when talking to a non-Java client or server. In that case
we'd have to read byte by byte and do some rearranging to get our four-byte value. After reading
the data, we're finished with the socket, so we close it, terminating the connection to the server.
Finally, the constructor initializes the rest of the object by calling Dat e's set Ti ne( ) method
with the calculated time value.

The Dat eAt Host class can work with a time retrieved from a remote host almost as easily as
Dat e is used with the time on the local host. The only additional overhead is that we have to deal
with the possible | OExcept i on that can be thrown by the Dat eAt Host constructor:

try {
Date d = new Dat eAt Host( "sura.net" );
Systemout.printin( "The tinme over there is: " +d );
}
catch ( I Oexceptione ) { ... }

This example fetches the time at the host sura.net and prints its value.
11.1.3 The TinyHttpd Server

Have you ever wanted your very own web server? Well, you're in luck. In this section, we're going
to build Ti nyHt t pd, a minimal but functional HTTP daemon. Ti nyHt t pd listens on a specified
port and services simple HTTP "get file" requests. They look something like this:

GET /path/filename [ optional stuff ]

Your web browser sends one or more of these requests for each document it retrieves from a
web server. Upon reading a request, our server will attempt to open the specified file and send its
contents. If that document contains references to images or other items to be displayed inline, the
browser continues with additional G=T requests. For best performance Ti nyHi t pd services each
request in its own thread. Therefore, Ti nyHt t pd can service several requests concurrently.

Over and above the limitations imposed by its simplicity, Ti nyHi t pd suffers from the limitations
imposed by the fickleness of filesystem access in Java. It's important to remember that file
pathnames are still somewhat architecture-dependent—as is the concept of a filesystem to begin
with. This example should work, as is, on Unix and DOS-like systems, but may require some
customizations to account for differences on other platforms. It's possible to write slightly more
elaborate code that uses the environmental information provided by Java to tailor itself to the
local system. (Chapter 10 gives some hints about how.)



; Unless run with the security manager, the next example will serve files
from your host without protection. Don't try this at work.

Now, without further ado, here's Ti nyHt t pd:

/[/file: TinyHtpd.java
i mport java.net.*;

i mport java.io.*;

i mport java.util.*;

public class TinyHttpd {
public static void main( String argv[] ) throws | OException {
Server Socket ss =
new Server Socket ( I nteger.parselnt(argv[0]) );
while ( true )
new Ti nyH t pdConnecti on( ss.accept() ).start( );

}
} // end of class TinyHttpd

class TinyH t pdConnecti on extends Thread {
Socket client;
Ti nyHt t pdConnection ( Socket client ) throws Socket Exception {
this.client = client;
setPriority( NORMPRIORITY - 1);

}

public void run( ) {
try {
Buf f eredReader in = new BufferedReader (
new | nput St r eanReader (cl i ent. getl nputStream ), "8859 1" ));
Qut put Stream out = client.getQutputStrean( );
PrintWiter pout = new PrintWiter(
new Qut put StreanmWiter(out, "8859 1"), true );
String request = in.readLine( );
Systemout. println( "Request: "+request );

StringTokeni zer st = new StringTokeni zer( request );
if ( (st.countTokens( ) >= 2)
&& st.next Token( ).equal s("CGET") ) {
if ( (request = st.nextToken( )).startsWth("/") )
request = request.substring( 1 );
if ( request.endsWth("/") || request.equals("") )
request = request + "index.htm";
try {
FilelnputStreamfis = new Fil el nput Stream ( request );
byte [] data = new byte [ fis.available( ) ];
fis.read( data );
out.wite( data );
out.flush( );
} catch ( Fil eNot FoundException e ) {
pout.println( "404 object Not Found" ); }
} else
pout.println( "400 Bad Request" );
client.close( );
} catch ( 1 Oexception e ) {



Systemout.printin( "I/Oerror " + e ); }

Compile Ti nyHt t pd and place it in your class path, as described in Chapter 3. Goto a
directory with some interesting documents and start the daemon, specifying an unused port
number as an argument. For example:

% java TinyH tpd 1234

You should now be able to use your web browser to retrieve files from your host. You'll have to
specify the port number you chose in the URL. For example, if your hostname is foo.bar.com, and
you started the server as shown, you could reference a file as in:

http://foo. bar.com 1234/ wel cone. ht m

Ti nyHt t pd looks for files relative to its current directory, so the pathnames you provide should
be relative to that location. Retrieved some files? (Did you notice that when you retrieved an
HTML file your web browser automatically generated more requests for items like images that
were contained within it?) Let's take a closer look.

The Ti nyHt t pd application has two classes. The public Ti nyHt t pd class contains the nai n(

) method of our standalone application. It begins by creating a Ser ver Socket , attached to the
specified port. It then loops, waiting for client connections and creating instances of the second
class, a Ti nyHt t pdConnect i on thread, to service each request. The whi | e loop waits for the
Server Socket accept ( ) method to return a new Socket for each client connection. The
Socket is passed as an argument to construct the Ti nyHt t pdConnect i on thread that handles
it.

Ti nyH: t pdConnect i on is a subclass of Thr ead. It lives long enough to process one client
connection and then dies. Ti nyHt t pdConnect i on's constructor does two things. After saving
the Socket argument for its caller, it adjusts its priority. By lowering its priority to

NORM PRI ORI TY- 1 ( just below the default priority), we ensure that the threads servicing
established connections won't block Ti nyHt t pd's main thread from accepting new requests. (On
a time-slicing system, this is less important.) After our object is constructed, its st art ( )
method is invoked to bring the r un( ) method to life.

The body of Ti nyHt t pdConnect i on'srun( ) method is where all the magic happens. First,
we fetch an Cut put St r eamfor talking back to our client. The second line reads the G=T request
from the | nput St r eaminto the variable r eq. This request is a single newline-terminated

St ring that looks like the GET request we described earlier. For this we use a

Buf f er edl nput St r eamwrapped around an | nput St r eanReader . (We'll say more about the
[ nput St reanReader in a moment.)

We then parse the contents of r eq to extract a filename. The next few lines are a brief exercise in
string manipulation. We create a St r i ngTokeni zer and make sure there are at least two
tokens. Using next Token( ), we take the first token and make sure it's the word G=T. (If both
conditions aren't met, we have an error.) Then we take the next token (which should be a
filename), assign it to r eq, and check whether it begins with a forward slash. If so, we use
substring( ) to strip the first character, giving us a filename relative to the current directory. If
it doesn't begin with a forward slash, the filename is already relative to the current directory.
Finally, we check to see if the requested filename looks like a directory name (i.e., ends in a



slash) or is empty. In these cases, we append the familiar default filename index.html as a
convenience.

Once we have the filename, we try to open the specified file and load its contents into a large
byte array. If all goes well, we write the data out to the client on the Cut put St r eam If we can't
parse the request or the file doesn't exist, we wrap our Cut put St r eamwith a Pri nt St r eamto
make it easier to send a textual message. Then we return an appropriate HTTP error message.
Finally, we close the socket and return from r un( ), removing our Thr ead.

11.1.3.1 Do French web servers speak French?

In Ti nyHt t pd, we explicitly created the | nput St r eanReader for our Buf f er edRead and the
CQut put St reamN i t er forour Print Witer.We do this so that we can specify the character
encoding to use when converting to and from the byte representation of the HTTP protocol
messages. (Note that we're not talking about the body of the file we will be sending—that is
simply a stream of raw bytes to us; rather we're talking here about the GET and response
messages.) If we didn't specify, we'd get the default character encoding for the local system. For
many purposes that may be correct, but in this case we are speaking of a well-defined
international protocol, and we should be specific. The RFC for HTTP specifies that web clients
and servers should use the 1ISO8859-1 character encoding. We specify this encoding explicitly
when we construct the | nput St r eanReader and Qut put St ream/ i t er . Now as it turns out,
ISO8859-1 is just plain ASCII and conversion to and from Unicode should always leave ASCII
values unchanged, so again we would probably not be in any trouble if we we did not specify an
encoding. But it's important to think about these things at least once—and now you have.

11.1.3.2 Taming the daemon

An important problem with Ti nyHt t pd is that there are no restrictions on the files it will serve.
With a little trickery, the daemon will happily send any file in your filesystem to the client. It would
be nice if we could enforce the restriction that Ti nyHt t pd serve only files that are in the current
working directory or a subdirectory, as it normally does. An easy way to do this is to activate the
Java Security Manager. Normally, a security manager is used to prevent Java code downloaded
over the Net from doing anything suspicious. However, the security manager will serve nicely to
restrict file access in our application as well.

You can use a policy like the simple one that we provided in the section "Sockets and security"
earlier in this chapter; it allows the server to accept connections on a specified range of sockets.
As a happy bonus, the default file access security policy does just what we want: allows an
application access to files in its current working directory and subdirectories. So simply installing
the security manager will provide exactly the kind of file protection that we wanted in this case. (It
would be easy to add additional permissions if you wish to extend the server's range to other
well-defined areas.)

With the security manager in place, the daemon will not be able to access anything that isn't
within the current directory or a subdirectory. If it tries to, the security manager throws an
exception and prevents access to the file. In that case, we should have Ti nyHt t pd catch the
Secur it yExcepti on and return a proper message to the web browser. Add the following
cat ch clause after the Fi | eNot FoundExcept i on's cat ch clause:

.}.;:atch ( Security Exception e ) {
pout . println("403 Forbi dden");
}



11.1.3.3 Room for improvement

Ti nyHt t pd still has quite a bit of room for improvement. First, it consumes a lot of memory by
allocating a huge array to read the entire contents of the file all at once. A more realistic
implementation would use a buffer and send large amounts of data in several passes. Reading
and sending the data iteratively would also allow us to handle the contingency where the first
read does not return all of the data. In practice, this will not happen when reading from files, but
the possibility is left open by the APl and a responsible application should handle it. Finally,

Ti nyHt t pd is of course not fully compliant with the HTTP 1.0 protocol, but only implements a
rudimentary portion of the GET command. A modern web server would expect and send
additional "meta" information about the requested file in HTTP header text. As an additional
convenience, it wouldn't be hard to add a few lines of code to read directories and generate
linked HTML listings as most web servers do. Have fun with this example and you can learn quite
a bit!

11.1.4 Socket Options

The Java sockets API is a simplified interface to the general socket mechanisms. Ina C
environment, where all of the gory details of the network are visible to you, a lot of complex and
sometimes esoteric options can be set on sockets to govern the behavior of the underlying
protocols. Java gives us access to a few of the important ones. We'll refer to them by their C
language names so that you can recognize them in other networking books.

11.1.4.1 SO_TIMEOUT

The SO TI VEQOUT option sets a timer on all I/O methods of a socket that block so that you don't
have to wait forever if they don't return. This works for operations such as accept () on server
socketsand read( ) orwite( ) on all sockets. If the timer expires before the operation
would complete, an | nt er r upt edl OExcept i on is thrown. You can catch the exception and
continue to use the socket normally if it is appropriate, or you can take the opportunity to bail out
of the operation. Servers should use this sort of technique for their "shutdown" logic:

server Socket . set SoTi neout ( 2000 ); // 2 seconds

while ( !'shutdown ) {

try {
Socket client = serverSocket.accept( );

handl el ient( client );

} catch ( Interruptedl OException e ) {
/'l ignore the exception

}

/1 exit

}

You set the timer by calling the set SoTi neout () method of the Socket class with the timeout
period, in milliseconds, as an i nt argument. This works for regular Socket s and

Server Socket s (TCP) and Dat agr anSocket s (UDP), which we'll discuss in the next section.
To find out the current timeout value, call get SoTi neout ().

11.1.4.2 TCP_NODELAY



This option turns off a feature of TCP called Nagle's algorithm, which tries to prevent certain
interactive applications from flooding the network with very tiny packets. Turn this off if you have a
fast network and you want all packets sent as soon as possible. The Socket set TcpNoDel ay/(

) method takes a boolean argument specifying whether the delay is on or off.

To find out whether the TCP__NODELAY option is enabled, call get TcpNoDel ay( ), which
returns a bool ean.

11.1.4.3 SO_LINGER

This option controls what happens to any unsent data when you perform a cl ose( ) onan
active socket connection. Normally the system tries to deliver any network buffered data and
close the connection gracefully. The set SoLi nger ( ) method of the Socket class takes two
arguments: a boolean that enables or disables the option, and an | nt that sets the "linger” value,
in seconds. If you set the linger value to 0, any unsent data is discarded, and the TCP connection
is aborted (terminated with a reset).

To find out the current linger value, call get SoLi nger ().
11.1.4.4 TCP_KEEPALIVE

This option can be enabled with the set KeepAl i ve( ) method. It triggers a feature of TCP that
polls the other side every two hours if there is no other activity. Normally, when there is no data
flowing on a TCP connection, no packets are sent at all. This can make it difficult to tell the
difference between the other side simply being quiet and having disappeared. If one side of the
connection closes it properly, this will be detected. But if the other side simply disappears, we will
not know unless and until we try to talk to them. For this reason, servers often use this feature to
detect lost client connections (where they might otherwise only respond to requests, rather than
initiate them). Keepal i ve is not part of the TCP specification; it's an add-on that's not
guaranteed to be implemented everywhere. If you have the option, the best way to be sure of
detecting lost clients is to implement the polling as part of your own protocol.

11.1.4.5 "Half Close"

In TCP, it is technically possible to close one direction of a stream but not the other. In other
words, you can shut down sending but not receiving, or vice versa. A few protocols use this to
indicate the end of a client request by closing the client side of the stream, allowing the end of
stream to be detected by the server. You can shut down either half of a socket connection with
shut downCQut put ( ) or shut downl nput ( ).

11.1.5 Proxies and Firewalls

Many networks are behind firewalls, which prevent applications from opening direct socket
connections to the outside network. Instead, they provide a service called SOCKS (named for
sockets) that serves as a proxy server for socket connections, giving the administrators more
control over what connections are allowed.

Java has built-in support for SOCKS. All you have to do is set some system properties in your
application (in an applet, this should be already taken care of for you, since you wouldn't have
authority to set those properties). Here's a list of the properties that configure Java to use a proxy
server:



http.proxySet

A boolean (i r ue or f al se) indicating whether to use the proxy
http.proxyHost

The proxy server name
http.proxyPort

The proxy port number

You can set these properties on the command line using the Java interpreter's - D option or by
calling the Syst em set Property( ) method. The following command runs MyPr ogr amusing
the proxy server at foo.bar.com on port 1234:

% java -Dhttp. proxySet=true -Dhttp. proxyServer=fo0. bar.com
-Dhtt p. proxyPort=1234 MyProgram

In SDK 1.0.2, the names didn't have the htt p. prefix. SDK 1.1 and later checks for the new
names and then the old names. If the firewall does not allow any outside socket connections,
your applet or application may still be able to communicate with the outside world by using HTTP
to send and receive data. See Chapter 12, for an example of how to perform an HTTP POST.

11.2 Datagram Sockets

TinyH: t pd used a Socket to create a connection to the client using the TCP protocol. In that
example, TCP itself took care of data integrity; we didn't have to worry about data arriving out of
order or incorrect. Now we'll take a walk on the wild side. We'll build an applet that uses a

j ava. net . Dat agr anSocket , which uses the UDP protocol. A datagram is sort of like a letter
sent via the postal service: it's a discrete chunk of data transmitted in one packet. Unlike the
previous example, where we could get a convenient Cut put St r eamfrom our Socket and write
the data as if writing to a file, with a Dat agr anSocket we have to work one datagram at a time.
(Of course, the TCP protocol was taking our Cut put St r eamand slicing the data into packets,
but we didn't have to worry about those detalils.)

UDP doesn't guarantee that the data will get through. If the data packets do get through, they
may not arrive in the order in which we sent them; it's even possible for duplicate datagrams to
arrive (under rare circumstances). Using UDP is something like cutting the pages out of the
encyclopedia, putting them into separate envelopes, and mailing them to your friend. If your friend
wants to read the encyclopedia, it's his or her job to put the pages in order. If some pages got lost
in the mail, your friend has to send you a letter asking for replacements.

Obviously, you wouldn't use UDP to send a huge amount of data without error correction. But it's
significantly more efficient than TCP, particularly if you don't care about the order in which
messages arrive, or whether 100% of their arrival is guaranteed. For example, in a simple
periodic database lookup, the client can send a query; the server's response itself constitutes an
acknowledgment. If the response doesn't arrive within a certain time, the client can send another
query. It shouldn't be hard for the client to match responses to its original queries. Some
important applications that use UDP are the Domain Name System (DNS) and Sun's Network
Filesystem (NFS).



11.2.1 The HeartBeat Applet

In this section, we'll build a simple applet, Hear t Beat , that sends a datagram to its server each
time it's started and stopped. We'll also build a simple standalone server application, Pul se, that
receives these datagrams and prints them. By tracking the output, you could have a crude
measure of who is currently looking at your web page at any given time. This is an ideal
application for UDP: we don't want the overhead of a TCP socket, and if datagrams get lost, it's
no big deal.

First, the Hear t Beat applet:

//file: HeartBeat.]java
i mport java.net.*;
i mport java.io.*;

public class HeartBeat extends java.applet. Applet {
String nyHost;
int nmyPort;

public void init( ) {
myHost get CodeBase() . get Host ( );
my Por t I nt eger. parselnt( getParaneter("nyPort") );

}

private void sendMessage( String nessage ) {
try {
byte [] data = nessage. getBytes( );
I net Address addr = | net Addr ess. get ByNane( nyHost );
Dat agr anPacket pack =
new Dat agr anPacket (data, data.length, addr, nyPort );
Dat agr anSocket ds = new Dat agr anSocket () ;
ds. send( pack );
ds.close( );
} catch ( 1 Oexception e ) {
Systemout.printin( e ); // Error creating socket
}

}

public void start( ) {
sendMessage("Arrived");
}

public void stop( ) {
sendMessage(" Departed");
}

}
Compile the applet and include it in an HTML document with an <APPLET> tag:

<APPLET hei ght =10 wi dt h=10 code=Heart Beat >
<PARAM nane="nyPort" val ue="1234">
</ APPLET>

Make sure to place the Hear t Beat . cl ass file in the same directory as the HTML document. If
you're not familiar with embedding applets in HTML documents, consult Chapter 20.



The nyPor t parameter should specify the port number on which our server application listens for
data.

Next, the server-side application, Pul se:

/1file: Pulse.java
i nport java.net.*;
i nport java.io.?*;

public class Pul se {
public static void main( String [] argv ) throws | Cexception {
Dat agr anSocket s =
new Dat agr anSocket ( I nteger. parselnt(argv[0]) );

while ( true ) {
Dat agr anPacket packet =
new Dat agr anPacket (new byte [1024], 1024);
s.recei ve( packet );
String nessage = new String( packet.getData( ) );
Systemout.println( "Heartbeat from "
+ packet . get Address(). get Host Nane( )
+ " - " + nessage );

}
Compile Pul se and run it on your web server, specifying a port number as an argument:

% java Pul se 1234

The port number should be the same as the one you used in the nmyPor t parameter of the
<APPLET> tag for Hear t Beat .

Now, pull up the web page in your browser. You won't see anything interesting there (a better
application might do something visual as well), but you should get a blip from the Pul se
application. Leave the page and return to it a few times. Each time the applet is started or
stopped, it sends a message and Pul se reports it

Heart beat from foo.bar.com- Arrived
Heart beat from foo.bar.com- Departed
Heart beat from foo.bar.com- Arrived
Heart beat from foo.bar.com- Departed

Cool, eh? Just remember the datagrams are not guaranteed to arrive (although it's highly unlikely
you'll ever see them fail on a normal network), and it's possible that you could miss an arrival or a
departure. Now let's look at the code.

11.2.1.1 The HeartBeat applet code

Hear t Beat overridestheinit( ),start( ),andstop( ) methods of the Appl et class,
and implements one private method of its own, sendMVessage( ), that sends a datagram.
Hear t Beat beginsitslifeininit( ), where it determines the destination for its messages. It



uses the Appl et get CodeBase( ) and get Host () methods to find the name of its
originating host and fetches the correct port number from the myPor t parameter of the
<APPLET> tag. After i ni t ( ) has finished, the st art ( ) and st op( ) methods are called
whenever the applet is started or stopped. These methods merely call sendVessage( ) with
the appropriate message.

sendMessage( ) is responsible for sending a St r i ng message to the server as a datagram. It
takes the text as an argument, constructs a datagram packet containing the message, and then
sends the datagram. All of the datagram information is packed into a

J ava. net . Dat agr anPacket object, including the destination and port number. The

Dat agr anPacket is like an addressed envelope, stuffed with our bytes. After the

Dat agr anPacket is created, sendMVessage( ) simply has to open a Dat agr anSocket and
send it.

The first five lines of sendVessage( ) build the Dat agr anPacket :

try {
byte [] data = nessage. getBytes( );
| net Address addr = I net Address. get ByNane( nyHost );
Dat agr anPacket pack =
new Dat agr anPacket (data, data.length, addr, myPort );

First, the contents of nessage are placed into an array of bytes called dat a. Next a

j ava. net . | net Addr ess object is created from the name nyHost . An | net Addr ess holds the
network address information for a host in a special format. We get an | net Addr ess object for
our host by using the static get ByNane( ) method of the | net Addr ess class. (We can't
construct an | net Addr ess object directly.) Finally, we call the Dat agr anPacket constructor
with four arguments: the byte array containing our data, the length of the data, the destination
address object, and the port number.

The remaining lines construct a default client Dat agr anSocket and call its send( ) method to
transmit the Dat agr anPacket . After sending the datagram, we close the socket:

Dat agr anSocket ds = new Dat agr anSocket ( ) ;
ds. send( pack );
ds.close( );

Two operations throw a type of | OExcept i on: the | net Addr ess. get ByNane( ) lookup and
the Dat agr anSocket send(). | net Address. get ByNanme( ) can throw an

UnknownHost Except i on, which is a type of | CExcept i on that indicates that the hostname
can't be resolved. If send( ) throws an | OExcept | on, it implies a serious client-side problem in
talking to the network. We need to catch these exceptions; our cat ch block simply prints a
message telling us that something went wrong. If we get one of these exceptions, we can assume
the datagram never arrived. However, we can't assume the inverse: even if we don't get an
exception, we still don't know that the host is actually accessible or that the data actually arrived.
With a Dat agr anSocket , we never find out from the API.

11.2.1.2 The Pulse server code

The Pul se server corresponds to the Hear t Beat applet. First, it creates a Dat agr anSocket to
listen on our prearranged port. This time, we specify a port number in the constructor; we get the
port number from the command line as a string (ar gv[ 0] ) and convert it to an integer with



I nt eger. parsel nt ( ). Note the difference between this call to the constructor and the call in
Hear t Beat . In the server, we need to listen for incoming datagrams on a prearranged port, SO
we need to specify the port when creating the Dat agr anSocket . The client just sends
datagrams, so we don't have to specify the port in advance; we build the port number into the
Dat agr anPacket itself.

Second, Pul se creates an empty Dat agr anPacket of a fixed size to receive an incoming
datagram. This alternative constructor for Dat agr anPacket takes a byte array and a length as
arguments. As much data as possible is stored in the byte array when it's received. (A practical
limit on the size of a UDP datagram that can be sent over the Internet is 8K, although they can be
larger for local network use.) Finally, Pul se calls the Dat agr anSocket'srecei ve( ) method
to wait for a packet to arrive. When a packet arrives, its contents are printed.

As you can see, working with Dat agr anSocket is slightly more tedious than working with
Socket s. With datagrams, it's harder to spackle over the messiness of the socket interface. The
Java API rather slavishly follows the Unix interface, and that doesn't help. It's easy to imagine
conveniences that would make all of this simpler; perhaps we'll have them in a future release.

11.3 Simple Serialized Object Protocols

Earlier in this chapter, we showed a hypothetical conversation in which a client and server
exchanged some primitive data and a serialized Java object. Passing an object between two
programs may not have seemed like a big deal at the time, but in the context of Java as a
portable byte-code language, it has profound implications. In this section, we'll show how a
protocol can be built using serialized Java objects.

Before we move on, it's worth considering network protocols. Most programmers would consider
working with sockets to be "low-level" and unfriendly. Even though Java makes sockets much
much easier to use than many other languages, sockets still provide only an unstructured flow of
bytes between their endpoints. If you want to do serious communications using sockets, the first
thing you have to do is come up with a protocol that defines the data you'll be sending and
receiving. The most complex part of that protocol usually involves how to marshal (package) your
data for transfer over the Net and unpack it on the other side.

As we've seen, Java's Dat al nput St r eamand Dat aCuput St r eamclasses solve this problem
for simple data types. We can read and write numbers, St ri ngs, and Java primitives in a
recognizable format that can be understood on any other Java platform. But to do real work, we
need to be able to put simple types together into larger structures. Java object serialization solves
this problem elegantly, by allowing us to send our data just as we use it, as the state of Java
objects. Serialization can even pack up entire graphs of interconnected objects and put them
back together at a later time, possibly in another Java VM.

11.3.1 A Simple Object-Based Server

In the following example, a client will send a serialized object to the server, and the server will
respond in kind. The client object represents a request and the server object represents a
response. The conversation ends when the client closes the connection. It's hard to imagine a
simpler protocol. All the hairy details are taken care of by object serialization, so we can keep
them out of our design.

To start we'll define a class, Request , to serve as a base class for the various kinds of requests
we make to the server. Using a common base class is a convenient way to identify the object as
a type of request. In a real application, we might also use it to hold basic information like client



names and passwords, timestamps, serial numbers, etc. In our example, Request can be an
empty class that exists so others can extend it:

/1file: Request.java
public class Request inplenents java.io.Serializable {}

Request implements Seri al i zabl e, so all of its subclasses will be serializable by default. Next
we'll create some specific kinds of Request s. The first, Dat eRequest , is also a trivial class.
We'll use it to ask the serverto send us aj ava. uti | . Dat e object as a response:

//file: DateRequest.]java
public class Dat eRequest extends Request {}

Next, we'll create a generic VWr kRequest object. The client sends a VWor kRequest to get the
server to perform some computation for it. The server calls the \Wor kRequest object's execut e(
) method and returns the resulting object as a response:

/1file: WrkRequest.|ava

public abstract class WrkRequest extends Request {
public abstract Object execute( );

}

For our application, we'll subclass VWr kRequest to create MyCal cul at i on, which adds code
that performs a specific calculation; in this case, we will just square a number:

/1file: MyCal cul ation.java
public class MyCal cul ati on extends WrkRequest {
int n;

public MyCalculation( int n) {
this.n = n;

public Object execute( ) {
return new Integer( n * n);
}

As far as data content is concerned, MyCal cul at i on really doesn't do much; it only transports
an integer value for us. But keep in mind that a request object could hold lots of data, including
references to many other objects in complex structures like arrays or linked lists. An interesting
part here is that MyCal cul at i on also contains behavior—the execut e( ) operation. In our
discussion of RMI below, we'll see how Java's ability to dynamically download bytecode for
serialized objects makes both the data content and behavior portable over the network.

Now that we have our protocol, we need the server. The following Ser ver class looks a lot like
the Ti nyHt t pd server that we developed earlier in this chapter:

//1file: Server.java
i nport java.net.*;
i nport java.io.?*;

public class Server {
public static void main( String argv[] ) throws | Oexception {



Server Socket ss = new Server Socket ( I nteger.parselnt(argv[0]) );
while ( true )
new Server Connection( ss.accept() ).start( );

} // end of class Server

cl ass Server Connection extends Thread {
Socket client;
Server Connection ( Socket client ) throws SocketException {
this.client = client;
setPriority( NORMPRIORITY - 1);

}

public void run( ) {
try {

ojectlnputStreamin =
new Cbj ectlnputStrean( client.getlnputStrean( ) );

hj ect Qut put St ream out =
new Cbj ect Qut put Stream( client.getQutputStrean( ) );

while ( true ) {
out.witeObject( processRequest( in.readObject( ) ) );
out.flush( );

}
} catch ( EOFException e3 ) { // Normal EOF

try {
client.close( );
} catch ( 1 Oexception e ) { }
} catch ( 1 Oexception e ) {
Systemout.printin( "I/Oerror " + e ); /[l I/Oerror
} catch ( C assNot FoundException e2 ) {
Systemout.println( e2 ); // unknown type of request object

}

private Object processRequest( Object request ) {
if ( request instanceof DateRequest )
return new java.util.Date( );
else if ( request instanceof WrkRequest )
return ((WrkRequest)request). execute( );
el se
return null;
}

}

The Ser ver services each request in a separate thread. For each connection, the r un( )
method creates an Chj ect | nput St r eamand an Cbj ect Qut put St r eam which the server
uses to receive the request and send the response. The pr ocessRequest () method decides
what the request means and comes up with the response. To figure out what kind of request we
have, we use the i nst anceof operator to look at the object's type.

Finally, we get to our Cl i ent, which is even simpler:

/[Ifile: Cient.java
i mport java.net.*;
i mport java.io.*;



public class Cient {
public static void main( String argv[] ) {

try {
Socket server =

new Socket ( argv[O0], Integer.parselnt(argv[l1]) );
(bj ect Qut put St ream out =

new Ohj ect Qut put Strean( server.getQutputStreanm( ) );
bjectlnputStreamin =

new Obj ect | nput Streanm( server.getlnputStreanm( ) );

out.witeoject( new DateRequest( ) );
out.flush( );
Systemout.printin( in.readCject( ) );

out.witeQoject( new MyCalculation( 2 ) );
out.flush( );
Systemout.printin( in.readCject( ) );

server.close( );
} catch ( | Cexception e ) {
Systemout.printin( "I/Oerror " + e ); // I/Oerror
} catch ( C assNot FoundException e2 ) {
Systemout.printin( e2 ); // unknown type of response object

}
}
}

Just like the server, Cl | ent creates the pair of object streams. It sends a Dat eRequest and
prints the response; it then sends a My Cal cul at i on object and prints the response. Finally, it
closes the connection. On both the client and the server, we call the f | ush( ) method after
each calltowr it eCbj ect (). This method forces the system to send any buffered data; it's
important because it ensures that the other side sees the entire request before we wait for a
response. When the client closes the connection, our server catches the EO-Except i on that is
thrown and ends the session. Alternatively, our client could write a special object, perhaps nul |,
to end the session; the server could watch for this item in its main loop.

The order in which we construct the object streams is important. We create the output streams
first because the constructor of an Cbj ect | nput St r eamtries to read a header from the stream
to make sure that the | nput St r eamreally is an object stream. If we tried to create both of our
input streams first, we would deadlock waiting for the other side to write the headers.

Finally, we can run the example. Run the Ser ver, giving it a port number as an argument:
% java Server 1234

Then run the Cl | ent , telling it the server's hosthame and port number:

%java Client flatland 1234

The result should look like this:

Sun Jul 11 14:25:25 PDT 1999
4



All right, the result isn't that impressive, but it's easy to imagine more substantial applications.
Imagine that you needed to perform some complex computation on many large data sets. Using
serialized objects makes maintenance of the data objects natural and sending them over the wire
trivial. There is no need to deal with byte-level protocols at all.

11.3.1.1 Limitations

There is one catch in this scenario: both the client and server need access to the necessary
classes. That is, all of the Request classes—including My Cal cul at i on, which is really the
property of the Cl i ent —have to be in the class path on both the client and the server machines.
As we hinted earlier, in the next section we'll see that it's possible to send the Java bytecode
along with serialized objects to allow completely new kinds of objects to be transported over the
network dynamically. We could create this solution on our own, adding to the earlier example
using a network class loader to load the classes for us. But we don't have to: Java's RMI facility
automates that for us. The ability to send both serialized data and class definitions over the
network makes Java a powerful tool for developing advanced distributed applications.

11.4 Remote Method Invocation (RMI)

The most fundamental means of inter-object communication in Java is method invocation.
Mechanisms like the Java event model are built on simple method invocations between objects in
the same virtual machine. Therefore, when we want to communicate between virtual machines on
different hosts, it's natural to want a mechanism with similar capabilities and semantics. Java's
Remote Method Invocation mechanism does just that. It lets us get a reference to an object on a
remote host and use it as if it were in our own virtual machine. RMI lets us invoke methods on
remote objects, passing real Java objects as arguments and getting real Java objects as returned
values.

Remote invocation is nothing new. For many years C programmers have used remote procedure
calls (RPC) to execute a C function on a remote host and return the results. The primary
difference between RPC and RMI is that RPC, being an offshoot of the C language, is primarily
concerned with data structures. It's relatively easy to pack up data and ship it around, but for
Java, that's not enough. In Java we don't just work with data structures; we work with objects,
which contain both data and methods for operating on the data. Not only do we have to be able to
ship the state of an object (the data) over the wire, but also the recipient has to be able to interact
with the object (use its methods) after receiving it.

It should be no surprise that RMI uses object serialization, which allows us to send graphs of
objects (objects and all of the connected objects that they reference). When necessary, RMI can
also use dynamic class loading and the security manager to transport Java classes safely. Thus,
the real breakthrough of RMI is that it's possible to ship both data and behavior (code) around the
Net.

11.4.1 Remote and Non-Remote Objects

Before an object can be used with RMI, it must be serializable. But that's not sufficient. Remote
objects in RMI are real distributed objects. As the name suggests, a remote object can be an
object on a different machine; it can also be an object on the local host. The term remote means
that the object is used through a special kind of object reference that can be passed over the
network. Like normal Java objects, remote objects are passed by reference. Regardless of where
the reference is used, the method invocation occurs at the original object, which still lives on its
original host. If a remote host returns a reference to one of its objects to you, you can call the
object's methods; the actual method invocations will happen on the remote host, where the object
resides.



Nonremote objects are simpler. They are just normal serializable objects. (You can pass these
over the network as we did in Section 11.3.1 earlier.) The catch is that when you pass a
nonremote object over the network it is simply copied. So references to the object on one host
are not the same as those on the remote host. Nonremote objects are passed by copy (as
opposed to by reference). This may be acceptable for many kinds of data-oriented objects in your
application, especially those that are not being modified.

11.4.1.1 Stubs and skeletons

No, we're not talking about a gruesome horror movie. Stubs and skeletons are used in the
implementation of remote objects. When you invoke a method on a remote object (which could be
on a different host), you are actually calling some local code that serves as a proxy for that object.
This is the stub. (It is called a stub because it is something like a truncated placeholder for the
object.) The skeleton is another proxy that lives with the real object on its original host. It receives
remote method invocations from the stub and passes them to the object.

After you create stubs and skeletons you never have to work with them directly; they are hidden
from you (in the closet, so to speak). Stubs and skeletons for your remote objects are created by
running the r ni ¢ (RMI compiler) utility. After compiling your Java source files normally, you run
r m ¢ on the remote object classes as a second pass. It's easy; we'll show you how in the
following examples.

11.4.1.2 Remote interfaces

Remote objects are objects that implement a special remote interface that specifies which of the
object's methods can be invoked remotely. The remote interface must extend the

j ava. rm . Renot e interface. Your remote object will implement its remote interface; as will the
stub object that is automatically generated for it. In the rest of your code, you should then refer to
the remote object as an instance of the remote interface—not as an instance of its actual class.
Because both the real object and stub implement the remote interface, they are equivalent as far
as we are concerned (for method invocation); locally, we never have to worry about whether we
have a reference to a stub or to an actual object. This "type equivalence" means that we can use
normal language features, like casting with remote objects. Of course public fields (variables) of
the remote object are not accessible through an interface, so you must make accessor methods if
you want to manipulate the remote object's fields.

All methods in the remote interface must declare that they can throw the exception
java.rm . Renot eExcept i on. This exception (actually, one of many subclasses to

Renot eExcept i on) is thrown when any kind of networking error happens: for example, the
server could crash, the network could fail, or you could be requesting an object that for some
reason isn't available.

Here's a simple example of the remote interface that defines the behavior of Renot eChj ect ;
we'll give it two methods that can be invoked remotely, both of which return some kind of W dget
object:

i nport java.rm.?*;
public interface Renpte(hject extends Renote {

public Wdget doSonething( ) throws RenbteException;
public Wdget doSonethi ngEl se( ) throws RenbpteException;



11.4.1.3 The UnicastRemoteObject class

The actual implementation of a remote object (not the interface we discussed previously) will
usually extend | ava. rmi . server. Uni cast Renot eCbj ect . This is the RMI equivalent to the
familiar Obj ect class. When a subclass of Uni cast Renot eCbj ect is constructed, the RMI
runtime system automatically "exports" it to start listening for network connections from remote
interfaces (stubs) for the object. Like | ava. | ang. Obj ect, this superclass also provides
implementations of equal s( ) , hashcode( ),andtoString( ) that make sense for a
remote object.

Here's a remote object class that implements the Renot eCbj ect interface; we haven't supplied
implementations for the two methods or the constructor:

public class MyRenpt ebj ect inplenments RenoteCbj ect
extends java.rm . Uni cast Renot e(hj ect

{
public RenoteCbjectlnpl( ) throws RenoteException {...}
public Wdget doSonething( ) throws RenoteException {...}
public Wdget doSonethingEl se( ) throws RenpteException {...}
/1 other non-public nethods

}

This class can have as many additional methods as it needs; presumably, most of them will be
privat e, but that isn't strictly necessary. We have to supply a constructor explicitly, even if the
constructor does nothing, because the constructor (like any method) can throw a

Renot eExcept i on; we therefore can't use the default constructor.

What if we can't or don't want to make our remote object implementation a subclass of

Uni cast Renot e(bj ect ? Suppose, for example, that it has to be a subclass of BankAccount
or some other special base type for our system. Well, we can simply export the object ourselves
using the static method export Cbj ect ( ) of Uni cast Renot eCoj ect . The export Cbj ect (
) method takes as an argument a Renot e interface and accomplishes what the

Uni cast Renot eCbj ect constructor normally does for us. It returns as a value the remote
object's stub. However, you will normally not do anything with this directly. In the next section,
we'll discuss how to get stubs to your client through the RMI registry.

Normally, exported objects listen on individual ephemeral (randomly assigned) port numbers by
default. (This is implementation-dependent.) You can control the port number allocation explicitly
by exporting your objects using another form of Uni cast Renot eCbj ect . export Cbj ect ( ),
which takes both a Renot e interface and a port number as arguments.

Finally, the name Uni cast Renot eChj ect suggests the question, "what other kinds of remote
objects are there?" Right now, none. It's possible that Sun will develop remote objects using other
protocols or multicast techniques in the future. They would take their place alongside

Uni cast Renot e(bj ect .

11.4.1.4 The RMI registry

The registry is the RMI phone book. You use the registry to look up a reference to a registered
remote object on another host. We've already described how remote references can be passed
back and forth by remote method calls. But the registry is needed to bootstrap the process: the
client needs some way of looking up some initial object.



The registry is implemented by a class called Nani ng and an application called r ni regi stry.
This application must be running on the local host before you start a Java program that uses the
registry. You can then create instances of remote objects and bind them to particular names in
the registry. (Remote objects that bind themselves to the registry sometimes provide a mai n( )
method for this purpose.) A registry name can be anything you choose; it takes the form of a
slash-separated path. When a client object wants to find your object, it constructs a special URL
with the r m : protocol, the hostname, and the object name. On the client, the RMI Nami ng class
then talks to the registry and returns the remote object reference.

Which objects need to register themselves with the registry? Well, initially any object that the
client has no other way of finding. But a call to a remote method can return another remote object
without using the registry. Likewise, a call to a remote method can have another remote object as
its argument, without requiring the registry. So you could design your system such that only one
object registers itself, and then serves as a factory for any other remote objects you need. In
other words, it wouldn't be hard to build a simple object request "bouncer” (we won't say "broker")
that returns references to all of the remote objects that your application uses. Depending on how
you structure your application, this may happen naturally anyway.

Why avoid using the registry for everything? The current RMI registry is not very sophisticated,
and lookups tend to be slow. It is not intended to be a general-purpose directory service (like
JNDI, the Java API for accessing directory/name services), but simply to bootstrap RMI
communications. It wouldn't be surprising if Sun releases a much improved registry in the future,
but that's not the one we have now. Besides, the factory design pattern is extremely flexible and
useful.

11.4.2 An RMI Example

The first thing we'll implement using RMI is a duplication of the simple serialized object protocol
from the previous section. We'll make a remote RMI object called My Ser ver on which we can
invoke methods to get a Dat e object or execute a \Wr kRequest object. First, we'll define our
Renot e interface:

//1file: RmtServer.java
i nport java.rm.?*;
i nport java.util.*;

public interface Rm Server extends Renote {
Date getDate( ) throws RenoteException;
Obj ect execute( WrkRequest work ) throws RenpteException;

The Rnt Ser ver interface extends the | ava. r m . Renot e interface, which identifies objects that
implement it as remote objects. We supply two methods that take the place of our old protocol:
getDate( ) and execute( ).

Next, we'll implement this interface in a class called MySer ver that defines the bodies of these
methods. (Note that a more common convention for naming the implementation of remote
interfaces is to postfix the class name with "l npl ". Using that convention \Vy Ser ver would
instead be named something like Ser ver | npl .)

/1file: MyServer.java
i nport java.rm.?*;
i nport java.util.*;



public class MyServer
extends java.rm . server. Uni cast Renot e(bj ect
i npl enents Rmt Server {

public MyServer( ) throws RenoteException { }

/'l inplenent the Rnt Server interface

public Date getDate( ) throws RenoteException {
return new Date( );

}

public Object execute( WrkRequest work )
t hrows Renot eException {
return work. execute( );

}
public static void main(String args[]) {
try {
Rmt Server server = new MyServer( );
Nam ng.rebi nd("Ni ftyServer", server);
} catch (java.io.lOexception e) {
/| problemregistering server
}
}

}

MyServer extends | ava. rm . Uni cast Renot eCbj ect , so when we create an instance of

My Ser ver , it will automatically be exported and start listening to the network. We start by
providing a constructor, which must throw Renot eExcept | on, accommodating errors that might
occur in exporting an instance. (We can't use the automatically generated default constructor,
because it won't throw the exception.) Next, My Ser ver implements the methods of the remote
Rnt Ser ver interface. These methods are straightforward.

The last method in this class is mai n( ) . This method lets the object set itself up as a server.
mai n( ) creates an instance of the My Ser ver object and then calls the static method

Nami ng. rebi nd( ) to register the object with the registry. The arguments to r ebi nd( ) are
the name of the remote object in the registry (Ni f t ySer ver ), which clients will use to look up the
object, and a reference to the server object itself. We could have called bi nd( ) instead, but
rebi nd( ) isless prone to problems: if there's already a Ni f t ySer ver registered, r ebi nd( )
replaces it.

We wouldn't need the nai n( ) method or this Nani ng business if we weren't expecting clients
to use the registry to find the server. That is, we could omit mai n( ) and still use this object as a
remote object. We would be limited to passing the object in method invocations or returning it
from method invocations—»but that could be part of a factory design, as we discussed before.

Now we need our client:

/1file: MyCient.java
i nport java.rm.?*;
i nport java.util.?*;

public class M/ient {



public static void main(String [] args)
t hrows Renot eException {
new Myient( args[0] );
}

public MyCient(String host) {
try {
Rmt Server server = (Rnt Server)

Nam ng. | ookup("rm ://"+host+"/ N ftyServer");
Systemout.println( server.getDate( ) );
System out . println(

server. execute( new MyCal culation(2) ) );
} catch (java.io.lOexception e) {

/1 11O Error or bad URL
} catch (Not BoundException e) {

/1 N ftyServer isn't registered
}

}

When we run My Cl | ent , we pass it the hostname of the server on which the registry is running.
The mai n( ) method creates an instance of the MyCl i ent object, passing the hostname from
the command line as an argument to the constructor.

The constructor for MyCl i ent uses the hostname to construct a URL for the object. The URL will
look something like this: rmi://hostname/NiftyServer. (Remember, Ni f t ySer ver is the name
under which we registered our Rt Ser ver .) We pass the URL to the static Nani ng. | ookup( )
method. If all goes well, we get back a reference to a Rnt Ser ver (the remote interface). The
registry has no idea what kind of object it will return; | ookup( ) therefore returns an Obj ect
which we must cast to Rt Ser ver .

Compile all of the code. Then run r mi ¢ , the RMI compiler, to make the stub and skeleton files for
My Ser ver :

% rmc MyServer

Let's run the code. For the first pass, we'll assume that you have all of the class files, including
the stubs and skeletons generated by r i c, available in the class path on both the client and
server machines. (You can run this example on a single host to test it if you want.) Make sure
your class path is correct and then start the registry; then start the server:

%rmregistry & (on Wndows: start rmregistry )
% j ava MyServer

In each case, make sure the registry application has the class path including your server classes
so that it can load the stub class. (Be warned, we're going to tell you to do the opposite later as
part of setting up the dynamic class loading!)

Finally, on the client machine, run MyCl i ent , passing the hostname of the server:

% java My ient myhost



The client should print the date and the number 4, which the server graciously calculated.
Hooray! With just a few lines of code you have created a powerful client/server application.

11.4.2.1 Dynamic class loading

Before running the example, we told you to distribute all the class files to both the client and
server machines. However, RMI was designed to ship classes, in addition to data, around the
network; you shouldn't have to distribute all the classes in advance. Let's go a step further, and
have RMI load classes for us, as needed. This involves several steps.

First, we need to tell RMI where to find any other classes it needs. We can use the system
property j ava. rm . server. codebase to specify a URL on a web server (or FTP server) when
we run our client or server. This URL specifies the location of a JAR file or a base directory in
which RMI will begin its search for classes. When RMI sends a serialized object (i.e., an object's
data) to some client, it also sends this URL. If the recipient needs the class file in addition to the
data, it fetches the file at the specified URL. In addition to stub classes, other classes referenced
by remote objects in the application can be loaded dynamically. Therefore, we don't have to
distribute many class files to the client; we can let the client download them as necessary. In
Figure 11.3, we see an example as MyCl | ent is going to the registry to get a reference to the
Rnt Ser ver object. Then MyCl | ent dynamically downloads the stub class for Rt My Ser ver
from a web server running on the server object's host.

Figure 11.3. RMI applications and dynamic class loading
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We can now split our class files between the server and client machines. For example, we could
withhold the My Cal cul at i on class from the server, since it really belongs to the client. Instead,
we can make the MyCal cul at i on class available via a web server on some machine (probably
our client's) and specify the URL when we run MyCl i ent :

java -D ava.rm .server.codebase="http:// nyserver/foo/"



In this case, we would expect that MyCal cul at i on would be accessible at the URL
http://myserver/foo/MyCalculation.class/. (Note that the trailing slash in the URL is important: it
says that the location is a base directory that contains the class files.)

Next we have to set up security. Since we will be loading class files over the network and
executing their methods, we must have a security manager in place to restrict the kinds of things
those classes may do, at least in the case where they are not coming from a trusted code source.
RMI will not load any classes dynamically unless a security manager is installed. One easy way
to meet this condition is to install the RM Secur it yManager as the system security manager for
your application. It is an example security manager that works with the default system policy and
imposes some basic restrictions on what downloaded classes can do. To install the

RM SecurityManager, simply add the following line to the beginning of the nai n( ) method of
both the client and server applications (yes, we'll be sending code both ways in the next section):

main( ) {
Syst em set Securi tyManager ( new RM SecurityManager( ) );

The RM Securi t yManager will work with the system security policy file to enforce restrictions.
So you'll have to provide a policy file that allows the client and server to do basic operations like
make network connections. Unfortunately allowing all of the operations needed to load classes
dynamically would require us listing a lot of permission information and we don't want to get into
that here. So we're going to resort to suggesting that for this example you simply grant the code
all permissions. Here is an example policy file—call it mysecurity.policy:

grant {
perm ssion java.security. Al Perm ssion ;
1

(It's exceedingly lame to install a security manager and then tell it to enforce no real security, but
we're more interested in looking at the networking code at the moment.)

So, to run our MyServer application we would now do something like this:

java -Dj ava.rm .server.codebase=" http://nyserver/foo/'
-Djava. security. policy=nysecurity.policy M/Server

Finally, there is one last magic incantation required to enable dynamic class loading. As of the
current implementation, the r m r egi st r y must be run without the classes which are to be
loaded being in its class path. If the classes are in the class path of r ni r egi st ry, it will not
annotate the serialized objects with the URLSs of their class files and no classes will be
dynamically loaded. This limitation is really annoying; all we can say is to heed the warning for
now.

If you meet these conditions, you should be able to get the client to run starting with only the
MyCl i ent class and the Rnt Ser ver remote interface. All of the other classes will be loaded
dynamically from a remote location.

11.4.2.2 Passing remote object references
So far, we haven't done anything that we couldn't have done with the simple object protocol. We

only used one remote object, iy Ser ver , and we got its reference from the RMI registry. Now
we'll extend our example to pass some remote references between the client and server (these



will be prime candidates for dynamic class loading). We'll add two methods to our remote
Rnt Ser ver interface:

public interface Rnt Server extends Renote {

Stringlterator getList( ) throws RenoteException;
voi d asyncExecut e( Wor kRequest work, WbrkLi stener |istener )
t hrows Renot eExcepti on;

get Li st ( ) retrieves a new kind of object from the server: a St ri ngl t er at or. The
Stringlterator isasimple list of strings, with some methods for accessing the strings in
order. We will make it a remote object, so that implementations of St ri ngl t er at or stay on the
server.

Next we'll spice up our work request feature by adding an asyncExecut e( ) method.
asyncExecut e( ) lets us hand off a \\or kRequest object as before, but it does the calulation
on its own time. The return type for asyncExecut e( ) isvoi d, because it doesn't actually
return a value; we get the result later. Along with the request, our client passes a reference to a
Wor kLi st ener object that is to be notified when the VWr kRequest is done. We'll have our
client implement V\or kLi st ener itself.

Because this is to be a remote object, our interface must extend Renot e, and its methods must
throw Renot eExcept i ons:

/[lfile: Stringlterator.java
i mport java.rm.*;

public interface Stringlterator extends Renote {
publ i c bool ean hasNext( ) throws RenoteException;
public String next( ) throws RenoteException;

Next, we provide a simple implementation of St ri ngl t er at or, called MySt ri ngl t erat or:

//1file: MyStringlterator.java
i mport java.rm.*;

public class MyStringlterator
extends java.rm . server. Uni cast Renot e(hj ect
i npl enents Stringlterator {

String [] list;
int index = 0;

public MyStringlterator( String [] list )
t hrows Renot eException {
this.list = 1ist;

public bool ean hasNext( ) throws RenoteException {
return index < list.length;

public String next( ) throws RenoteException {
return list[index++];



}

MyStringlterator extends Uni cast Renot eChj ect . Its methods are simple: it can give you
the next string in the list, and it can tell you whether there are any strings that you haven't seen
yet.

Next, we'll define the Vor kLi st ener remote interface. This is the interface that defines how an
object should listen for a completed V\or kRequest . It has one method, wor kConpl et ed( ),
which the server that is executing a \\or kRequest calls when the job is done:

/[1file: WbrkListener.java
i nport java.rm.?*;

public interface WrkLi stener extends Renote {
publ i c voi d workConpl et ed( Wr kRequest request, Cbject result )
t hrows Renot eExcepti on;

}

Next, let's add the new features to My Ser ver . We need to add implementations of the
get Li st ( ) and asyncExecut e( ) methods, which we just added to the Rt Ser ver
interface:

public class MyServer extends java.rm .server. Uni cast Renot eQbj ect
i npl enents Rmt Server {

public Stringlterator getList( ) throws RenpteException {
return new MyStringlterator(
new String [] { "Foo", "Bar", "Cee" } );
}

public void asyncExecut e(
Wor kRequest request , WorkLi stener |istener )
throws java.rm . Renpt eException {

/'l should really do this in another thread
(bj ect result = request.execute( );
i stener.wor kConpl et ed( request, result );

}
}

get List( ) justreturnsa Stringlterator with some stuffinit. asyncExecute( ) callsa
VWor kRequest 's execut e( ) method and notifies the listener when it's done. (Our
implementation of asyncExecut e( ) is a little cheesy. If we were forming a more complex
calculation we would want to start a thread to do the calculation, and return immediately from
asyncExecut e( ), so the client won't block. The thread would call wor kConpl et ed( ) ata
later time, when the computation was done. In this simple example, it would probably take longer
to start the thread than to perform the calculation.)

We have to modify MyCl i ent to implement the remote \Wor kLi st ener interface. This turns
MyCl i ent into a remote object, so we must make it a Uni cast Renot eObj ect . We also add
the wor kConpl et ed( ) method that the Vor kLi st ener interface requires:

public class M i ent



extends java.rm . server. Uni cast Renot e(bj ect
i npl enents Wor kLi st ener {

publ i c void workConpl et ed( WorkRequest request, Object result)
t hrows Renot eException {
Systemout.println("Async work result =" + result);

}

Finally, we want MyCl | ent to exercise the new features. Add these lines after the calls to
getDate( ) and execute( ):

/'l Mydient constructor

Striﬁéiterator se = server.getList( );
while ( se.hasNext( ) )
Systemout.printin( se.next( ) );

server. asyncEkExecut e( new MyCal cul ati on(100), this );

We use get Li st () to get the iterator from the server, then loop, printing the strings. We also
call asyncExecut e( ) to perform another calculation; this time, we square the number 100.
The second argument to asyncExecut e( ) isthe Wr kLi st ener to notify when the data is
ready; we pass a reference to ourself (t hi s).

Now all we have to do is compile everything and run r m c to make the stubs for all our remote
objects:

rmc MyCient MyServer MyStringlterator

Restart the RMI registry and My Ser ver on your server, and run the client somewhere. You
should get the following:

Fri Jul 11 23:57:19 PDT 1999
4

Foo

Bar

Cee

Async work result = 10000

If you are experimenting with dynamic class loading, you should be able to have the client
download all of the server's auxiliary classes (the stubs and the St ri ngl t er at or) from a web
server. And, conversely, you should be able to have the My Ser ver download the Cl i ent stub
and Wr kRequest related classes when it needs them.

We hope that this introduction has given you a feel for the tremendous power that RMI offers
through object serialization and dynamic class loading. Java is one of the first programming
languages to offer this kind of powerful framework for distributed applications.

11.4.3 RMI Object Activation

One of the newest features of RMI is the ability to create remote objects that are persistent. They
can save their state and be reactivated when a request from a client arrives. This is an important



feature for large systems with remote objects that must remain accessible across long periods of
time. RMI activation effectively allows a remote object to be stored away—in a database, for
example—and automatically be reincarnated when it is needed. RMI activation is not particularly
easy to use and would not have benefited us in any of our simple examples; we won't delve into it
here. Much of the functionality of activatable objects can be achieved by using factories of
shorter-lived objects that know how to retrieve some state from a database (or other location).
The primary users of RMI activation may be systems like Enterprise JavaBeans, which need a
generalized mechanism to save remotely accessible objects and revive them at later times.

11.4.4 RMI and CORBA

Java supports an important alternative to RMI, called CORBA (Common Object Request Broker
Architecture). We won't say much about CORBA here, but you should know that it exists. CORBA
is a distributed object standard developed by the Object Management Group (OMG), of which
Sun Microsystems is one of the founding members. Its major advantage is that it works across
languages: a Java program can use CORBA to talk to objects written in other languages, like C or
C++. This is may be a considerable advantage if you want to build a Java front end for an older
program that you can't afford to re-implement. CORBA also provides other services similar to
those in the Java Enterprise APIs. CORBA's major disadvantages are that it's complex, inelegant,
and somewhat arcane.

Sun and OMG have been making efforts to bridge RMI and CORBA. There is an implementation
of RMI that can use IIOP (the Internet Inter-Object Protocol) to allow some RMI-to-CORBA
interoperability. However, CORBA currently does not have many of the semantics necessary to
support true RMI style distributed objects. So this solution is somewhat limited at this time.



Chapter 12. Programming for the Web

When we think about the World Wide Web, we normally think of applications—web browsers,
web servers—and the many kinds of content that those applications move around the network.
But it's important to note that standards and protocols, not the applications themselves, have
enabled the Web's growth. Ever since the first days of the Internet, there have been ways to
move files from here to there, and document formats that were just as good as HTML, but there
was not a unifying model for how to identify, retrieve, and display information; nor was there a
universal way for applications to interact with that data over the network. As we all know, HTML
came to provide a common data basis for documents. In this chapter, we're going to talk about
how to use HTTP, the protocol that governs communications between web clients and servers,
and URLs, which provide a standard for naming and addressing objects on the Web.

In this chapter, we're also going to talk about web programming: making the Web intelligent,
making it do what you want. This involves writing code for both clients and servers. Java provides
a powerful API for dealing with URLSs, which will be the first focus of our discussion. Then we'll
discuss how to write web clients that can interact with the standard CGl interface, using the GET
and POST methods. Finally, we'll take a look at servlets, simple Java programs that run on web
servers and provide an effective way to build intelligence into your web pages. Servlets have
been one of the most important and popular developments in Java over the past couple of years.

12.1 Uniform Resource Locators (URLS)

A URL points to an object on the Internet. It's (usually) a text string that identifies an item, tells
you where to find it, and specifies a method for communicating with it or retrieving it from its
source. A URL can refer to any kind of information source. It might point to static data, such as a
file on a local filesystem, a web server, or an FTP archive; or it can point to a more dynamic
object such as a news article on a news spool or a record in a database. URLs can even refer to
less tangible resources such as telnet sessions and mailing addresses.

The Java URL classes provide an API for accessing well-defined networked resources, like
documents and applications on servers. The classes use an extensible set of prefabricated
protocol and content handlers to perform the necessary communication and data conversion for
accessing URL resources. With URLSs, an application can fetch a complete file or database record
from a server on the network with just a few lines of code. Applications like web browsers, which
deal with networked content, use the URL class to simplify the task of network programming.
They also take advantage of the dynamic nature of Java, which allows handlers for new types of
URLs to be added on the fly. As new types of servers and new formats for content evolve,
additional URL handlers can be supplied to retrieve and interpret the data without modifying the
original application.

A URL is usually presented as a string of text, like an address.™ Since there are many different
ways to locate an item on the Net, and different mediums and transports require different kinds of
information, there are different formats for different kinds of URLs. The most common form has
three components: a network host or server, the name of the item and its location on that host,
and a protocol by which the host should communicate:

1 The term URL was coined by the Uniform Resource Identifier (URI) working group of the IETF to
distinguish URLs from the more general notion of Uniform Resource Names or URNs. URLs are really just
static addresses, whereas URNs would be more persistent and abstract identifiers used to resolve the
location of an object anywhere on the Net. URLs are defined in RFC 1738 and RFC 1808.

protocol : // host nane/ | ocati on/item nane



prot ocol (also called the "scheme") is an identifier such as ht t p, f t p, or gopher ; host nane
is an Internet hostname; and the | ocat i on and i t emcomponents form a path that identifies the
object on that host. Variants of this form allow extra information to be packed into the URL,
specifying things like port numbers for the communications protocol and fragment identifiers that
reference parts inside the object.

We sometimes speak of a URL that is relative to another URL, called a base URL. In that case
we are using the base URL as a starting point and supplying additional information. For example,
the base URL might point to a directory on a web server; a relative URL might name a particular
file in that directory.

12.2 The URL Class

A URL is represented by an instance of the | ava. net . URL class. A URL object manages all the
component information within a URL string and provides methods for retrieving the object it
identifies. We can construct a URL object from a URL specification string or from its component
parts:

try {
URL aDoc =
new URL( "http://foo. bar.conf docunents/honepage. htm " );
URL saneDoc =
new URL("http", "foo. bar.conl, "docunent s/ honepage. htm ") ;
}

catch ( Mal f ormredURLException e ) { }

These two URL objects point to the same network resource, the homepage.html document on the
server foo.bar.com. Whether the resource actually exists and is available isn't known until we try
to access it. At this point, the URL object just contains data about the object's location and how to
access it. No connection to the server has been made. We can examine the URL's components
with the get Prot ocol (), get Host( ),and get Fi | e( ) methods. We can also compare it
to another URL with the saneFi | e( ) method (which has an unfortunate name for something
which may not point to a file). saneFi | e( ) determines whether two URLS point to the same
resource. It can be fooled, but saneFi | e( ) does more than compare the URLs for equality; it
takes into account the possibility that one server may have several names, and other factors.

When a URL is created, its specification is parsed to identify just the protocol component. If the
protocol doesn't make sense, or if Java can't find a protocol handler for it, the URL constructor
throws a MVal f or nedURLExcept i on. A protocol handler is a Java class that implements the
communications protocol for accessing the URL resource. For example, given an ht t p URL,
Java prepares to use the HTTP protocol handler to retrieve documents from the specified server.

12.2.1 Stream Data

The lowest level way to get data back from URL is to ask for an | nput St r eamfrom the URL by
calling openSt rean( ) . Currently, if you're writing an applet or working in an otherwise
untrusted environment this is about your only choice. Getting the data as a stream may be useful
if you want to receive continuous updates from a dynamic information source. The drawback is
that you have to parse the contents of the object yourself. Not all types of URLs support the
openSt rean( ) method because not all types of URLSs refer to concrete data; you'll get an
UnknownSer vi ceExcept i on if the URL doesn't.



The following code prints the contents of an HTML file:

try {
URL url = new URL("http://server/index.htm");

Buf f er edReader bin = new BufferedReader (
new | nput St reanReader ( url.openStrean( ) ));

String |ine;
while ( (line = bin.readLine( )) != null )
Systemout.printin( line);
} catch (Exception e) { }

We ask for an | nput St r eamwith openSt rean( ) and wrap itin a Buf f er edReader to read
the lines of text. Because we specify the ht t p protocol in the URL, we require the services of an
HTTP protocol handler. As we'll discuss later, that raises some questions about what kinds of
handlers we have available. This example partially works around those issues because no
content handler is involved; we read the data and interpret the content ourselves (by simply
printing it).

Applets have additional restrictions. To be sure that you can access the specified URL and the
correct protocol handler, construct URLSs relative to the base URL that identifies the applet's
codebase—the location of the applet code. For example:

new URL( get CodeBase( ), "foo/bar.gif" );

This should guarantee that the needed protocol is available and accessible to the applet.
However if you are just trying to get data files or media associated with an applet, there is a more

general way; see the discussion of get Resour ce( ) in Chapter 10.
12.2.2 Getting the Content as an Object

openStrean( ) operates at a lower level than the more general content-handling mechanism
implemented by the URL class. We showed it first because, until some things are settled, you'll be
limited as to when you can use URLs in their more powerful role. When a proper content handler
is installed, you can retrieve the item the URL addresses as a Java object, by calling the URL's
get Cont ent () method. Currently, this only works if you supply one with your application or
install one in the local classpath. (The HotJava web browser also provides a mechanism for
adding new handlers.) In this mode of operation get Cont ent () initiates a connection to the
host, fetches the data for you, determines the MIME (Multipurpose Internet Mail Extensions) type
of the contents, and invokes a content handler to turn the bytes into a Java object. MIME is a
standard that was developed to facilitate multimedia email, but it has become widely used as a
general way to specify how to treat data; Java uses MIME to help it pick the right content handler.

For example, given the URL http://foo.bar.com/index.html, a call to get Cont ent () would use
the HTTP protocol handler to retrieve data and an HTML content handler to turn the data into an
appropriate document object. A URL that points to a plain-text file might use a text-content
handler that returns a St r i ng object. Similarly, a GIF file might be turned into an

| magePr oducer object using a GIF content handler. If we accessed the GIF file using an "ftp"
URL, Java would use the same content handler but would use the FTP protocol handler to
receive the data.



get Cont ent () returns the output of the content handler, but leaves us wondering what kind of
object we got. Since the content handler has to be able to return anything, the return type of

get Content () is Ooj ect . In a moment, we'll describe how we could ask the protocol handler
about the object's MIME type, which it discovered. Based on this, and whatever other knowledge
we have about the kind of object we are expecting, we can cast the Chj ect to its appropriate,
more specific type. For example, if we expect a St r i ng, we'll cast the result of get Cont ent ()
toasString:

try |
String content = (String)nmyURL. getContent( );
} catch ( O assCast Exceptione ) { ... }

If we're wrong about the type, we'll get a Cl assCast Except i on. As an alternative, we could
check the type of the returned object using the | nst anceof operator, like this:

if ( content instanceof String ) {
String s = (String)content;

Various kinds of errors can occur when trying to retrieve the data. For example, get Cont ent ()
can throw an | O=xcept i on if there is a communications error. Other kinds of errors can occur at
the application level: some knowledge of how the application-specific content and protocol
handlers deal with errors is necessary.

One problem that could arise is that a content handler for the data's MIME type wouldn't be
available. In this case, get Cont ent () just invokes an "unknown type" handler and returns the
data as araw | nput St r eam A sophisticated application might specialize this behavior to try to
decide what to do with the data on its own.

In some situations, we may also need knowledge of the protocol handler. For example, consider
a URL that refers to a nonexistent file on an HTTP server. When requested, the server probably
returns a valid HTML document that contains the familiar "404 Not Found" message. In a naive
implementation, an HTML content handler might be invoked to interpret this message and return
it as it would any other HTML document. To check the validity of protocol-specific operations like
this, we may need to talk to the protocol handler.

The openSt rean( ) and get Cont ent () methods both implicitly create the connection to the
remote URL object. When the connection is set up, the protocol handler is consulted to create a
URLConnect i on object. The URLConnect i on manages the protocol-specific communications.
We can get a URLConnect i on for our URL with the openConnecti on( ) method. One of the
things we can do with the URLConnect i on is ask for the object's content type. For example:

URLConnecti on connection = nyURL. openConnection( );
String m neType = connection. get Content Type( );

(bj ect contents = nyURL. get Contents( );

We can also get protocol-specific information. Different protocols provide different types of
URLConnect i on objects. The Ht t pURLConnect | on object, for instance, can interpret the "404
Not Found" message and tell us about the problem. (We'll examine URLConnect i ons in detail in

)



12.3 Web Browsers and Handlers

The content- and protocol-handler mechanisms we've introduced can be used by any application
that accesses data via URLs. This mechanism is extremely flexible; to handle a URL, you need
only the appropriate protocol and content handlers. One obvious application is for Java-based
web browsers that can handle new and specialized kinds of URLSs.

Furthermore, Java's ability to load new classes over the Net means that, in theory, the handlers
don't even need to be owned by the browser. Content and protocol handlers could be
downloaded over the Net from the same site that supplies the data, and used by the browser. If
you wanted to supply some completely new data type, using a completely new protocol, you
could make your data file plus a content handler and a protocol handler available on your web
server; anyone using a Web browser supporting Java could automatically get the appropriate
handlers whenever they access your data. In short, Java could allow you to build dynamically
extensible web applications. Instead of gigantic do-everything software, you could build a
lightweight scaffold that dynamically incorporates extensions as needed.

Figure 12.1 shows the conceptual operation of a downloadable content handler in a web
browser; Figure 12.2 does the same for a protocol handler.

Figure 12.1. A content handler at work
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Figure 12.2. A protocol handler at work
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Unfortunately, a few nasty flies are stuck in this ointment. The schemes depicted in these figures
have been part of the Java scene since it was an alpha product, but they are still hypothetical.
There is no API for dynamically downloading new content and protocol handlers. In fact, there is
no API for determining what content and protocol handlers exist on a given platform. Although



content and protocol handlers are part of the Java API and an intrinsic part of the mechanism for
working with URLS, specific content and protocol handlers aren't defined. The standard Java
classes don't, for example, include content handlers for HTML, GIF, MPEG, or other common
data types. Sun's SDK and all of the other Java environments do come with these kinds of
handlers, but these are installed on an application-level basis.

There are two real issues here:

There isn't a standard that says that certain types of handlers have to be provided in
each environment along with the core Java API. Instead we have to rely on the
application to decide what kinds of data types it needs. This makes sense but is
frustrating when it should be reasonable to expect certain basic types to be covered in all
environments.

There isn't any standard that tells you what kind of object the content handler should
return. Maybe GIF data should be returned as an | nagePr oducer object, but at the
moment, that's an application-level decision. If you're writing your own application and
your own content handlers, that isn't an issue: you can make any decision you want. But
if you're writing content handlers that are to be used by arbitrary applications (like
HotJava), you need to know what they expect.

For the HotJava web browser, you can install handlers locally (as for all Java applications), but
other web browsers such as Netscape and Internet Explorer do not directly support handlers at
all. You can install them locally for use in your own (intranet) applets but you cannot use them to
extend the capabilities of the browser. Netscape and Internet Explorer are currently classic
monolithic applications: knowledge about certain kinds of objects, like HTML and GIF files, is built
in. These browsers can be extended via a plug-in mechanism, which is a much less fine grained
and less powerful approach than Java's handler mechanism. If you're writing applets for use in
Netscape or Internet Explorer now, about all you can do is use the openSt rean{ ) method to
get a raw input stream from which to read data.

12.3.1 Other Handler Frameworks

The idea of dynamically downloadable handlers could also be applied to other kinds of handler-
like components. For example, the XML community is fond of referring to XML as a way to apply
semantics to documents and to Java as a portable way to supply the behavior that goes along
with those semantics. It's possible that an XML viewer could be built with downloadable handlers
for displaying XML tags.

The JavaBeans APIs also touch upon this subject with the Java Activation Framework. The JAF
provides a way to detect the type of a stream of data and "encapsulate access to it" in a Java
Bean. If this sounds suspiciously like the content handler's job, it is. Unfortunately, it looks like
these APIs will not be merged in the future.

12.3.2 Writing Content and Protocol Handlers

If you're adventurous and want to start leveraging content and protocol handlers in your own
applications, you can find all the information you'll need in , which covers writing content and
protocol handlers.

12.4 Talking to CGI Programs and Servlets

CGl stands for Common Gateway Interface; it is an API for writing applications (often scripts) that
can be run by a web server to service a particular range of URLs. Servlets are an implementation



very similar to CGI using a component-ized framework in Java. CGI programs and servlets can
perform dynamic activities like automatically generating web documents. More important, they
can accept data sent from the browser; they are most frequently used to process forms.

The name/value pairs of HTML form fields are encoded by the client web browser in a special
format and sent to the application using one of two methods. The first method, using the HTTP
command GET , encodes the user's input into the URL and requests the corresponding
document. The server recognizes that the first part of the URL refers to a program and invokes it,
passing along the information encoded in the URL as a parameter. The second method uses the
HTTP command POST to ask the server to accept the encoded data and pass it to the CGI
program as a stream.

In Java, we can create a URL that refers to a CGI program and send it data using either the GET
or POST methods. Why would we want to talk to a CGI? Well, CGI remains a widely used
technique for building web applications. Other techniques such as opening sockets or talking via
RMI are coming on strong, but CGI has been in widespread use for several years. Another
important reason for using CGl is that many firewalls block socket connections entirely. But all
firewalls that allow web access have to let us use G=T and POST to talk to CGls. So CGl
programs can be used as a last resort communications mechanism between applets and servers.

In this section, we'll talk about writing the client side of these applications. Later in this chapter
we'll talk about writing servlets for the server side of the application. We'll present the two data
sending techniques G=T and PCOST lightly here and in more detail when we revisit them in

Section 12.5.
12.4.1 Using the GET Method

Using the G=T method of encoding data in a URL is pretty easy. All we have to do is create a
URL pointing to a server program and use a simple convention to tack on the encoded
name/value pairs that make up our data. For example, the following code snippet opens a URL to
a CGlI program called login.cgi on the server myhost and passes it two name/value pairs. It then
prints whatever text the CGI sends back:

URL url = new URL(
/1l this string should be URL-encoded as wel |
"http://nmyhost/cgi-bin/login.cgi ?Nane=Pat &Passwor d=f oobar") ;

Buf f er edReader bin = new BufferedReader (
new | nput St reanReader ( url.openStrean( ) ));

String |ine;
while ( (line = bin.readLine( )) != null )
Systemout.printin( line);

To form the new URL, we start with the URL of login.cgi; we add a question mark (?), which
marks the beginning of the form data, followed by the first name/value pair. We can add as many
pairs as we want, separated by ampersand (&) characters. The rest of our code simply opens the
stream and reads back the response from the server. Remember that creating a URL doesn't
actually open the connection. In this case, the URL connection was made implicitly when we
called openSt rean( ). Although we are assuming here that our CGI sends back text, it could
send anything. (In theory of course we could use the get Cont ent Type( ) method of the URL
to check the MIME type of any returned data, and try to retrieve the data as an object using

get Content () as well).



It's important to point out that we have skipped a step here. This example works because our
name/value pairs happen to be simple text. If any "non-printable” or special characters (including
? or &) are in the pairs, they have to be encoded first. The | ava. net . URLEncoder class
provides a utility for encoding the data. We'll show how to use it in the next example.

Another important thing to note is that although this example sends a password field, you should
never do so using this simplistic approach. All of the data we're sending goes in clear text across
the network (it is not encrypted). And in this case the password field would appear anywhere the
URL is printed as well (e.g., server logs). We'll talk about secure web communications later in this
chapter.

12.4.2 Using the POST Method

Next we'll create a small application that acts like an HTML form. It gathers data from two text
fields—nane and passwor d—and posts the data to a specified URL using the HTTP POST
method. If you look ahead to Chapter 15, which covers the Swing GUI text components, you will
see that that writing an application that displays actual HTML text and can post using forms just
like a web browser is simple. So why would we want to do things the hard way?

There are many reasons that an application (or applet) might want to communicate with a CGI or
servlet. For example, compatability with another web-based application might be important, or
you might need to gain access to a server through a firewall where direct socket connections (and
hence normal RMI) are not available. HTTP has become the lingua franca of the Net and despite
its limitations (or more likely because of its simplicity) it has rapidly become one of the most
widely supported protocols in the world. All of the other reasons that one would write a client GUI
application (as opposed to a pure web/HTML-based application) also present themselves: a
client-side GUI can do sophisticated presentation and field validation while, with the technique
presented here, still use web-enabled services over the network.

Here's the code:

//file: Post.java

i nport java.net.*;

i nport java.io.?*;

i nport java.awt.*;

i nport java.awt.event.*;
i nport javax.sw ng. *;

public class Post extends JPanel inplenents ActionListener {
JText Fi el d naneFi el d, passwor dFi el d;
String postURL;

G i dBagConstraints constraints = new Gi dBagConstraints( );
voi d add@B( Conponent conponent, int x, int y ) {
constraints.gridx = x; constraints.gridy = vy;
add ( conponent, constraints );

}

public Post( String postURL ) {
this. post URL = post URL;
JButton postButton = new JButton("Post");
post But t on. addActi onLi stener( this );
set Layout ( new G i dBagLayout( ) );
add@3( new JLabel ("Nane:"), 0,0 );
add@B( naneField = new JTextField(20), 1,0 );



add@B( new JLabel ("Password: "), 0,1 );

addGB( passwordFi el d = new JPasswordFi el d(20),1,1 );
constraints.gridwdth = 2;

addGB( postButton, 0,2 );

}

public void actionPerformnmed(ActionEvent e) {
post Data( );

}

protected void postData( ) {
StringBuffer sb = new StringBuffer( );
sb. append( URLEncoder.encode("Nane") + "=");
sb. append( URLEncoder. encode(naneFi el d.getText( )) );
sb. append( "&" + URLEncoder.encode("Password") + "=");
sb. append( URLEncoder. encode(passwordFi el d.getText( )) );
String fornData = sb.toString( );

try {
URL url = new URL( postURL );

Ht t pURLConnecti on urlcon =
(Htt pURLConnection) url.openConnection( );

url con. set Request Met hod( " POST") ;

url con. set Request Property("Content-type",
"application/x-ww-formurl encoded");

url con. set DoQut put (true);

url con. set Dol nput (true);

PrintWiter pout = new PrintWiter( new QutputStreamiNiter (
url con. get Qut put Stream( ), "8859 1"), true );

pout.print( fornData );

pout. flush( );

/Il read results...

if ( urlcon.getResponseCode( ) != HttpURLConnection. HTTP_OK )
System out. println("Posted ok!");
el se {
Systemout.println("Bad post...");
return;
}
//lnputStreamin = urlcon.getlnputStrean( );
/1
} catch (Mal formedURLException e) {
Systemout.println(e); /1 bad post URL
} catch (1 CException e2) {
System out. println(e2); /1 11O error

}
}

public static void main( String [] args ) {
JFrame frame = new JFrame("Si npl ePost");
frane. get Cont ent Pane( ).add( new Post( args[0] ), "Center" );
franme. pack( );
frane. set Visible(true);



When you run this application, you must specify the URL of the server program on the command
line. For example:

% j ava Post http://ww. nmyserver. exanpl e/ cgi-bin/login.cgi

The beginning of the application creates the form; there's nothing here that won't be obvious after
you've read the chapters on Swing. All the magic happens in the protected post Dat a( )
method. First we create a St ri ngBuf f er and load it with name/value pairs, separated by
ampersands. (We don't need the initial question mark when we're using the POST method,
because we're not appending to a URL string.) Each pair is first encoded using the static
URLEncoder . encode( ) method. We ran the name fields through the encoder as well as the
value fields, even though we know that they contain no special characters.

Next we set up the connection to the CGI program. In our previous example, we didn't have to do
anything special to send the data, because the request was made by the web browser for us.
Here, we have to carry some of the weight of talking to the remote web server. Fortunately, the
Ht t pURLConnect i on object does most of the work for us; we just have to tell it that we want to
do a POST to the URL and the type of data we are sending. We ask for the URLConnect i on
object using the URL's openConnect i on( ) method. We know that we are using the HTTP
protocol, so we should be able to cast it safely to an Ht t pURLConnect i on type, which has the
support we need.

Next we use set Request Met hod( ) to tell the connection we want to do a POST operation. We
also use set Request Property( ) to setthe "Content-Type" field of our HTTP request to the
appropriate type—in this case, the proper MIME type for encoded form data. (This helps the
server sort out what we're sending.) Finally, we use the set DoCut put ( ) and set Dol nput ()
methods to tell the connection that we want to both send and receive stream data. The URL
connection infers from this combination that we are going to do a POST operation. Next we get an
output stream from the connection with get Cut put St rean{ ) and createa Print Witer so
we can easily write our encoded data.

After we post the data, our application calls get ResponseCode( ) to see whether the HTTP
response code from the server indicates that the POST was successful. Other response codes
(defined as constants in Ht t pURLConnect i on) indicate various failures. At the end, we indicate
where we could have read back the text of the response. For this application, we'll assume that
simply knowing the post was successful was sufficient.

Although form-encoded data (as indicated by the MIME type we specified for the Cont ent - Type
field) is the most common, other types of communications are possible. We could have used the
input and output streams to exchange arbitrary data types with the CGI program (provided that
the CGI program was capable of listening for a connection from us). One great feature of servlets,
which we'll discuss momentarily, is that they can easily exchange arbitrary data with the client.

If you are writing a server application that needs to decode form data, you can use the
j ava. net . URLDecoder to undo the operation of the URLEncoder .

12.4.3 SSL and Secure Web Communications

The previous examples sent a field called Passwor d to the server. However, standard HTTP
doesn't provide encryption to hide our data. Fortunately, adding security for GET and POST
operations is easy. Where available you simply have to use a secure form of the HTTP protocol—
HTTPS.



HTTPS is a version of the standard HTTP protocol run over SSL (Secure Socket Layer) sockets,
which use public-key encryption techniques to encrypt the data sent. Most web browsers
currently come with built-in support for HTTPS (or raw SSL sockets). Therefore, if your web
server supports HTTPS, you can use a browser to send and receive secure data simply by
specifying the ht t ps protocol in your URLSs. This is not something your code has to deal with
directly. Applets written using the Java plug-in have access to the HTTPS protocol handler. For
other applications you will have to make sure that your environments have supplied an HTTPS
(SSL) protocol handler, or set up the data connection yourself using other secure means.

12.5 Implementing Servlets

Now we're going to take a leap from the client side over to the server side, to write Java
applications for web servers. The Java servlet API is a framework for writing servlets, which are
application components for a web server or other type of server; just as applets are application
components for a web browser.

The servlet APIs live in the | avax. ser vl et package, which is a standard Java API extension,
not part of the core Java APIs. In this book we haven't talked about many standard extension
packages, but this is one is particularly important. (It should probably be a core API.) You'll want
to grab the latest Java Servlet Development Kit (JSDK) from
http://java.sun.com/products/serviet.

The servlet APIs are useless without a server on which to run them, so you'll also want to find an
implementation of the servlet environment for your favorite web server: Netscape, Apache, or
whatever. We won't try to anticipate which environment you have in this book, so the details
about how to install your servlets and invoke them will be up to you. But it should be pretty easy.

12.5.1 Why Servlets?

Why would we want to use Java on the server side, as opposed to a scripting language, such as
Perl? The simplest answer to that question is: for the same reasons that you would use Java
anywhere else. Servlets simply let you write in Java and derive all of the benefits of Java and the
virtual machine environment on the server side. (You also have the limitations of Java.)
Historically, servlets had speed advantages over CGI programs written in scripting languages or
even in C/C++. That is because servlets execute in a multithreaded way within one instance of a
virtual machine. Older CGI applications required the server to start a separate process, "pipe"
data to it, and then receive the response as a stream as well. Speed is still a factor, but a more
important reason for using Java is that Java makes writing large applications much more
manageable. Java isn't as easy to use as a scripting language, but it's much easier to come back
to your program next year and add a new feature, and it's a lot better at scaling to large
applications.

Writing server code with servlets allows you to access all of the standard Java APIs within the
virtual machine while your servlets are handling requests. This means that your Java server code
can access "live" database connections, or communicate with other network services that have
already been established. This kind of behavior has been hacked into other CGI environments,
but it has always been there in Java in a robust and natural way.

12.5.2 The Servlet Life Cycle
The Servlet API is very simple, almost exactly paralleling the Applet API. There are three life-

cycle methods, i nit( ),service( ),anddestroy( ), along with a couple of methods for
getting configuration parameters and servlet info. Before a servlet is used for the first time, it is



initialized by the server through its i ni t () method. Thereafter the servlet spends its time
handling ser vi ce( ) requests and doing its job until (presumably) the server is shut down and
the servlet's dest r oy( ) method is called, giving it an opportunity to clean up.

The servi ce( ) method of a servlet accepts two parameters: a servlet "request” object and a
servlet "response” object. These provide tools for reading the client request and generating
output; we'll talk about them in detail in the examples.

By default, servlets are expected to handle multithreaded requests; that is, the servlet's service
methods may be invoked by many threads at the same time. This means that you cannot store
client-related data in instance variables of your servlet object. (Of course, you can store general
data related to the servlet's operation, as long as it does not change on a per-request basis.) Per-
client state information can be stored in a client "session" object, which persists across client
requests. We'll talk about that in detail later.

If for some reason you have developed a servlet that cannot support multi-threaded access, you
can tell the runtime system this by implementing the flag interface Si ngl eThr eadModel . It has
no methods, serving only to indicate that the servlet should be invoked in a single-threaded
manner.

12.5.3 HTTP (Web) Servlets

There are actually two packages of interest in the Servlet API. The first is the | avax. ser vl et
package, which contains the most general servlet APIs. The second important package is

j avax. servl et . http,which contains APIs specific to servlets that handle HTTP requests for
web servers. In the rest of this section, we are going to discuss servlets pretty much as if all
servlets were HTTP-related. Although you can write servlets for other protocols, that's not what
we're currently interested in.

The primary tool provided by the | avax. servl et . ht t p package is the Hi t pSer vl et base
class. This is an abstract servlet that provides some basic implementation related to handling an
HTTP request. In particular, it overrides the generic servlet ser vi ce( ) request and breaks it
out into several HTTP-related methods for you, including: doGet () , doPost ( ), doPut ( ),
and doDel et e( ). The default ser vi ce( ) method examines the request to determine what
kind it is and dispatches it to one of these methods, so you can override one or more of them to
implement the corresponding web server behavior.

doCet () and doPost () correspond to the standard HTTP G=T and POST operations. GET is
the standard request for the object at a specified URL: e. g., a file or document. POST is the
method by which a client sends data to the server. HTML forms are the most common example of
users of POST.

To round these out, Ht t pSer vl et provides the doPut () and doDel et e( ) methods. These
methods correspond to a poorly supported part of the HTTP protocol, meant to provide a way to
upload and remove files. doPut () is supposed to be like POST but with different semantics;
doDel et e( ) would be its opposite.

Hi t pSer vl et also implements three other HTTP related methods for you: doHead( ) ,
doTrace( ),anddoOptions( ).Youdon't normally need to override these methods.
doHead( ) implements the HTTP HEAD request, which asks for the headers of a GET request
without the body. (H: t pSer vl et implements this by performing the G=T and then sending only
the headers). doTrace( ) and doOpti ons( ) implement other features of HTTP that allow for



debugging and for simple client/server capabilities negotiation. Again, you generally shouldn't
need to override these.

Along with Ht t pSer vl et , j avax. servl et . htt p also includes subclasses of the

Servl et Request and Ser vl et Response objects, namely: Ht t pSer vl et Request and

Hi t pSer vl et Response . These provide (respectively) the input and output streams needed to
read and write client data. They also provide the APIs for getting or setting HTTP header
information and, as we'll see, client session information. Rather than document these dryly, we'll
just show them in the context of some examples. As usual, we'll start with the simplest example
possible.

12.5.4 The HelloClient Servlet
Here's our "Hello World" of servlet land, Hel | oCl | ent :

//file: Hellodient.java

i nport java.io.?*;

i nport javax. servlet. Servl et Excepti on;
i nport javax.servlet.http.*;

public class HelloCOient extends HttpServlet {

public void doGet(HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CeException {

/1 must come first
response. set Cont ent Type("text/htm ") ;
PrintWiter out = response.getWiter( );

out. println(
"<htm ><head><title>Hello Cient</title></head><body>"
+ "<hl> Hello dient </hil>"
+ "</ body></htm >" );

out.close( );

}

Hel | oCl I ent extends the base Hi t pSer vl et class and overrides the doGet () method to
handle simple requests. In this case, we want to respond to any GET request by sending back a
one-line HTML document that says "Hello Client". We get the output writer from our

Hi t pSer vl et Response parameter using the get Wi ter( ) method and print the message to
it. Then we close the stream to indicate that we are done generating output.

12.5.5 Content Types

Before fetching the output stream and writing to it, however, it's very important that we specify
what kind of output we are sending by calling the r esponse parameter's set Cont ent Type( )
method.

In this case, we set the content type to t ext / ht nl , which is the proper MIME type for an HTML
document. But in general, it's possible for a servlet to generate any kind of data, including sound,
video, or some other kind of text. If we were writing a generic Fi | eSer vl et that serves files like



a regular web server, we might inspect the filename extension and determine the MIME type from
that, or from direct inspection of the data.

The content type is used in the Cont ent - Type: header of the server's HTTP response, which
tells the client what to expect even before it starts reading the result. This is how your web
browser is able to prompt you with the "Save File" dialog when you click on a zip archive or
executable program. When the content type string is used in its full form to specify the character
encoding (for example, t ext / ht m ; char set =I SO 8859- 1) that information is also used by
the servlet engine to set the character encoding of the Pri nt Wi t er output stream. So you
should call the set Cont ent Type( ) method before fetching the writer with the get Witer( )
method.

12.5.6 Servlet Parameters

Our first example shows how to accept a basic request. You can imagine how we might do
arbitrary processing, database queries, etc., to generate an interesting response. Of course, to do
anything really useful we are going to have to get some information from the user. Fortunately,
the servlet engine handles this for us, interpreting both GET- and POST-encoded form information
from the client and providing it to us through the simple get Par anet er () method of the servlet
request.

12.5.6.1 GET, POST, and the "extra path"

There are essentially two ways to pass information from your web browser to a servlet or CGl
program. The most general is to "post" it, which means that your client encodes the information
and sends it as a stream to the program, which decodes it. Posting can be used to upload large
amounts of form data or other data, including files. The other way is to somehow encode the
information in the URL of your client's request. The primary way to do this is to use G=T-style
encoding of parameters in the URL string. In this case the web browser will append the
parameters to the end of the URL string in an encoded way and the server will decode them and
pass them to the application.

As we described earlier in this chapter, G=T-style encoding says that you take the parameters
and append them to the URL in a name/value fashion, with the first parameter preceded by a
guestion mark (?) and the rest separated by ampersands (&). The entire string is expected to be
URL-encoded: any special characters (like spaces, ?, and & in the string) are specially encoded.

A less sophisticated form of encoding data in the URL is called extra path. This simply means that
when the server has located your servlet or CGI program as the target of a URL, it takes any
remaining path components of the URL string and simply hands it over as an extra part of the
URL. For example, consider these URLSs:

http://ww. nyserver. exanpl e/ servl et s/ MySer vl et
http://ww. nyserver. exanpl e/ servl et s/ MyServl et/ f oo/ bar

Suppose the server maps the first URL to the servlet called My Ser vl et . When subsequently
given the second URL, the server would still invoke My Ser v| et , but would consider / f oo/ bar
to be "extra path" that could be retrieved through the servlet request get Ext r aPat h( ) method.

Both G=T and POST encoding can be used with HTML forms on the client, simply by specifying
get orpost inthe act i on attribute of the form tag. The browser handles the encoding; on the
server side, the servlet engine will handle the decoding.



12.5.6.2 Which one to use?

To users, the primary difference between G=T and POST is that they can see the GET information
in the encoded URL shown in their web browser. This can be useful because the user can cut
and paste that URL (the result of a search for example) and mail it to a friend or bookmark it for
future reference. POST information is never visible to the user and ceases to exist after it's sent to
the server. This behavior goes along with the protocol's perspective that GET and POST are
intended to have different semantics. By definition, the result of a GET operation is not supposed
to have any side effects. That is, it's not supposed to cause the server to perform any
consequential operations (such as making an e-commerce purchase). In theory, that's the job of
POST. That's why your web browser warns you about "re-posting form data" if you hit reload on a
page that was the result of a form posting.

The extra path method is not useful for form data, but would be useful if you wanted to make a
servlet that retrieves files or handles a range of URLs not driven by forms.

12.5.7 The ShowParameters Servlet

Our first example didn't do anything interesting. This example prints the values of any parameters
that were received. We'll start by handling G=T requests and then make some trivial modifications
to handle POST as well. Here's the code:

/1file: ShowParaneters.java

i nport java.io.?*;

i nport javax.servlet. Servl et Excepti on;
i nport javax.servlet.http.*;

i nport java.util.Enuneration;

public class ShowParaneters extends HttpServlet {

public void doGet(HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CeException {
showRequest Par anet er s( request, response );
}

voi d showRequest Par anet er s( Ht t pSer vl et Request request,
Ht t pSer vl et Response response)
throws | OException {
response. set Cont ent Type("text/htm ") ;
PrintWiter out = response.getWiter( );

out. println(
"<ht M ><head><ti t| e>Show Par anet ers</titl e></ head><body>"
+ "<hl1>Par anet er s</ hl1><ul >");

for ( Enuneration e=request. get Paranet er Names( );
e. hasMoreEl ements( ); ) {
String nane = (String)e.nextEl ement( );
String value = request. getParaneter( nane );
if (! value.equals("") )
out.println("<li>"+ nane +' = "+ val ue );

}

out.close( );



There's not much new here. As in the first example, we override the doGet () method. Here, we
delegate the request to a helper method that we've created, called showRequest Par anet er s(
) . All this method does is enumerate the parameters using the request object's

get Par anet er Names( ) method and print the names and values. (To make it pretty, we've
listed them in an HTML list by prepending each with an <! | > tag.)

As it stands, our servlet would respond to any URL that contains a G=T request. Let's round it out
by adding our own form to the output and also accommodating POST method requests. To accept
posts, we simply override the doPost () method. The implementation of doPost () could
simply call our showRequest - Par anet er s( ) method as well, but we can make it simpler still.
The API lets us treat GET and POST requests interchangeably, because the servlet engine
handles the decoding of request parameters. So we simply delegate the doPost () operation to
doGet ( ).

Add the following method to the example:

public void doPost( HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CeException {
doCGet ( request, response );

Now let's add an HTML form to the output. The form lets the user fill in some parameters and
submit them to the servlet. Add this line to the showRequest Par anet er s( ) method before
the call to out . cl ose( ):

out.println(
"</ ul ><p><f orm net hod=\"PCOST\" action=\""
+ request.get RequestURI ( ) + "\">"
+ "Field 1 <input nane=\"Field 1\" size=20><br>"
+ "Field 2 <input nane=\"Field 2\" size=20><br>"
+ "<br><input type=\"submt\" val ue=\"Subm t\"></form"

)

The form's act i on attribute is the URL of our servlet, so that it will get the data. We use the
get Request URI () method to ask for the location of our servlet. For the net hod attribute
we've specified a POST operation; but you can try changing the operation to GET to see both
styles.

So far, we haven't done anything that you couldn't do easily with your average CGI script. Next,
we'll show some more interesting stuff: how to manage a user session.

12.5.8 User Session Management

One of the nicest features of the servlet API is that it provides a simple mechanism for managing
a user session. By a session, we mean that the servlet can maintain information over multiple
pages and through multiple transactions as navigated by the user. Providing continuity through a
series of web pages is important in many kinds of applications, like providing a login process or
tracking purchases in a shopping cart. In a sense, session data takes the place of instance data
in your servlet object. It lets you store data between invocations of your service methods.



Session tracking is supported by the servlet engine; you don't have to worry about the details of
how it's accomplished. It's done in one of two ways: using client-side cookies, or URL rewriting .
Client-side cookies are a standard HTTP mechanism for getting the client web browser to
cooperate in storing some state information for you. A cookie is basically just a name/value
attribute that is issued by the server, stored on the client, and returned by the client whenever it is
accessing a certain group of URLs on a specified server. First, we'll talk about cookies that live
only for the duration of a typical user session (although it is possible to use cookies to store state
across multiple user visits).

URL rewriting appends the session tracking information to the URL, using GET-style encoding or
extra path information. The term "rewriting" applies because the server rewrites the URL before it
is seen by the client and absorbs the extra information before it is passed back to the servlet.

To the servlet programmer, the state information is made available through an Hi t pSessi on
object, which acts like a hashtable for storing whatever objects you would like to carry through the
session. The objects stay on the server side; a special identifier is sent to the client through a
cookie or URL rewriting. On the way back, the identifier is mapped to a session and the session is
associated with the servlet again.

12.5.8.1 The ShowSession servlet

Here's a simple servlet that shows how to store some string information in a session.

/1file: ShowSession.java

i nport java.io.?*;

i nport javax. servlet. Servl et Excepti on;
i nport javax.servlet.http.*;

i nport java.util.Enuneration;

public class ShowSession extends HttpServlet {

public void doPost( HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CeException {
doCGet ( request, response );
}

public void doGet(HttpServl et Request request,
Ht t pSer vl et Response response)
throws Servl et Exception, | CeException {
response. set Cont ent Type("text/htm ") ;
PrintWiter out = response.getWiter( );

out. println(
"<ht mM ><head><ti t| e>Show Session</titl e></head><body>");
Ht t pSessi on sessi on = request. get Session( );

out.println("<hl>ln this session:</hl><ul>");
String [] nanes = session. get Val ueNanmes( );
for (int i=0; i< nanmes.length; i++)
out. println(
"<li>"+nanes[i]+" = "+session. getVal ue( nanes[i] ));

/1 add new name-val ue to session
String nanme = request. get Paraneter (" Nanme");



if ( name !'= null ) {
String value = request. get Paraneter("Val ue");
sessi on. put Val ue( nane, val ue );

}

out.println(
"</ ul ><p><hr ><h1>Add String</hl>"
+ "<form net hod=\"POST\" action=\""
request . get Request URI () +"\">"
"Nane: <input nane=\"Name\" size=20><br>"
"Val ue: <input name=\"Val ue\" size=20><br>"
"<br><input type=\"submt\" val ue=\"Subm t\"></fornm"

+ 4+ + +

out.close( );
}

When you invoke the servlet, you are presented with a form that prompts you to enter a name
and a value. The value string is stored in a session object under the name provided. Each time
the servlet is called, it outputs the list of all data items associated with the session. You will see
the session grow as each item is added (in this case, until you restart your web browser or the
server).

The basic mechanics are much like our ShowPar anet er s servlet. Our doCGet () method
generates the form, which refers back to our servlet via a POST method. We override doPost (
) to delegate back to our doCet () method, allowing it to handle everything. Once in doCet (
), we attempt to fetch the user session object from the r equest parameter using get Sessi on(
). The Hi t pSessi on object supplied by the request functions like a hashtable. There is a

put Val ue( ) method, which takes a string name and an Obj ect argument and a
corresponding get Val ue( ) method. In our example, we use the get Val ueNanes( ) method
to enumerate the values currently stored in the session and print them.

By default, get Sessi on( ) creates a session if one does not yet exist. If you want to test for a
session or explicitly control when one is created, you can call the overloaded version

get Sessi on(fal se), which does not automatically create a new session. This method returns
nul | if there is no session yet.

12.5.8.2 The ShoppingCart servlet

Next, we'll build on the previous example to make a servlet that could be used as part of an
online store. Shoppi ngCar t lets users choose items and add them to their basket until check-
out time:

/1file: ShoppingCart.java

i nport java.io.?*;

i nport javax. servlet. Servl et Excepti on;
i nport javax.servlet.http.*;

i nport java.util.Enuneration;

public class ShoppingCart extends HttpServlet {
/1 fromyour database
String [] itenms = new String [] {
"Chocol ate Covered Crickets", "Raspberry Roaches",



"Buttery Butterflies", "Chicken Flavored Chicklets(tm" };

public void doPost( HttpServl et Request request,
Ht t pSer vl et Response response)
t hrows | OException, ServletException {
doCet ( request, response );
}

public void doGet( HttpServletRequest request,
Ht t pSer vl et Response response)
t hrows Servl et Exception, | OException {
response. set Cont ent Type("text/htm ");
PrintWiter out = response.getWiter( );

/1l get or create the session infornmation
Ht t pSessi on sessi on = request. get Session( );
int [] purchases = (int [])session.getVal ue("purchases");
if ( purchases == null ) {
purchases = newint [ itenms.length ];
sessi on. put Val ue( "purchases", purchases );

}

out.println( "<htm ><head><title>Shopping Cart</title>"
+ "</titl e></ head><body><p>" );

if ( request.getParaneter("checkout"”) !'= null )
out. println("<hl>Thanks for ordering!</hil>");
el se {
if ( request.getParaneter("add") !'= null ) {

addPur chases( request, purchases );
out. println(

"<h1>Purchase added. Please continue</hl>");

} else {

if ( request.getParaneter("clear"”) !'= null )

for (int i=0; i<purchases.length; i++)

pur chases[i] = O;

out.println("<hl>Pl ease Sel ect Your Itens!</hl>");

doForm( out, purchases, request.getRequestURI( ) );

showPur chases( out, purchases );
out.close( );

}

voi d addPurchases( Ht pServl et Request request,
int [] purchases ) {
for (int i=0; i<itens.length; i++) {
String added = (String)request.getParaneter( itens[i] );
if ( !'added.equals("") )
purchases[i] += Integer.parselnt( added );

}
void doForm( PrintWiter out, int [] purchases,
String requestURI) {
out.println( "<form nethod=POST acti on="+ request URI +">" );

for(int i=0; i< itens.length; i++)



out.println( "Quantity <input nane=\
+ "\" value=0 size=3> of: "
out.println(
"<p><i nput type=submt nanme=add val ue=\"Add To Cart\">"
+ "<input type=subnit nane=checkout val ue=\"Check Qut\">"
+ "<input type=submt nane=clear value=\"C ear Cart\">"
+ "</form" );

+ itens[i]
+ itens[i] + "<br>");

}

voi d showPurchases( PrintWiter out, int [] purchases )
throws | OException {

out. println("<hr><h2>Your Shoppi ng Basket </ h2>");
for (int i=0; i<itens.length; i++)
if ( purchases[i] !'=0)
out.println( purchases[i] +" "+ itens[i] +"<br>" );

First we should point out that Shoppi ngCart has some instance data: a St r i ng array that
holds a list of products. We're making the assumption that the product selection is the same for
all customers. If it's not, we'd have to generate the product list on the fly or put it in the session for
the user.

Next, we see the same basic pattern as in our previous servlets, with doPost ( ) delegating to
doCet () and doCet ( ) generating the body of the output and a form for gathering new data.
Here we've broken down the work using a few helper methods: doFor n{ ), addPur chases( )
and showPur chases( ). Our shopping cart form has three submit buttons: one for adding items
to the cart, one for check-out, and one for clearing the cart. In each case we show the user what
his or her purchases are. Depending on the button chosen in the form, we either add new
purchases, clear the list, or simply show the results as a check out window.

The form is generated by our doFor n{ ) method, using the list of items for sale. As in the other
examples, we supply our servlet's address as the target of the form. Next, we have placed an
integer array called pur chases into the user session. Each element in pur chases holds a
count of the number of each item the user wants to buy. We create the array after retrieving the
session simply by asking the session for it. If this is a new session and the array hasn't been
created, get Val ue( ) gives us a null array that we can then populate. Since we generate our
form using the names from the i t ens array, it's easy for addPur chases( ) to check for each
name using get Par anet er (), and increment the pur chases array for the number of items
requested.® Finally, showPur chases( ) simply loops over the purchases array and prints the
name and quantity for each item that the user has purchased.

[21 we also test for the value being equal to the null string, because some web browsers send empty strings
for all field values.

12.5.9 Cookies

In our previous examples, a session lived only until you shut down your web browser or the
server. You can do more long-lived kinds of user tracking or identification by managing cookies
explicitly. You can send a cookie to the client by creating a | avax. servl et . htt p. Cooki e
object and adding it to the servlet response using the addCooki e( ) method. Later you can
retrieve the cookie information from the servlet request and use it to look up persistent



information in a database. The following servlet sends a "Learning Java" cookie to your web
browser and displays it when you return to the page:

//file: CookieCutter.java

i mport java.io.*;

i mport java.text.*;

i mport java.util.*;

i mport javax.servlet.*;

i mport javax.servlet.http.*;

public class CookieCutter extends HtpServlet {

public void doGet (HttpServl et Request request,
Ht t pSer vl et Response response)
t hrows | OException, ServletException {
response. set Cont ent Type("text/htm ");
PrintWiter out = response.getWiter( );

if ( request.getParaneter("setcookie") !'=null ) {
Cooki e cooki e = new Cooki e("Lear ni ngj ava", "Cookies!");
cooki e. set MaxAge( 3600) ;
response. addCooki e( cooki e) ;
out. println("<htm ><body><h1>Cookie Set...</h1>");
} else {
out. println("<htm ><body>");
Cooki e[] cookies = request. get Cookies( );
if ( cookies.length == 0 )
out.println("<hl>No cookies found...</hl>");

el se
for (int i = 0; i < cookies.length; i++)
out.print("<hl>Nane: "+ cookies[i].getNane( )
+ "<br>"
+ "Value: " + cookies[i].qgetValue( )

+ "</ h1>" );
out.println("<p><a href=\""+ request. get Request URI ( )
+" ?set cooki e=true\ " >"
+"Reset the Learning Java cookie.</a>");

out.println("</body></htm >");
out.cl ose( );

}

This example simply enumerates the cookies supplied by the request object using the

get Cooki es( ) method, and prints their names and values. We provide a G=T-style link that
points back to our servlet with a parameter set cooki e, indicating that we should set the cookie.
In that case, we create a Cooki e object using the specified name and value and add it to the
response with the addCooki e( ) method. We set the maximum age of the cookie to 3600
seconds, so it will remain in a web browser for one hour before being discarded. You can specify
an arbitrary time period here, or a negative time period to indicate that the cookie should not be
stored persistently on the client.

Two other methods of Cooki e are of interest: set Dormai n( ) and set Pat h( ). These allow
you to specify the domain name and path component that limits the servers to which the client will
send the cookie. (If you're writing some kind of purchase applet for L.L. Bean, you don't want



clients sending your cookies over to Eddie Bauer.) The default domain is the domain of the server
sending the cookie. (You may not be able to specify other domains for security reasons.) The

pat h parameter defaults to the base URL of the servlet, but you can specify a wider (or narrower)
range of URLs on the server by setting this parameter manually.



Chapter 13. Swing

Swing is Java's user interface toolkit. It was developed during the life of SDK 1.1 and now is part
of the core APlIs in Java 2 (née JDK 1.2). Swing provides classes representing interface items like
windows, buttons, combo boxes, trees, grids, and menus—everything you need to build a user
interface for your Java application. The | avax. swi ng package (and its numerous subpackages)
contain the Swing user interface classes.™

1 bon't be fooled by the | avax prefix, which usually denotes a standard extension API. Swing is part of the
core APIs in Java 2; every Java 2 implementation includes Swing.

Swing is part of a larger collection of software called the Java Foundation Classes (JFC). JFC
includes the following APIs:

The Abstract Window Toolkit (AWT), the original user interface toolkit

Swing, the new user interface toolkit

Accessibility, which provides tools for integrating nonstandard input and output devices
into your user interfaces

The 2D API, a comprehensive set of classes for high-quality drawing

Drag and Drop, an API that supports the drag-and-drop metaphor

JFC is the largest and most complicated part of the standard Java platform, so it shouldn't be any
surprise that we'll take several chapters to discuss it. In fact, we won't even get to talk about all of
it, just the most important parts—Swing and the 2D API. Here's the lay of the land:

This chapter covers the basic concepts you need to understand how to build user
interfaces with Swing.

Chapter 14, discusses the basic components from which user interfaces are built: lists,
text fields, checkboxes, and so on.

Chapter 15, dives further into the Swing toolkit, describing text components, trees,
tables, and other neat stuff.

Chapter 16 discusses layout managers, which are responsible for arranging
components within a window.

Chapter 17 discusses the fundamentals of drawing, including simple image displays.
Chapter 18, covers the image generation and processing tools that are in the

j ava. awt . | nage package. We'll throw in audio and video for good measure.

We can't cover the full functionality of Swing in this book; if you want the whole story, see Java
Swing, by Robert Eckstein, Marc Loy, and Dave Wood (O'Reilly & Associates). Instead, we'll
cover the basic tools you are most likely to use and show some examples of what can be done
with some of the more advanced features. Figure 13.1 shows the user interface component
classes of the | avax. swi ng package.

Figure 13.1. User interface components in the javax.swing package
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To understand Swing, it helps to understand its predecessor, the Abstract Window Toolkit (AWT).
As its name suggests, AWT is an abstraction. Its classes and functionality are the same for all
Java implementations, so Java applications built with AWT should work in the same way on all
platforms. You could choose to write your code under Windows, and then run it on an X Window
System or a Macintosh. To achieve platform independence, AWT uses interchangeable toolkits
that interact with the host windowing system to display user interface components. This shields
your application from the details of the environment it's running in. Let's say you ask AWT to
create a button. When your application or applet runs, a toolkit appropriate to the host
environment renders the button appropriately: on Windows, you can get a button that looks like
other Windows buttons; on a Macintosh, you can get a Mac button; and so on.

AWT had some serious shortcomings. The worst was that the use of platform-specific toolkits
meant that AWT applications might be subtly incompatible on different platforms. Furthermore,
AWT was lacking advanced user interface components, like trees and grids.

Swing takes a fundamentally different approach. Instead of using native toolkits to supply
interface items like buttons and combo boxes, components in Swing are implemented in Java



itself. This means that, whatever platform you're using, a Swing button (for example) looks the
same. It also makes Swing much less prone to platform-specific bugs, which were a problem for
AWT.

If you already know AWT, you'll be able to transfer a lot of your knowledge into the Swing world.
However, there's a lot more material in Swing than in AWT, so be prepared to learn. If you've
never programmed with AWT, this chapter and the next two provide a gentle introduction to
building user interfaces with Swing.

Working with user interface components in Swing is meant to be easy. When building a user
interface for your application, you'll be working with prefabricated components. It's easy to
assemble a collection of user interface components (buttons, text areas, etc.) and arrange them
inside containers to build complex layouts. You can also use simple components as building
blocks for making entirely new kinds of interface gadgets that are completely portable and
reusable.

Swing uses layout managers to arrange components inside containers and control their sizing
and positioning. Layout managers define a strategy for arranging components instead of
specifying absolute positions. For example, you can define a user interface with a collection of
buttons and text areas and be reasonably confident that it will always display correctly, even if the
user resizes the application window. It doesn't matter what platform or user interface look-and-
feel you're using; the layout manager should still position them sensibly with respect to each
other.

The next two chapters contain examples using most of the components in the | avax. swi ng
package. But before we dive into those examples, we need to spend a bit of time talking about
the concepts Swing uses for creating and handling user interfaces. This material should get you
up to speed on GUI concepts and on how they are used in Java.

13.1 Components

A component is the fundamental user interface object in Java. Everything you see on the display
in a Java application is a component. This includes things like windows, drawing canvases,
buttons, checkboxes, scrollbars, lists, menus, and text fields. To be used, a component usually
must be placed in a container. Container objects group components, arrange them for display
using a layout manager, and associate them with a particular display device. All Swing
components are derived from the abstract | avax. swi ng. JConponent class, as you saw in
Figure 13.1. For example, the JBut t on class is a subclass of Abst r act But t on, which is itself
a subclass of the JConponent class.

JConmponent is the root of the Swing component hierarchy, but it descends from the AWT
Cont ai ner class. Intuitively, we can say that Swing is a very large extension to AWT.

Cont ai ner's superclass is Corrponent , the root of all AWT components, and Conponent's
superclass is, finally, Obj ect . Because JConponent inherits from Cont ai ner , it has the the
capabilities of both a component and a container.

AWT and Swing, then, have parallel hierarchies. The root of AWT's hierarchy is Conponent ,
while Swing's components are based on JConponent . You'll find similar classes in both
hierarchies, like But t on and JBut t on. But Swing is much more than simply a replacement for
AWT—it contains sophisticated components, like trees and grids, as well as a real
implementation of the Model View Controller (MVC) paradigm, which we'll discuss later.



For the sake of simplicity, we can split the functionality of the JConponent class into two
categories: appearance and behavior. The JConponent class contains methods and variables
that control an object's general appearance. This includes basic attributes such as its visibility, its
current size and location, and certain common graphical defaults, like font and color. The
JConponent class also contains methods implemented by specific subclasses to produce the
graphical displays.

When a component is first displayed, it's associated with a particular display device. The
JConponent class encapsulates access to its display area on that device. This includes methods
for accessing graphics and for working with off-screen drawing buffers for the display.

By a "component's behavior," we mean the way it responds to user-driven events. When the user
performs an action (like pressing the mouse button) within a component's display area, a Swing
thread delivers an event object that describes "what happened.” The event is delivered to objects
that have registered themselves as "listeners" for that type of event from that component. For
example, when the user clicks on a button, the button delivers an Act i onEvent object. To
receive those events, an object registers with the button as an Act i onLi st ener.

Events are delivered by invoking designated event-handler methods within the receiving object
(the "listener"). A listener object prepares itself to receive events by implementing methods (e.g.,
act i onPerforned( ))forthe types of events in which it interested. Specific types of events
cover different categories of component user interaction. For example, MbuseEvent s describe
activities of the mouse within a component's area, KeyEvent s describe key presses, and higher-
level events (such as Act i onEvent s) indicate that a user interface component has done its job.

We will describe events thoroughly in this chapter, because they are so fundamental to the way in
which user interfaces function in Java But they aren't limited to building user interfaces; they are
an important interobject communications mechanism, which may be used by completely
nongraphical parts of an application, as well. They are particularly important in the context of
JavaBeans, which uses events as an extremely general notification mechanism.

Swing's event architecture enables containers to take on certain responsibilities for the
components that they hold. Instead of every component listening for and handling events for its
own bit of the user interface, a container may register itself or another object to receive the events
for its child components and "glue” those events to the correct application logic.

One responsibility a container always has is laying out the components it contains. A component
informs its container when it does something that might affect other components in the container,
such as changing its size or visibility. The container then tells its layout manager that it is time to
rearrange the child components.

As you've seen, Swing components are also containers. Containers can manage and arrange
JConponent objects without knowing what they are and what they are doing. Components can
be swapped and replaced with new versions easily and combined into composite user interface
objects that can be treated as individual components. This lends itself well to building larger,
reusable user interface items.

13.1.1 Peers

Swing components are peerless or lightweight. To understand these terms, you'll have to
understand the peer system that AWT used. The cold truth is that getting data out to a display
medium and receiving events from input devices involve crossing the line from Java to the real



world. The real world is a nasty place full of architecture dependence, local peculiarities, and
strange physical devices like mice, trackballs, and '69 Buicks.

At some level, our components will have to talk to objects that contain native methods to interact
with the host operating environment. To keep this interaction as clean and well-defined as
possible, AWT used a set of peer interfaces. The peer interface made it possible for a pure Java-
language graphic component to use a corresponding real component—the peer object—in the
native environment. You didn't generally deal directly with peer interfaces or the objects behind
them; peer handling was encapsulated within the Conponent class.

AWT relied heavily on peers. For example, if you created a window and added eight buttons to it,
AWT would create nine peers for you—one for the window and one for each of the buttons. As an
application programmer, you wouldn't ever have to worry about the peers, but they would always
be lurking under the surface, doing the real work of interacting with your operating system's
windowing toolkit.

In Swing, by contrast, most components are peerless, or lightweight. This means that Swing
components don't have any direct interaction with the underlying windowing system. They draw
themselves in their parent container and respond to user events, all without the aid of a peer. All
of the components in Swing are written in pure Java, with no native code involved. In Swing, only
top-level windows interact with the windowing system. These Swing containers descend from
AWT counterparts, and thus still have peers. In Swing, if you create a window and add eight
buttons to it, only one peer is created—for the window. Having far fewer interactions with the
underlying windowing system than AWT, Swing is more reliable.

Another consquence of using lightweight components is that it is easy to change the appearance
of components. Since each component draws itself, instead of relying on a peer, it can decide at
runtime how to draw itself. Accordingly, Swing supports different look-and-feel schemes, which
can be changed at runtime. (A look-and-feel is the collected appearance of components in an
application.) Look-and-feels based on Windows and Solaris are available, as well as an entirely
original one called Metal, which is the default scheme.

13.1.2 Why the Move from AWT to Swing?

Java's developers initially decided to implement the standard AWT components with a "mostly
native" toolkit. As we described earlier, that means that most of the important functionality of
these classes is delegated to peer objects, which live in the native operating system. Using native
peers allows Java to take on the look-and-feel of the local operating environment. Macintosh
users see Mac applications, PC users see Windows' windows, and Unix users can have their
Motif motif; warm fuzzy feelings abound. Java's chameleon-like ability to blend into the native
environment was considered by many to be an integral part of platform independence. However,
there are a few important downsides to this arrangement.

First, using native peer implementations makes it much more difficult (if not impossible) to
subclass these components to specialize or modify their behavior. Most of their behavior comes
from the native peer, and therefore can't be overridden or extended easily. As it turns out, this is
not a terrible problem because of the ease with which we can make our own components in Java.
It is also true that a sophisticated new component, like an HTML viewer, would benefit little in
deriving from a more primitive text-viewing component like Text Ar ea.

Next, as we mentioned before, porting the native code makes it much more difficult to bring Java
to a new platform. For the user, this can only mean one thing—bugs. Basically, there were too
many places where AWT was interacting with the underlying windowing system—one peer per



component. There were too many places where something might go wrong, or peers might
behave in subtly different ways on different platforms.

Finally, we come to a somewhat counterintuitive problem with the use of native peers. In most
current implementations of Java, the native peers are quite "heavy" and consume a lot of
resources. You might expect that relying on native code would be much more efficient than
creating the components in Java. However, it can take a long time to instantiate a large number
of GUI elements when each requires the creation of a native peer from the toolkit. And in some
cases you may find that once the native peers are created, they don't perform as well as the pure
Java equivalents that you can create yourself.

An extreme example would be a spreadsheet that uses an AWT Text Fi el d for each cell.
Creating hundreds of Text Fi el dPeer objects would be something between slow and
impossible. While simply saying "don't do that" might be a valid answer, this prompts the
guestion: how do you create large applications with complex GUIs? The answer, of course, is
Swing. Swing's peerless architecture means that it's possible to build large, complicated user
interfaces and have them work efficiently.

13.1.3 The Model/View/Controller Framework

Before continuing our discussion of GUI concepts, we want to make a brief aside and talk about
the Model/View/Controller (MVC) framework. MVC is a method of building reusable components
that logically separates the structure, presentation, and behavior of a component into separate
pieces. MVC is primarily concerned with building user interface components, but the basic ideas
can be applied to many design issues; its principles can be seen throughout Java.

The fundamental idea behind MVC is the separation of the data model for an item from its
presentation. For example, we can draw different representations (e.g., bar graphs, pie charts) of
the data in a spreadsheet. The data is the model ; the particular representation is the view . A
single model can have many views that present the data differently. A user interface component's
controller defines and governs its behavior. Typically, this includes changes to the model, which,
in turn, cause the view(s) to change, also. For a checkbox component, the data model could be a
single boolean variable, indicating whether it's checked or not. The behavior for handling mouse-
press events would alter the model, and the view would examine that data when it draws the on-
screen representation.

The way in which Swing objects communicate, by passing events from sources to listeners, is
part of this MVC concept of separation. Event listeners are "observers" (controllers) and event
sources are "observables" (models). When an observable changes or performs a function, it
notifies all of its observers of the activity.

Swing components explicitly support MVC. Each component is actually composed of two pieces.
One piece, called the Ul-delegate, is responsible for the "view" and "controller” roles. It takes care
of drawing the component and responding to user events. The second piece is the data model
itself. This separation makes it possible for multiple Swing components to share a single data
model. For example, a read-only text box and a drop-down list box could use the same list of
strings as a data model.#

[21|n Chapter 9, we described the Chser ver class and Chser vabl e interface of the j ava. ut i |
package. Swing doesn't use these classes directly, but it does use exactly the same design pattern for
handling event sources and listeners.

13.1.4 Painting



In an event-driven environment like Swing, components can be asked to draw themselves at any
time. In a more procedural programming environment, you might expect a component to be
involved in drawing only when first created or when it changes its appearance. In Java,
components act in a way that is closely tied to the underlying behavior of the display environment.
For example, when you obscure a component with another window and then re-expose it, a
Swing thread asks the component to redraw itself.

Swing asks a component to draw itself by calling its pai nt ( ) method. pai nt () may be
called at any time, but in practice, it's called when the object is first made visible, whenever it
changes its appearance, and whenever some tragedy in the display system messes up its area.
Because pai nt () can't make any assumptions about why it was called, it must redraw the
component's entire display. The system may limit the drawing if only part of the component needs
to be redrawn, but you don't have to worry about this.

A component never calls its pai nt () method directly. Instead, when a component requires
redrawing, it schedules a call to pai nt () by invoking repai nt ( ). Therepai nt( ) method
asks Swing to schedule the component for repainting. At some point in the future, a call to

pai nt () occurs. Swing is allowed to manage these requests in whatever way is most efficient.
If there are too many requests to handle, or if there are multiple requests for the same
component, the thread can reschedule a number of repaint requests into a single call to pai nt (
) . This means that you can't predict exactly when pai nt () will be called in response to a
repai nt () ;all you can expect is that it happens at least once, after you request it.

Calling r epai nt () is normally an implicit request to be updated as soon as possible. Another
form of r epai nt () allows you to specify a time period within which you would like an update,
giving the system more flexibility in scheduling the request. The system will try to repaint the
component within the time you specify. An application can use this method to govern its refresh
rate. For example, the rate at which you render frames for an animation might vary, depending on
other factors (like the complexity of the image). You could impose an effective maximum frame
rate by calling r epai nt () with a time (the inverse of the frame rate) as an argument. If you
then happen to make more than one repaint request within that time period, Swing is not obliged
to physically repaint for each one. It can simply condense them to carry out a single update within
the time you have specified.

Swing components can act as containers, holding other components. Because every Swing
component does its own drawing, Swing components are responsible for telling contained
components to draw themselves. Fortunately, this is all taken care of for you by a component's
default pai nt () method. If you override this method, however, you have to make sure to call
the superclass's implementation like this:

public void paint(Gaphics g) {
super. paint(g);

There's another, cleaner way around this problem. All Swing components have a method called
pai nt Conponent (). While pai nt () is responsible for drawing the component as well as its
contained components, pai nt Conponent () 's sole responsibility is drawing the component
itself. If you override pai nt Conponent () instead of pai nt (), you won't have to worry about
drawing contained components.

Both pai nt () and pai nt Conponent () take a single argument: a G aphi cs object. The
G aphi cs object represents the component's graphics context. It corresponds to the area of the



screen on which the component can draw and provides the methods for performing primitive
drawing and image manipulation. (We'll look at the G- aphi cs class in detail in Chapter 17.)

All components paint and update themselves using this mechanism. Because all Swing
components are peerless, it's easy to draw on any of them. (With an AWT component, the
presence of the native peer component can make such drawing operations difficult.) In practice, it
won't make sense very often to draw on the prebuilt components, like buttons and list boxes.
When creating your own components, you'll probably just subclass JConponent directly.

13.1.5 Enabling and Disabling Components

Standard Swing components can be turned on and off by calling the set Enabl ed( ) method.
When a component like a JBut t on or JText Fi el d is disabled, it becomes "ghosted" or
"greyed-out” and doesn't respond to user input.

For example, let's see how to create a component that can be used only once. This requires
getting ahead of the story; we won't explain some aspects of this example until later. Earlier, we
said that a JBut t on generates an Act i onEvent when it is pressed. This event is delivered to
the listeners' act i onPer f or med( ) method. The following code disables whatever component
generated the event:

publ i ¢ bool ean void actionPerforned(Acti onEvent e ) {

( (jOonponent )e. get Source( )).setEnabl ed(fal se);

This code calls get Sour ce( ) to find out which component generated the event. We cast the
result to JConponent because we don't necessarily know what kind of component we're dealing
with; it might not be a button, because other kinds of components can generate action events.
Once we know which component generated the event, we disable it.

You can also disable an entire container. Disabling a JPanel , for instance, disables all the
components it contains. This is one of the things that used to be unpredictable in AWT, because
of the peers involved. In Swing, it just works.

13.1.6 Focus, Please

In order to receive keyboard events, a component has to have keyboard focus. The component
with the focus is simply the currently selected input component. It receives all keyboard event
information until the focus changes. A component can ask for focus with the JConponent's
request Focus( ) method. Text components like JText Fi el d and JText Ar ea do this
automatically whenever you click the mouse in their area. A component can find out when it gains
or loses focus through the FocusLi st ener interface (see Table 13.1 and Table 13.2 later in
this chapter). If you want to create your own text-oriented component, you could implement this
behavior yourself. For instance, you might request focus when the mouse is clicked in your
component's area. After receiving focus, you could change the cursor or do something else to
highlight the component.

Many user interfaces are designed so that the focus automatically jumps to the "next available”
component when the user presses the Tab key. This behavior is particularly common in forms;
users often expect to be able to tab to the next text entry field. Swing handles automatic focus
traversal for you. You can get control over the behavior through the t r ansf er Focus( ) ,
set Next Focusabl e- Conponent ( ), and set FocusTraver sabl e( ) methods of



JConponent . The method t r ansf er Focus( ) passes the focus to the next appropriate
component. If you want to change the traversal order, you can call set Next Focusabl e-
Conponent () to tell each component which component should be next. The set Focus-
Traversabl e( ) accepts a bool ean value that determines whether the component should be
considered eligible for receiving focus. You can use this method to determine whether your
components can be tabbed to.

13.1.7 Other Component Methods

The JConponent class is very large; it has to provide the base-level functionality for all of the
various kinds of Java GUI objects. It inherits a lot of functionality from its parent Cont ai ner and
Conponent classes. We don't have room to document every method of the JConponent class
here, but we'll flesh out our discussion by covering some more of the important ones:

Container
get Par ent

0)

Return the container that holds this component.

String

get Nane

()

void

set Nane
(String nane)

Get or assign the St ri ng hame of this component. Naming a component is useful for
debugging. The name is returned by t oSt ri ng( ) .

void
setVisible
(boolean vi si bl e)

Make the component visible or invisible, within its container. If you change the
component's visibility, the container's layout manager automatically lays out its visible
components.

Color

get For egr ound
()

void

set For egr ound
(Color «¢)

Color

get Backgr ound
()

void

set Backgr ound
(Color «¢)

Get and set the foreground and background colors for this component. The foreground
color of any component is the default color used for drawing. For example, it is the color



used for text in a text field; it is also the default drawing color for the G- aphi cs object
passed to the component's pai nt () and pai nt Conponent () methods. The
background color is used to fill the component's area when it is cleared by the default
implementation of updat e( ).

Dimension

get Si ze

()

void

setSi ze

(int wi dt h,int hei ght)

Get and set the current size of the component. Note that a layout manager may change
the size of a component even after you've set its size yourself. To change the size a
component "wants" to be, use set Pref erredSi ze( ). There are other methods in
JConponent to set its location, but normally this is the job of a layout manager.

Dimension

get PreferredSi ze

()

void

set PreferredSi ze
(Dimension preferredSi ze)

Use these methods to examine or set the preferred size of a component. Layout
managers attempt to set components to their preferred sizes. If you change a
component's preferred size, remember to call r eval i dat e( ) on the component to get
it laid out again.

Cursor
get Cur sor

0)

void

set Cur sor
(Cursor cursor)

Get or set the type of cursor (mouse pointer) used when the mouse is over this
component's area. For example:

JConponent nyConponent = ...;

Cursor crossHairs =
Cur sor. get Predefi nedCursor( Cursor. CROSSHAI R CURSOR ) ;
myConponent . set Cursor( crossHairs );

13.2 Containers

A container is a kind of component that holds and manages other components. JConponent
objects can be containers, because the JConponent class descends from the Cont ai ner class.

Three of the most useful container types are JFr ane , JPanel , and JAppl et . AJFrane is a
top-level window on your display. JFr ane is derived from JW ndow, which is pretty much the
same but lacks a border. A JPanel is a generic container element used to group components



inside of JFr anes and other JPanel s. The JAppl et class is a kind of container that provides
the foundation for applets that run inside web browsers. Like every other JConponent , a

JAppl et has the ability to contain other user interface components. You can also use the
JConmponent class directly, like a JPanel , to hold components inside of another container. With
the exception of JFr ane and JW ndow, all the components and containers in Swing are
lightweight.

A container maintains the list of "child" components that it manages, and has methods for dealing
with those components. Note that this child relationship refers to a visual hierarchy, not a
subclass/superclass hierarchy. By themselves, most components aren't very useful until they are
added to a container and displayed. The add( ) method of the Cont ai ner class adds a
component to the container. Thereafter, this component can be displayed in the container's
display area and positioned by its layout manager. You can remove a component from a
container with the r enove( ) method.

13.2.1 Layout Managers

A layout manager is an object that controls the placement and sizing of components within the
display area of a container. A layout manager is like a window manager in a display system; it
controls where the components go and how big they are. Every container has a default layout
manager, but you can install a new one by calling the container's set Layout () method.

Swing comes with a few layout managers that implement common layout schemes. The default
layout manager for a JPanel is a Fl owlLayout , which tries to place objects at their preferred
size from left to right and top to bottom in the container. The default for a JFr ane is a

Bor der Layout , which places a limited number of objects at named locations within the window,
such as NORTH, SCUTH, and CENTER. Another layout manager, G i dLayout , arranges
components in a rectangular grid. The most general (and difficult to use) layout manager is

G 1 dBagLayout , which lets you do the kinds of things you can do with HTML tables. (We'll get
into the details of all of these layout managers in Chapter 16.)

When you add a component to a container, you'll often use the version of add( ) that takes a
single Conponent as an argument. However, if you're using a layout manager that uses
"constraints,” like Bor der Layout or G i dBagLayout , you must specify additional information
about where to put the new component. For that you can use the version that takes a constraint
object. For example, here's how to place a component at the top edge of a container that uses a
Bor der Layout manager:

myCont ai ner . add( myConponent, BorderLayout. NORTH) ;

In this case, the constraint object is the static member variable NORTH. G| dBagLayout uses a
much more complex constraint object to specify positioning.

13.2.2 Insets

Insets specify a container's margins; the space specified by the container's insets won't be used
by a layout manager. Insets are described by an | nset s object, which has four public i nt fields:
top, bottomleft,andright.Younormally don't need to worry about the insets; the
container will set them automatically, taking into account extras like the menu bar that may
appear at the top of a frame. To find out the insets, call the component's get | nset s( ) method,
which returns an | nset s object.



13.2.3 Z-Ordering (Stacking Components)

With the standard layout managers, components are not allowed to overlap. However, if you use
custom-built layout managers or absolute positioning, components within a container may
overlap. If they do, the order in which components were added to a container matters. When
components overlap they are "stacked" in the order in which they were added: the first
component added to the container is on top; the last is on the bottom. To give you more control
over stacking, two additional forms of the add( ) method take an additional integer argument
that lets you specify the component's exact position in the container's stacking order.

13.2.4 The revalidate( ) and doLayout() Methods

A layout manager arranges the components in a container only when asked to. Several things
can mess up a container after it's initially laid out:

Changing its size
Resizing or moving one of its child components
Adding, showing, removing, or hiding a child component

Any of these actions cause the container or its components to be marked invalid. This means it
needs to have its child components readjusted by its layout manager. In most cases, Swing will
re-layout container automatically. There are a few cases where you may need to tell Swing to fix
things. One example is when you change the preferred size of a component. To fix up the layout,
callthereval i dat e( ) method. reval i dat e( ) marks a component (or container) invalid
and calls Cont ai ner's doLayout () met