
 
 
Copyright 
Table of Contents 
Index 
Full Description 
About the Author 
Reviews 
Examples 
Reader reviews 
Errata 

Learning Java 

Pat Niemeyer  
Jonathan Knudsen  
Publisher: O'Reilly  
First Edition May 2000 
ISBN: 1-56592-718-4, 722 pages  

 

For programmers either just migrating to Java or already working 
steadily in the forefront of Java development, Learning Java gives a 
clear, systematic overview of the Java 2 Standard Edition. It covers 
the essentials of hot topics like Swing and JFC; describes new tools 
for signing applets; and shows how to write networked clients and 
servers, servlets, and JavaBeans as state-of-the-art user interfaces. 
Includes a CD-ROM containing example code and JBuilder for 
Windows and Solaris. 

Learning Java 
 
Preface 
   New Developments 
   Audience 
   Using This Book 
   Getting Wired 
   Conventions Used in This Book 
   How to Contact Us 
   Acknowledgments 
 
1. Yet Another Language? 
   1.1 Enter Java 
   1.2 A Virtual Machine 
   1.3 Java Compared with Other Languages 
   1.4 Safety of Design 
   1.5 Safety of Implementation 
   1.6 Application and User-Level Security 
   1.7 Java and the World Wide Web 
   1.8 Java as a General Application Language 
   1.9 A Java Road Map 
 
2. A First Application 
   2.1 HelloJava1 
   2.2 HelloJava2: The Sequel 
   2.3 HelloJava3: The Button Strikes! 
   2.4 HelloJava4: Netscape's Revenge 



 
3. Tools of the Trade 
   3.1 The Java Interpreter 
   3.2 Policy Files 
   3.3 The Class Path 
   3.4 The Java Compiler 
   3.5 Java Archive (JAR) Files 
 
4. The Java Language 
   4.1 Text Encoding 
   4.2 Comments 
   4.3 Types 
   4.4 Statements and Expressions 
   4.5 Exceptions 
   4.6 Arrays 
 
5. Objects in Java 
   5.1 Classes 
   5.2 Methods 
   5.3 Object Creation 
   5.4 Object Destruction 
 
6. Relationships Among Classes 
   6.1 Subclassing and Inheritance 
   6.2 Interfaces 
   6.3 Packages and Compilation Units 
   6.4 Visibility of Variables and Methods 
   6.5 Arrays and the Class Hierarchy 
   6.6 Inner Classes 
 
7. Working with Objects and Classes 
   7.1 The Object Class 
   7.2 The Class Class 
   7.3 Reflection 
 
8. Threads 
   8.1 Introducing Threads 
   8.2 Threads in Applets 
   8.3 Synchronization 
   8.4 Scheduling and Priority 
   8.5 Thread Groups 
 
9. Basic Utility Classes 
   9.1 Strings 
   9.2 Math Utilities 
   9.3 Dates 
   9.4 Timers 
   9.5 Collections 
   9.6 Properties 
   9.7 The Security Manager 
   9.8 Internationalization 
 
10. Input/Output Facilities 



   10.1 Streams 
   10.2 Files 
   10.3 Serialization 
   10.4 Data Compression 
 
11. Network Programming with Sockets and RMI 
   11.1 Sockets 
   11.2 Datagram Sockets 
   11.3 Simple Serialized Object Protocols 
   11.4 Remote Method Invocation (RMI) 
 
12. Programming for the Web 
   12.1 Uniform Resource Locators (URLs) 
   12.2 The URL Class 
   12.3 Web Browsers and Handlers 
   12.4 Talking to CGI Programs and Servlets 
   12.5 Implementing Servlets 
 
13. Swing 
   13.1 Components 
   13.2 Containers 
   13.3 Events 
   13.4 Event Summary 
   13.5 Multithreading in Swing 
 
14. Using Swing Components 
   14.1 Buttons and Labels 
   14.2 Checkboxes and Radio Buttons 
   14.3 Lists and Combo Boxes 
   14.4 Borders 
   14.5 Menus 
   14.6 The PopupMenu Class 
   14.7 The JScrollPane Class 
   14.8 The JSplitPane Class 
   14.9 The JTabbedPane Class 
   14.10 Scrollbars and Sliders 
   14.11 Dialogs 
 
15. More Swing Components 
   15.1 Text Components 
   15.2 Trees 
   15.3 Tables 
   15.4 Desktops 
   15.5 Pluggable Look-and-Feel 
   15.6 Creating Custom Components 
 
16. Layout Managers 
   16.1 FlowLayout 
   16.2 GridLayout 
   16.3 BorderLayout 
   16.4 BoxLayout 
   16.5 CardLayout 
   16.6 GridBagLayout 



   16.7 Nonstandard Layout Managers 
   16.8 Absolute Positioning 
 
17. Drawing with the 2D API 
   17.1 The Big Picture 
   17.2 The Rendering Pipeline 
   17.3 A Quick Tour of Java 2D 
   17.4 Filling Shapes 
   17.5 Stroking Shape Outlines 
   17.6 Using Fonts 
   17.7 Displaying Images 
   17.8 Using Drawing Techniques 
   17.9 Printing 
 
18. Working with Images and Other Media 
   18.1 Implementing an ImageObserver 
   18.2 Using a MediaTracker 
   18.3 Producing Image Data 
   18.4 Filtering Image Data 
   18.5 Working with Audio 
   18.6 Working with Movies 
 
19. Java Beans 
   19.1 What's a Bean? 
   19.2 Building Beans 
   19.3 Hand-Coding with Beans 
   19.4 Putting Reflection to Work 
   19.5 BeanContext and BeanContextServices 
   19.6 The Java Activation Framework 
   19.7 Enterprise JavaBeans 
 
20. Applets 
   20.1 The JApplet Class 
   20.2 The <APPLET> Tag 
   20.3 Using the Java Plug-in 
   20.4 Using Digital Signatures 
 
21. Glossary 
 
A. Content and Protocol Handlers 
   A.1 Writing a Content Handler 
   A.2 Writing a Protocol Handler 
 
B. BeanShell: Simple Java Scripting 
   B.1 Running BeanShell 
   B.2 Java Statements and Expressions 
   B.3 BeanShell Commands 
   B.4 Scripted Methods and Objects 
   B.5 Learning More . . . 
 
Colophon 



Preface 

This book is about the Java™ language and programming environment. If you've been at all 
active on the Internet in the past few years, you've heard a lot about Java. It's one of the most 
exciting developments in the history of the Internet, rivaling the creation of the World Wide Web. 
Java became the darling of the Internet programming community as soon as the alpha version 
was released. Immediately, thousands of people were writing Java applets to add to their web 
pages. Interest in Java only grew with time, and support for Java in Netscape Navigator 
guaranteed it would be a permanent part of the Net scene. 

What, then, is Java? Java is a network programming language that was developed by Sun 
Microsystems. It's already in widespread use for creating animated and interactive web pages. 
However, this is only the start. The Java language and environment are rich enough to support 
entirely new kinds of applications, like dynamically extensible browsers and mobile agents. There 
are entirely new kinds of computer platforms being developed around Java (handheld devices 
and network computers) that download all their software over the network. In the coming years, 
we'll see what Java is capable of doing; fancy web pages are fun and interesting, but they 
certainly aren't the end of the story. If Java is successful (and that isn't a foregone conclusion), it 
could change the way we think about computing in fundamental ways. 

This book gives you a head start on a lot of Java fundamentals. Learning Java attempts to live up 
to its name by mapping out the Java language, its class libraries, programming techniques, and 
idioms. We'll dig deep into interesting areas and at least scratch the surface of the rest. Other 
titles in the O'Reilly & Associates Java Series will pick up where we leave off and provide more 
comprehensive information on specific areas and applications of Java. 

Whenever possible, we'll provide meaningful, realistic examples and avoid cataloging features. 
The examples are simple but hint at what can be done. We won't be developing the next great 
"killer app" in these pages, but we hope to give you a starting point for many hours of 
experimentation and tinkering that will lead you to learn more on your own. 

New Developments 

This book, Learning Java, is actually the third edition—reworked and retitled—of O'Reilly's 
popular Exploring Java. We've de-emphasized web-page applets this time around, reflecting their 
diminishing role over the past couple of years in creating "smart" web pages. Other technologies 
have filled in the gap: JavaScript on the client side, and Java servlets and Active Server Pages on 
the server side. 

We cover the most interesting features of Sun's newest release of Java, officially called Java 2 
SDK Version 1.3. (In the old days, it would have been called "JDK," for "Java development kit;" 
we use the newer, officially blessed "SDK," for "software development kit," throughout this book.) 
These features include servlets, the Java Media Framework ( JMF), timers, the collections, 2D 
graphics, and image-processing APIs, using the Java security manager, and using Java 2 signed 
applets. 

Another important change, though not as recent as SDK 1.3, is the ascendancy of Java Swing as 
the main API for graphical user interface programming. Much of the material relating to AWT, 
Java's original GUI programming interface, has been recast and updated to use Swing facilities. 

Audience 



This book is for computer professionals, students, technical people, and Finnish hackers. It's for 
everyone who has a need for hands-on experience with the Java language with an eye toward 
building real applications. This book could also be considered a crash course in object-oriented 
programming; as you learn about Java, you'll also learn a powerful and practical approach to 
object-oriented software development. 

Superficially, Java looks like C or C++, so you'll be in the best position to use this book if you've 
some experience with one of these languages. If you do not, you might want to refer to books like 
O'Reilly's Practical C Programming for a more thorough treatment of basic C syntax. However, 
don't make too much of the syntactic similarities between Java and C or C++. In many respects, 
Java acts like more dynamic languages such as Smalltalk and Lisp. Knowledge of another object-
oriented programming language should certainly help, although you may have to change some 
ideas and unlearn a few habits. Java is considerably simpler than languages like C++ and 
Smalltalk. 

Although we encourage you to take a broad view, you would have every right to be disappointed 
if we ignored the Web. A substantial part of this book does discuss Java as a language for World 
Wide Web applications, so you should be familiar with the basic ideas behind web browsers, 
servers, and web documents. 

Using This Book 

This book is organized roughly as follows: 

• Chapter 1 and Chapter 2 provide a basic introduction to Java concepts and a tutorial to 
give you a jump start on Java programming. 

• Chapter 3 discusses tools for developing with Java (the compiler, the interpreter, the 
JAR file package). It also covers important concepts such as embedding Java code in 
HTML support and object signing. 

• Chapter 4 through Chapter 8 describe the Java language itself. Chapter 8 covers the 
language's thread facilities, which should be of particular interest to advanced 
programmers. 

• Chapter 9 and Chapter 10 cover much of the core API. Chapter 9 describes basic 
utilities, and Chapter 10 covers I/O facilities. 

• Chapter 11 and Chapter 12 cover Java networking, including sockets, URLs, and 
remote method invocation (RMI). 

• Chapter 13 through Chapter 18 cover the Abstract Window Toolkit (AWT) and Swing, 
which provide graphical user interface (GUI) and image support. 

• Chapter 19 covers the JavaBeans™ component architecture. 
• Chapter 20 covers applets, the area in which Java saw its initial success. 

If you're like us, you don't read books from front to back. If you're really like us, you usually don't 
read the preface at all. However, on the off chance that you will see this in time, here are a few 
suggestions. 

If you are an experienced programmer who has to learn Java in the next five minutes, you are 
probably looking for the examples. You might want to start by glancing at the tutorial in Chapter 
2. If that doesn't float your boat, you should at least look at the information in Chapter 3, which 
tells you how to use the compiler and interpreter, and gives you the basics of a standalone Java 
application. This should get you started. 

Chapter 11 and Chapter 12 are essential if you are interested in writing advanced networked 
applications. This is probably the most interesting and important part of Java. 



Chapter 13 though Chapter 19 discuss Java's graphics features and component architecture. 
You should read this carefully if you are interested in Java applications for the Web. 

Getting Wired 

There are many online sources for information about Java. Sun Microsystem's official web site for 
Java topics is http://java.sun.com; look here for the latest news, updates, and Java releases. 
This is where you'll find the Java Software Development Kit (SDK), which includes the compiler, 
the interpreter, and other tools. Another good source of Java information, including free applets, 
utility classes, and applications, is the Gamelan site, run by EarthWeb; its URL is 
http://www.gamelan.com. 

You should also visit O'Reilly & Associates' Java site at http://java.oreilly.com. There you'll 
find information about other books in O'Reilly's Java Series, and a pointer to the home page for 
Learning Java, http://www.oreilly.com/catalog/learnjava/, where you'll find the source 
code examples for this book. 

The comp.lang.java newsgroup can be a good source of information and announcements, and a 
place to ask intelligent questions. 

Conventions Used in This Book 

The font conventions used in this book are quite simple. 

Italic is used for:  

• Unix pathnames, filenames, and program names 
• Internet addresses, such as domain names and URLs 
• New terms where they are defined 

Boldface is used for:  

• Names of GUI buttons and menus 

Constant width is used for:  

• Anything that might appear in a Java program, including method names, variable 
names, and class names 

• Command lines and options that should be typed verbatim on the screen 
• Tags that might appear in an HTML document 

Constant width bold 
is used for:  

• In code examples, text that is typed by the user 

In the main body of text, we always use a pair of empty parentheses after a method name to 
distinguish methods from variables and other creatures. 

In the Java source listings, we follow the coding conventions most frequently used in the Java 
community. Class names begin with capital letters; variable and method names begin with 



lowercase. All the letters in the names of constants are capitalized. We don't use underscores to 
separate words in a long name; following common practice, we capitalize individual words (after 
the first) and run the words together. For example: thisIsAVariable, thisIsAMethod( ), 
ThisIsAClass, and THISISACONSTANT. 

How to Contact Us 

We have tested and verified all the information in this book to the best of our abilities, but you 
may find that features have changed or that we have let errors slip through the production of the 
book. Please let us know of any errors that you find, as well as suggestions for future editions, by 
writing to: 

O'Reilly & Associates, Inc.  
101 Morris St.  
Sebastopol, CA 95472  
1-800-998-9938 (in the U.S. or Canada)  
1-707-829-0515 (international/local)  
1-707-829-0104 (fax)  

You can also send messages electronically. To be put on our mailing list or to request a catalog, 
send email to: 

info@oreilly.com  

To ask technical questions or to comment on the book, send email to: 

bookquestions@oreilly.com  

We have a web site for the book, where we'll list examples, errata, and any plans for future 
editions. You can access this page at: 

http://www.oreilly.com/catalog/learnjava/  

For more information about this book and others, see the O'Reilly web site: 

http://www.oreilly.com  



Chapter 1. Yet Another Language? 

The greatest challenges and most exciting opportunities for software developers today lie in 
harnessing the power of networks. Applications created today, whatever their intended scope or 
audience, will almost certainly be run on machines linked by a global network of computing 
resources. The increasing importance of networks is placing new demands on existing tools and 
fueling the demand for a rapidly growing list of completely new kinds of applications. 

We want software that works—consistently, anywhere, on any platform—and that plays well with 
other applications. We want dynamic applications that take advantage of a connected world, 
capable of accessing disparate and distributed information sources. We want truly distributed 
software that can be extended and upgraded seamlessly. We want intelligent applications—like 
autonomous agents that can roam the Net for us, ferreting out information and serving as 
electronic emissaries. We know, to some extent, what we want. So why don't we have it? 

The problem has been that the tools for building these applications have fallen short. The 
requirements of speed and portability have been, for the most part, mutually exclusive, and 
security has been largely ignored or misunderstood. There are truly portable languages, but they 
are mostly bulky, interpreted, and slow. These languages are popular as much for their high-level 
functionality as for their portability. And there are fast languages, but they usually provide speed 
by binding themselves to particular platforms, so they can meet the portability issue only halfway. 
There are even a few recent safe languages, but they are primarily offshoots of the portable 
languages and suffer from the same problems. 

1.1 Enter Java 

The Java™ programming language, developed at Sun Microsystems under the guidance of Net 
luminaries James Gosling and Bill Joy, is designed to be a machine-independent programming 
language that is both safe enough to traverse networks and powerful enough to replace native 
executable code. Java addresses the issues raised here and may help us start building the kinds 
of applications we want. 

Initially, most of the enthusiasm for Java centered around its capabilities for building embedded 
applications for the World Wide Web; these applications are called applets. Applets could be 
independent programs in themselves, or sophisticated frontends to programs running on a server. 
More recently, interest has shifted to other areas. With Java 2, Java has the most sophisticated 
toolkit for building graphical user interfaces; this development has allowed Java to become a 
popular platform for developing traditional application software. Java has also become an 
important platform for server-side applications, using the servlet interface, and for enterprise 
applications using technologies like Enterprise JavaBeans™. And Java is the platform of choice 
for modern distributed applications. 

This book shows you how to use Java to accomplish real programming tasks, such as building 
networked applications and creating functional user interfaces. There's still a chapter devoted to 
applets; they may become more important again when the Java 2 (and subsequent) versions of 
the Java platform are more widely distributed in web browsers. 

1.1.1 Java's Origins 

The seeds of Java were planted in 1990 by Sun Microsystems patriarch and chief researcher, Bill 
Joy. Since Sun's inception in the early '80s, it has steadily pushed one idea: "The network is the 
computer." At the time though, Sun was competing in a relatively small workstation market, while 



Microsoft was beginning its domination of the more mainstream, Intel-based PC world. When Sun 
missed the boat on the PC revolution, Joy retreated to Aspen, Colorado, to work on advanced 
research. He was committed to accomplishing complex tasks with simple software, and founded 
the aptly named Sun Aspen Smallworks. 

Of the original members of the small team of programmers assembled in Aspen, James Gosling 
is the one who will be remembered as the father of Java. Gosling first made a name for himself in 
the early '80s as the author of Gosling Emacs, the first version of the popular Emacs editor that 
was written in C and ran under Unix. Gosling Emacs became popular, but was soon eclipsed by a 
free version, GNU Emacs, written by Emacs's original designer. By that time, Gosling had moved 
on to design Sun's NeWS window system, which briefly contended with the X Window System for 
control of the Unix graphical user interface (GUI) desktop in 1987. While some people would 
argue that NeWS was superior to X, NeWS lost out because Sun kept it proprietary and didn't 
publish source code, while the primary developers of X formed the X Consortium and took the 
opposite approach. 

Designing NeWS taught Gosling the power of integrating an expressive language with a network-
aware windowing GUI. It also taught Sun that the Internet programming community will refuse to 
accept proprietary standards, no matter how good they may be. The seeds of Java's remarkably 
permissive licensing scheme were sown by NeWS's failure. Gosling brought what he had learned 
to Bill Joy's nascent Aspen project, and in 1992, work on the project led to the founding of the 
Sun subsidiary, FirstPerson, Inc. Its mission was to lead Sun into the world of consumer 
electronics. 

The FirstPerson team worked on developing software for information appliances, such as cellular 
phones and personal digital assistants (PDAs). The goal was to enable the transfer of information 
and real-time applications over cheap infrared and packet-based networks. Memory and 
bandwidth limitations dictated small and efficient code. The nature of the applications also 
demanded they be safe and robust. Gosling and his teammates began programming in C++, but 
they soon found themselves confounded by a language that was too complex, unwieldy, and 
insecure for the task. They decided to start from scratch, and Gosling began working on 
something he dubbed "C++ minus minus." 

With the foundering of the Apple Newton, it became apparent that the PDA's ship had not yet 
come in, so Sun shifted FirstPerson's efforts to interactive TV (ITV). The programming language 
of choice for ITV set-top boxes was the near ancestor of Java, a language called Oak. Even with 
its elegance and ability to provide safe interactivity, Oak could not salvage the lost cause of ITV. 
Customers didn't want it, and Sun soon abandoned the concept. 

At that time, Joy and Gosling got together to decide on a new strategy for their language. It was 
1993, and the explosion of interest in the Internet, and the World Wide Web in particular, 
presented a new opportunity. Oak was small, robust, architecture-independent, and object-
oriented. As it happens, these are also the requirements for a universal, network-savvy 
programming language. Sun quickly changed focus, and with a little retooling, Oak became Java.  

1.1.2 Future Buzz? 

It would not be overdoing it to say that Java has caught on like wildfire. Even before its first official 
release, while Java was still a non-product, nearly every major industry player jumped on the 
Java bandwagon. Java licensees included Microsoft, Intel, IBM, and virtually all major hardware 
and software vendors. (That's not to say that everything has been coming up roses. Even with all 
of this support Java has taken a lot of knocks and had some growing pains during its first few 
years.) 



As we begin looking at the Java architecture, you'll see that much of what is exciting about Java 
comes from the self-contained, virtual machine environment in which Java applications run. Java 
has been carefully designed so that this supporting architecture can be implemented either in 
software, for existing computer platforms, or in customized hardware, for new kinds of devices. 
Sun and other industry giants are producing fast Java chips and microprocessors tailored to run 
media-rich Java applications. Hardware implementations of Java could power inexpensive 
network terminals, PDAs, and other information appliances, to take advantage of transportable 
Java applications. Software implementations of Java are available now for portable computing 
devices like the popular Palm™ PDA. 

Many people see Java as part of a trend toward cheap, Internet-based, "operating system-less" 
appliances that will weave the Net into more and more consumer-related areas. The first attempts 
at marketing "network computers" as alternatives to the standard PC have not gone very well. 
(The combination of Windows and cheap PC hardware form a formidable barrier.) But the 
desktop is only one corner of the network. Only time will tell what people will do with Java, but it's 
probably worth at least a passing thought that the applet you write today might well be running on 
someone's wristwatch tomorrow. If that seems too futuristic, remember that you can already get 
"smart cards" and "wearable" devices like rings and dog tags that have Java interpreters 
embedded in them. These devices are capable of doing everything from financial transactions 
(paying a hotel bill) to unlocking a door (the door to your hotel room) to rerouting phone calls (so 
your hotel room receives your business calls). The hardware is already here; it can't be long 
before the rest of the software infrastructure begins to take advantage of it. A Java wristwatch is 
not a silly notion. 

1.2 A Virtual Machine 

Java is both a compiled and an interpreted language. Java source code is turned into simple 
binary instructions, much like ordinary microprocessor machine code. However, whereas C or 
C++ source is refined to native instructions for a particular model of processor, Java source is 
compiled into a universal format—instructions for a virtual machine. 

Compiled Java byte-code, also called J-code, is executed by a Java runtime interpreter. The 
runtime system performs all the normal activities of a real processor, but it does so in a safe, 
virtual environment. It executes the stack-based instruction set and manages a storage heap. It 
creates and manipulates primitive datatypes, and loads and invokes newly referenced blocks of 
code. Most importantly, it does all this in accordance with a strictly defined open specification that 
can be implemented by anyone who wants to produce a Java-compliant virtual machine. 
Together, the virtual machine and language definition provide a complete specification. There are 
no features of Java left undefined or implementation-dependent. For example, Java specifies the 
sizes of all its primitive data types, rather than leave it up to each implementation. 

The Java interpreter is relatively lightweight and small; it can be implemented in whatever form is 
desirable for a particular platform. On most systems, the interpreter is written in a fast, natively 
compiled language like C or C++. The interpreter can be run as a separate application, or it can 
be embedded in another piece of software, such as a web browser. 

All of this means that Java code is implicitly portable. The same Java application byte-code can 
run on any platform that provides a Java runtime environment, as shown in Figure 1.1. You 
don't have to produce alternative versions of your application for different platforms, and you don't 
have to distribute source code to end users. 

Figure 1.1. The Java runtime environment 



 

The fundamental unit of Java code is the class. As in other object-oriented languages, classes 
are application components that hold executable code and data. Compiled Java classes are 
distributed in a universal binary format that contains Java byte-code and other class information. 
Classes can be maintained discretely and stored in files or archives on a local system or on a 
network server. Classes are located and loaded dynamically at runtime, as they are needed by an 
application. 

In addition to the platform-specific runtime system, Java has a number of fundamental classes 
that contain architecture-dependent methods. These native methods serve as the gateway 
between the Java virtual machine and the real world. They are implemented in a natively 
compiled language on the host platform. They provide access to resources such as the network, 
the windowing system, and the host filesystem. The rest of Java is written entirely in Java, and is 
therefore portable. This includes fundamental Java utilities like the Java compiler and Sun's 
HotJava web browser, which are also Java applications and are therefore available on all Java 
platforms. 

Historically, interpreters have been considered slow, but because the Java interpreter runs 
compiled byte-code, Java is a relatively fast interpreted language. More importantly, Java has 
also been designed so that software implementations of the runtime system can optimize their 
performance by compiling byte-code to native machine code on the fly. This is called just-in-time 
compilation. Sun claims that with just-in-time compilation, Java code can execute nearly as fast 
as native compiled code and maintain its transportability and security. There is only one true 
performance hit that compiled Java code will always suffer for the sake of security — array 
bounds checking. But on the other hand, some of the basic design features of Java place more 
information in the hands of the compiler, which allows for certain kinds of optimizations not 
possible in C or C++. 

The latest twist in compilation techniques is a new virtual machine that Sun calls HotSpot. The 
problem with a traditional just-in-time compilation is that optimizing code takes time, and is 
extremely important for good performance on modern computer hardware. So a just-in-time 
compiler can produce decent results, but can never afford to take the time necessary to do a 
good job of optimization. HotSpot uses a trick called "adaptive compilation" to solve this problem. 
If you look at what programs actually spend their time doing, it turns out that they spend almost all 



of their time executing a relatively small part of the code again and again. The chunk of code that 
is executed repeatedly may only be a small percent of the total program, but its behavior 
determines the program's overall performance. 

To take advantage of this fact, HotSpot starts out as a normal Java byte code interpreter, but with 
a difference: it measures (profiles) the code as it is executing, to see what parts are being 
executed repeatedly. Once it knows which parts of the code are crucial to the performance, 
HotSpot compiles those sections—and only those sections—into true machine code. Since it only 
compiles a small portion of the program into machine code, it can afford to take the time 
necessary to optimize those portions. The rest of the program may not need to be compiled at 
all—just interpreted—saving memory and time. 

The technology for doing this is very complex, but the idea is essentially simple: optimize the 
parts of the program that need to go fast, and don't worry about the rest. Another advantage of 
using an adaptive compiler at runtime is that it can make novel kinds of optimizations that a static 
(compile time only) compiler cannot dream of. 

1.3 Java Compared with Other Languages 

Java is a new language, but it draws on many years of programming experience with other 
languages in its choice of features. So a lot can be said in comparing and contrasting Java with 
other languages. There are at least three pillars necessary to support a universal language for 
network programming today: portability, speed, and security. Figure 1.2 shows how Java 
compares to other languages. 

Figure 1.2. Programming languages compared 

 

You may have heard that Java is a lot like C or C++, but that's really not true, except at a 
superficial level. When you first look at Java code, you'll see that the basic syntax looks a lot like 
C or C++. But that's where the similarities end. Java is by no means a direct descendant of C or a 
next-generation C++. If you compare language features, you'll see that Java actually has more in 
common with languages like Smalltalk and Lisp. In fact, Java's implementation is about as far 
from native C as you can imagine. 

The surface-level similarities to C and C++ are worth noting, however. Java borrows heavily from 
C and C++ syntax, so you'll see lots of familiar language constructs, including an abundance of 
curly braces and semicolons. Java also subscribes to the C philosophy that a good language 
should be compact; in other words, it should be sufficiently small and regular so a programmer 
can hold all the language's capabilities in his or her head at once. Just as C is extensible with 
libraries, packages of Java classes can be added to the core language components. 



C has been successful because it provides a reasonably featureful programming environment, 
with high performance and an acceptable degree of portability. Java also tries to balance 
functionality, speed, and portability, but it does so in a very different way. C trades functionality for 
portability; Java trades speed for portability. Java also addresses security issues, while C doesn't. 

Java is an interpreted language, so it won't be as fast as a compiled language like C. But Java is 
fast enough, especially for interactive, network-based applications, where the application is often 
idle, waiting for the user to do something or waiting for data from the network. For situations 
where speed is critical, a Java implementation can optimize performance with just-in-time 
compilation to byte-code, as previously discussed. 

Scripting languages, like Perl, Python, Tcl/Tk, and Wksh, are becoming very popular, and for 
good reason. There's no reason a scripting language could not be suitable for safe, networked 
applications (e.g., Safe Tcl), but most scripting languages are not designed for serious, large-
scale programming. The attraction to scripting languages is that they are dynamic; they are 
powerful tools for rapid prototyping. Some scripting languages, like awk and Perl, also provide 
powerful tools for text-processing tasks that more general-purpose languages find unwieldy. 
Scripting languages are also highly portable. 

One problem with scripting languages, however, is that they are rather casual about program 
structure and data typing. Most scripting languages (with a hesitant exception for Perl 5.0 and 
Python) are not object-oriented. They also have vastly simplified type systems and generally don't 
provide for sophisticated scoping of variables and functions. These characteristics make them 
unsuitable for building large, modular applications. Speed is another problem with scripting 
languages; the high-level, fully interpreted nature of these languages often makes them quite 
slow. 

Java offers some of the essential advantages of a scripting language, along with the added 
benefits of a lower-level language. 

Incremental development with object-oriented components, combined with Java's simplicity, 
make it possible to develop applications rapidly and change them easily, with a short concept-to-
implementation time. Java also comes with a large base of core classes for common tasks such 
as building GUIs and doing network communications. But along with these features, Java has the 
scalability and software-engineering advantages of more static languages. It provides a safe 
structure on which to build higher-level networked tools and languages. 

However, don't confuse Java with JavaScript! JavaScript is an object-based scripting language 
being developed by Netscape and others. It serves as a glue and an "in the document" language 
for dynamic, interactive HTML-based applications. JavaScript draws its name from its intended 
integration with Java. You can currently interact with Java applets embedded in HTML using 
JavaScript. There have been a few portable implementations of JavaScript that would promote it 
to the level of a general scripting language. For more information on JavaScript, check out 
Netscape's web site (http://home.netscape.com). 

As we've already said, Java is similar in design to languages like Smalltalk and Lisp. However, 
these languages are currently used mostly as research vehicles, rather than for developing large-
scale systems. One reason is that they never developed a standard portable binding to operating-
system services, like the C standard library or the Java core classes. Smalltalk is compiled to an 
interpreted byte-code format, and it can be dynamically compiled to native code on the fly, just 
like Java. But Java improves on the design by using a byte-code verifier to ensure the 
correctness of compiled Java code. This verifier gives Java a performance advantage over 
Smalltalk because Java code requires fewer runtime checks. Java's byte-code verifier also helps 



with security issues, something that Smalltalk doesn't address. Smalltalk is a mature language, 
though, and Java's designers took lessons from many of its features. 

Throughout the rest of this chapter, we'll present a bird's-eye view of the Java language. We'll 
explain what's new and what's not-so-new about Java, how it differs from other languages, and 
why. 

1.4 Safety of Design 

You have no doubt heard a lot about the fact that Java is designed to be a safe language. But 
what do we mean by safe? Safe from what or whom? The security features that attract the most 
attention for Java are those features that make possible new types of dynamically portable 
software. Java provides several layers of protection from dangerously flawed code, as well as 
more mischievous things like viruses and Trojan horses. In the next section, we'll take a look at 
how the Java virtual machine architecture assesses the safety of code before it's run, and how 
the Java class loader (the byte-code loading mechanism of the Java interpreter) builds a wall 
around untrusted classes. These features provide the foundation for high-level security policies 
that allow or disallow various kinds of activities on an application-by-application basis. 

In this section, though, we'll look at some general features of the Java programming language. 
Perhaps more important than the specific security features, although often overlooked in the 
security din, is the safety that Java provides by addressing common design and programming 
problems. Java is intended to be as safe as possible from the simple mistakes we make 
ourselves, as well as those we inherit from contractors and third-party software vendors. The goal 
with Java has been to keep the language simple, provide tools that have demonstrated their 
usefulness, and let users build more complicated facilities on top of the language when needed. 

1.4.1 Syntactic Sweet 'n' Low 

Java is parsimonious in its features; simplicity rules. Compared to C, Java uses few automatic 
type coercions, and the ones that remain are simple and well-defined. Unlike C++, Java doesn't 
allow programmer-defined operator overloading. The string concatenation operator + is the only 
system-defined, overloaded operator in Java. All methods in Java are like C++ virtual methods, 
so overridden methods are dynamically selected at runtime. 

Java doesn't have a preprocessor, so it doesn't have macros, #define statements, or 
conditional source compilation. These constructs exist in other languages primarily to support 
platform dependencies, so in that sense they should not be needed in Java. Conditional 
compilation is also commonly used for debugging purposes. Debugging code can be included 
directly in your Java source code by making it conditional on a constant (in Java, a variable 
declared to be static and final). The Java compiler is smart enough to remove this code 
when it determines that it won't be called. 

Java provides a well-defined package structure for organizing class files. The package system 
allows the compiler to handle most of the functionality of the make utility (a sophisticated tool for 
building executables from source code). The compiler also works with compiled Java classes, 
because all type information is preserved; there is no need for header files. All of this means that 
Java code requires little context to read. Indeed, you may sometimes find it faster to look at the 
Java source code than to refer to class documentation. 

Java replaces some features that have been troublesome in other languages. For example, Java 
supports only a single inheritance class hierarchy, but allows multiple inheritance of interfaces. An 
interface, like an abstract class in C++, specifies some of the behavior of an object without 



defining its implementation, a powerful mechanism borrowed from Objective C. It allows a class 
to implement the behavior of the interface, without needing to be a subclass of anything in 
particular. Interfaces in Java eliminate the need for multiple inheritance of classes, without 
causing the problems associated with multiple inheritance. As you'll see in Chapter 4, Java is a 
simple, yet elegant, programming language. 

1.4.2 Type Safety and Method Binding 

One attribute of a language is the kind of type checking it uses. When we categorize a language 
as static or dynamic we are referring to the amount of information about variable types that is 
known at compile time versus what is determined while the application is running. 

In a strictly statically typed language like C or C++, data types are etched in stone when the 
source code is compiled. The compiler benefits from having enough information to enforce usage 
rules, so that it can catch many kinds of errors before the code is executed, such as storing a 
floating-point value in an integer variable. The code doesn't require runtime type checking, so it 
can be compiled to be small and fast. But statically typed languages are inflexible. They don't 
support high-level constructs like lists and collections as naturally as languages with dynamic 
type checking, and they make it impossible for an application to safely import new data types 
while it's running. 

In contrast, a dynamic language such as Smalltalk or Lisp has a runtime system that manages 
the types of objects and performs necessary type checking while an application is executing. 
These kinds of languages allow for more complex behavior, and are in many respects more 
powerful. However, they are also generally slower, less safe, and harder to debug. 

The differences in languages have been likened to the differences among kinds of automobiles.[1] 
Statically typed languages like C++ are analogous to a sports car—reasonably safe and fast—but 
useful only if you're driving on a nicely paved road. Highly dynamic languages like Smalltalk are 
more like an offroad vehicle: they afford you more freedom, but can be somewhat unwieldy. It can 
be fun (and sometimes faster) to go roaring through the back woods, but you might also get stuck 
in a ditch or mauled by bears. 

[1] The credit for the car analogy goes to Marshall P. Cline, author of the C++ FAQ. 

Another attribute of a language is the way it binds method calls to their definitions. In an early-
binding language like C or C++, the definitions of methods are normally bound at compile time, 
unless the programmer specifies otherwise. Smalltalk, on the other hand, is a late-binding 
language because it locates the definitions of methods dynamically at runtime. Early-binding is 
important for performance reasons; an application can run without the overhead incurred by 
searching method tables at runtime. But late-binding is more flexible. It's also necessary in an 
object-oriented language, where a subclass can override methods in its superclass, and only the 
runtime system can determine which method to run. 

Java provides some of the benefits of both C++ and Smalltalk; it's a statically typed, late-binding 
language. Every object in Java has a well-defined type that is known at compile time. This means 
the Java compiler can do the same kind of static type checking and usage analysis as C++. As a 
result, you can't assign an object to the wrong type of variable or call nonexistent methods on an 
object. The Java compiler goes even further and prevents you from messing up and trying to use 
uninitialized variables. 

However, Java is fully runtime typed as well. The Java runtime system keeps track of all objects 
and makes it possible to determine their types and relationships during execution. This means 
you can inspect an object at runtime to determine what it is. Unlike C or C++, casts from one type 



of object to another are checked by the runtime system, and it's even possible to use completely 
new kinds of dynamically loaded objects with a level of type safety. 

Since Java is a late-binding language, all methods are like virtual methods in C++. This makes it 
possible for a subclass to override methods in its superclass. But Java also allows you to gain the 
performance benefits of early-binding by explicitly declaring (with the final modifier) that certain 
methods can't be overridden by subclassing, removing the need for runtime lookup. (Adaptive 
runtime compilers like HotSpot may be able to eliminate the need for you to worry about this 
though, as they can detect usage patterns and improve performance automatically, where 
possible.) 

1.4.3 Incremental Development 

Java carries all data-type and method-signature information with it from its source code to its 
compiled byte-code form. This means that Java classes can be developed incrementally. Your 
own Java classes can also be used safely with classes from other sources your compiler has 
never seen. In other words, you can write new code that references binary class files, without 
losing the type safety you gain from having the source code. The Java runtime system can load 
new classes while an application is running, thus providing the capabilities of a dynamic linker. 

A common irritation with C++ is the "fragile base class" problem. In C++, the implementation of a 
base class can be effectively frozen by the fact that it has many derived classes; changing the 
base class may require recompilation of the derived classes. This is an especially difficult 
problem for developers of class libraries. Java avoids this problem by dynamically locating fields 
within classes. As long as a class maintains a valid form of its original structure, it can evolve 
without breaking other classes that are derived from it or that make use of it. 

1.4.4 Dynamic Memory Management 

Some of the most important differences between Java and C or C++ involve how Java manages 
memory. Java eliminates ad hoc pointers and adds garbage collection and true arrays to the 
language. These features eliminate many otherwise insurmountable problems with safety, 
portability, and optimization. 

Garbage collection alone should save countless programmers from the single largest source of 
programming errors in C or C++: explicit memory allocation and deallocation. In addition to 
maintaining objects in memory, the Java runtime system keeps track of all references to those 
objects. When an object is no longer in use, Java automatically removes it from memory. You can 
simply ignore objects you no longer use, with confidence that the interpreter will clean them up at 
an appropriate time. 

Sun's current implementation of Java uses a conservative mark-and-sweep garbage collector that 
runs intermittently in the background, which means that most garbage collecting takes place 
between I/O pauses, mouse clicks, and keyboard hits. Next generation runtime systems like 
HotSpot have more advanced garbage collection that can even differentiate the usage patterns of 
objects (such as short-lived versus long-lived) and optimize their collection. Once you get used to 
garbage collection, you won't go back. Being able to write air-tight C code that juggles memory 
without dropping any on the floor is an important skill, but once you become addicted to Java you 
can "realloc" some of those brain cells to new tasks. 

You may hear people say that Java doesn't have pointers. Strictly speaking, this statement is 
true, but it's also misleading. What Java provides are references—a safe kind of pointer—and 
Java is rife with them. A reference is a strongly typed handle for an object. All objects in Java, 
with the exception of primitive numeric types, are accessed through references. If necessary, you 



can use references to build all the normal kinds of data structures you're accustomed to building 
with pointers, such as linked lists, trees, and so forth. The only difference is that with references 
you have to do so in a type-safe way. 

Another important difference between a reference and a pointer is that you can't do pointer 
arithmetic with references (they can only point to specific objects or elements of an array). A 
reference is an atomic thing; you can't manipulate the value of a reference except by assigning it 
to an object. References are passed by value, and you can't reference an object through more 
than a single level of indirection. The protection of references is one of the most fundamental 
aspects of Java security. It means that Java code has to play by the rules; it can't peek into 
places it shouldn't. 

Unlike C or C++ pointers, Java references can point only to class types. There are no pointers to 
methods. People often complain about this missing feature, but you will find that most tasks that 
call for pointers to methods, such as callbacks, can be accomplished using interfaces and 
anonymous adapter classes instead.[2] (We will discuss these in Chapter 6, and in the Swing-
related chapters; they are heavily used in tying together graphical user interface components). 

[2] As of Java 1.1, there is a Method class, which lets you have a reference to a method. This is part of the 
Java reflection API. You can use a Method object to construct a callback, but it's not the normal way of doing 
things. 

Finally, arrays in Java are true, first-class objects. They can be dynamically allocated and 
assigned like other objects. Arrays know their own size and type, and although you can't directly 
define or subclass array classes, they do have a well-defined inheritance relationship based on 
the relationship of their base types. Having true arrays in the language alleviates much of the 
need for pointer arithmetic like that in C or C++. 

1.4.5 Error Handling 

Java's roots are in networked devices and embedded systems. For these applications, it's 
important to have robust and intelligent error management. Java has a powerful exception-
handling mechanism, somewhat like that in newer implementations of C++. Exceptions provide a 
more natural and elegant way to handle errors. Exceptions allow you to separate error-handling 
code from normal code, which makes for cleaner, more readable applications. 

When an exception occurs, it causes the flow of program execution to be transferred to a 
predesignated "catcher" block of code. The exception carries with it an object that contains 
information about the situation that caused the exception. The Java compiler requires that a 
method either declare the exceptions it can generate or catch and deal with them itself. This 
promotes error information to the same level of importance as argument and return typing. As a 
Java programmer, you know precisely what exceptional conditions you must deal with, and you 
have help from the compiler in writing correct software that doesn't leave them unhandled. 

1.4.6 Multithreading 

Applications today require a high degree of parallelism. Even a very single- minded application 
can have a complex user interface—which requires concurrent activities. As machines get faster, 
users become more sensitive to waiting for unrelated tasks that seize control of their time. 
Threads provide efficient multiprocessing and distribution of tasks for both client and server 
applications. Java makes threads easy to use because support for them is built into the language. 

Concurrency is nice, but there's more to programming with threads than just performing multiple 
tasks simultaneously. In many cases, threads need to be synchronized, which can be tricky 



without explicit language support. Java supports synchronization based on the monitor and 
condition model developed by C.A.R. Hoare—a sort of lock and key system for accessing 
resources. The keyword synchronized designates methods for safe, serialized access within 
an object. Only one synchronized method within the object may run at a given time. There are 
also simple, primitive methods for explicit waiting and signaling between threads interested in the 
same object. 

Learning to program with threads is an important part of learning to program in Java. See 
Chapter 8, for a discussion of this topic. For complete coverage of threads, refer to Java 
Threads, by Scott Oaks and Henry Wong (O'Reilly & Associates). 

1.4.7 Scalability 

At the lowest level, Java programs consist of classes. Classes are intended to be small, modular 
components. They can be separated physically on different systems, retrieved dynamically, 
stored in a compressed format, and even cached in various distribution schemes. Over classes, 
Java provides packages, a layer of structure that groups classes into functional units. Packages 
provide a naming convention for organizing classes and a second level of organizational control 
over the visibility of variables and methods in Java applications. 

Within a package, a class is either publicly visible or protected from outside access. Packages 
form another type of scope that is closer to the application level. This lends itself to building 
reusable components that work together in a system. Packages also help in designing a scalable 
application that can grow without becoming a bird's nest of tightly coupled code dependency. 

1.5 Safety of Implementation 

It's one thing to create a language that prevents you from shooting yourself in the foot; it's quite 
another to create one that prevents others from shooting you in the foot. 

Encapsulation is a technique for hiding data and behavior within a class; it's an important part of 
object-oriented design. It helps you write clean, modular software. In most languages, however, 
the visibility of data items is simply part of the relationship between the programmer and the 
compiler. It's a matter of semantics, not an assertion about the actual security of the data in the 
context of the running program's environment. 

When Bjarne Stroustrup chose the keyword private to designate hidden members of classes in 
C++, he was probably thinking about shielding you from the messy details of a class developer's 
code, not the issues of shielding that developer's classes and objects from the onslaught of 
someone else's viruses and Trojan horses. Arbitrary casting and pointer arithmetic in C or C++ 
make it trivial to violate access permissions on classes without breaking the rules of the 
language. Consider the following code: 

// C++ code 
class Finances {   
    private:   
        char creditCardNumber[16];   
        ...   
};   
   
main( ) {   
    Finances finances;   
   



    // Forge a pointer to peek inside the class   
    char *cardno = (char *)&finances;   
    printf("Card Number = %s\n", cardno);   
} 

In this little C++ drama, we have written some code that violates the encapsulation of the 
Finances class and pulls out some secret information. This sort of shenanigan—abusing an 
untyped pointer—is not possible in Java. If this example seems unrealistic, consider how 
important it is to protect the foundation (system) classes of the runtime environment from similar 
kinds of attacks. If untrusted code can corrupt the components that provide access to real 
resources, such as the filesystem, the network, or the windowing system, it certainly has a 
chance at stealing your credit card numbers. 

In Visual BASIC, it's also possible to compromise the system by peeking, poking, and, under 
DOS, installing interrupt handlers. Even some recent languages that have some commonalties 
with Java lack important security features. For example, the Apple Newton uses an object-
oriented language called NewtonScript that is compiled into an interpreted byte-code format. 
However, NewtonScript has no concept of public and private members, so a Newton application 
has free reign to access any information it finds. General Magic's Telescript language is another 
example of a device-independent language that does not fully address security concerns. The list 
goes on ... 

If a Java application is to dynamically download code from an untrusted source on the Internet 
and run it alongside applications that might contain confidential information, protection has to 
extend very deep. The Java security model wraps three layers of protection around imported 
classes, as shown in Figure 1.3. 

Figure 1.3. The Java security model 

 

At the outside, application-level security decisions are made by a security manager. A security 
manager controls access to system resources like the filesystem, network ports, and the 
windowing environment. A security manager relies on the ability of a class loader to protect basic 
system classes. A class loader handles loading classes from the network. At the inner level, all 
system security ultimately rests on the Java verifier, which guarantees the integrity of incoming 
classes. 

The Java byte-code verifier is a fixed part of the Java runtime system. Class loaders and the 
security managers (or security policies to be more precise), however, are components that may 
be implemented differently by different applications that load byte-code, such as applet viewers 
and web browsers. All three of these pieces need to be functioning properly to ensure security in 
the Java environment.[3]  



[3] You may have seen reports about various security flaws in Java. While these weaknesses are real, it's 
important to realize that they have been found in the implementations of various components, namely Sun's 
byte-code verifier and Netscape's class loader and security manager, not in the basic security model itself. 
One of the reasons Sun has released the source code for Java is to encourage people to search for 
weaknesses, so they can be removed. 

1.5.1 The Verifier 

Java's first line of defense is the byte-code verifier. The verifier reads byte-code modules before 
they are run and makes sure they are well-behaved and obey the basic rules of the Java 
language. A trusted Java compiler won't produce code that does otherwise. However, it's possible 
for a mischievous person to deliberately assemble bad code. It's the verifier's job to detect this. 

Once code has been verified, it's considered safe from certain inadvertent or malicious errors. For 
example, verified code can't forge references or violate access permissions on objects. It can't 
perform illegal casts or use objects in unintended ways. It can't even cause certain types of 
internal errors, such as overflowing or underflowing the operand stack. These fundamental 
guarantees underlie all of Java's security. 

You might be wondering, isn't this kind of safety implicit in lots of interpreted languages? Well, 
while it's true that you shouldn't be able to corrupt the interpreter with bogus BASIC code, 
remember that the protection in most interpreted languages happens at a higher level. Those 
languages are likely to have heavyweight interpreters that do a great deal of runtime work, so 
they are necessarily slower and more cumbersome. 

By comparison, Java byte-code is a relatively light, low-level instruction set. The ability to 
statically verify the Java byte-code before execution lets the Java interpreter run at full speed with 
full safety, without expensive runtime checks. Of course, you are always going to pay the price of 
running an interpreter, but that's not a serious problem with the speed of modern CPUs. Java 
byte-code can also be compiled on the fly to native machine code, which has even less runtime 
overhead. 

The verifier is a type of theorem prover. It steps through the Java byte-code and applies simple, 
inductive rules to determine certain aspects of how the byte-code will behave. This kind of 
analysis is possible because compiled Java byte-code contains a lot more type information than 
the object code of other languages of this kind. The byte-code also has to obey a few extra rules 
that simplify its behavior. First, most byte-code instructions operate only on individual data types. 
For example, with stack operations, there are separate instructions for object references and for 
each of the numeric types in Java. Similarly, there is a different instruction for moving each type 
of value into and out of a local variable. 

Second, the type of object resulting from any operation is always known in advance. There are no 
byte-code operations that consume values and produce more than one possible type of value as 
output. As a result, it's always possible to look at the next instruction and its operands, and know 
the type of value that will result. 

Because an operation always produces a known type, by looking at the starting state, it's possible 
to determine the types of all items on the stack and in local variables at any point in the future. 
The collection of all this type information at any given time is called the type state of the stack; 
this is what Java tries to analyze before it runs an application. Java doesn't know anything about 
the actual values of stack and variable items at this time, just what kind of items they are. 
However, this is enough information to enforce the security rules and to ensure that objects are 
not manipulated illegally. 



To make it feasible to analyze the type state of the stack, Java places an additional restriction on 
how Java byte-code instructions are executed: all paths to the same point in the code have to 
arrive with exactly the same type state.[4] This restriction makes it possible for the verifier to trace 
each branch of the code just once and still know the type state at all points. Thus, the verifier can 
insure that instruction types and stack value types always correspond, without actually following 
the execution of the code. For a more thorough explanation of all of this, see The Java Virtual 
Machine, by Jon Meyer and Troy Downing (O'Reilly & Associates). 

[4] The implications of this rule are of interest mainly to compiler writers. The rule means that Java byte- 
code can't perform certain types of iterative actions within a single frame of execution. A common example 
would be looping and pushing values onto the stack. This is not allowed because the path of execution 
would return to the top of the loop with a potentially different type state on each pass, and there is no way 
that a static analysis of the code can determine whether it obeys the security rules. 

1.5.2 Class Loaders 

Java adds a second layer of security with a class loader. A class loader is responsible for bringing 
the byte-code for one or more Java classes into the interpreter. Every application that loads 
classes from the network must use a class loader to handle this task. 

After a class has been loaded and passed through the verifier, it remains associated with its class 
loader. As a result, classes are effectively partitioned into separate namespaces based on their 
origin. When a loaded class references another class name, the location of the new class is 
provided by the original class loader. This means that classes retrieved from a specific source 
can be restricted to interact only with other classes retrieved from that same location. For 
example, a Java-enabled web browser can use a class loader to build a separate space for all the 
classes loaded from a given uniform resource locator (URL). 

The search for classes always begins with the built-in Java system classes. These classes are 
loaded from the locations specified by the Java interpreter's class path (see Chapter 3). Classes 
in the class path are loaded by the system only once and can't be replaced. This means that it's 
impossible for an applet to replace fundamental system classes with its own versions that change 
their functionality. 

1.5.3 Security Managers 

Finally, a security manager is responsible for making application-level security decisions. A 
security manager is an object that can be installed by an application to restrict access to system 
resources. The security manager is consulted every time the application tries to access items like 
the filesystem, network ports, external processes, and the windowing environment, so the 
security manager can allow or deny the request. 

A security manager is most useful for applications that run untrusted code as part of their normal 
operation. Since a Java-enabled web browser can run applets that may be retrieved from 
untrusted sources on the Net, such a browser needs to install a security manager as one of its 
first actions. This security manager then restricts the kinds of access allowed after that point. This 
lets the application impose an effective level of trust before running an arbitrary piece of code. 
And once a security manager is installed, it can't be replaced. 

In Java 2, the security manager works in conjunction with an access controller that lets you 
implement security policies by editing a file. Access policies can be as simple or complex as a 
particular application warrants. Sometimes it's sufficient simply to deny access to all resources or 
to general categories of services such as the filesystem or network. But it's also possible to make 
sophisticated decisions based on high-level information. For example, a Java-enabled web 
browser could use an access policy that lets users specify how much an applet is to be trusted or 



that allows or denies access to specific resources on a case-by-case basis. Of course, this 
assumes that the browser can determine which applets it ought to trust. We'll see how this 
problem is solved shortly. 

The integrity of a security manager is based on the protection afforded by the lower levels of the 
Java security model. Without the guarantees provided by the verifier and the class loader, high-
level assertions about the safety of system resources are meaningless. The safety provided by 
the Java byte-code verifier means that the interpreter can't be corrupted or subverted, and that 
Java code has to use components as they are intended. This, in turn, means that a class loader 
can guarantee that an application is using the core Java system classes and that these classes 
are the only means of accessing basic system resources. With these restrictions in place, it's 
possible to centralize control over those resources with a security manager. 

1.6 Application and User-Level Security 

There's a fine line between having enough power to do something useful and having all the 
power to do anything you want. Java provides the foundation for a secure environment in which 
untrusted code can be quarantined, managed, and safely executed. However, unless you are 
content with keeping that code in a little black box and running it just for its own benefit, you will 
have to grant it access to at least some system resources so that it can be useful. Every kind of 
access carries with it certain risks and benefits. The advantages of granting an untrusted applet 
access to your windowing system, for example, are that it can display information and let you 
interact in a useful way. The associated risks are that the applet may instead display something 
worthless, annoying, or offensive. Since most people can accept that level of risk, graphical 
applets and the World Wide Web in general are possible. 

At one extreme, the simple act of running an application gives it a resource, computation time, 
that it may put to good use or burn frivolously. It's difficult to prevent an untrusted application from 
wasting your time, or even attempting a "denial of service" attack. At the other extreme, a 
powerful, trusted application may justifiably deserve access to all sorts of system resources (e.g., 
the filesystem, process creation, network interfaces); a malicious application could wreak havoc 
with these resources. The message here is that important and sometimes complex security 
issues have to be addressed. 

In some situations, it may be acceptable to simply ask the user to "okay" requests. Sun's HotJava 
web browser can pop up a dialog box and ask the user's permission for an applet to access an 
otherwise restricted file. However, we can put only so much burden on our users. An experienced 
person will quickly grow tired of answering questions; an inexperienced user may not be able to 
answer the questions correctly. Is it okay for me to grant an applet access to something if I don't 
understand what that is? 

Making decisions about what is dangerous and what is not can be difficult. Even ostensibly 
harmless access, like displaying a window, can become a threat when paired with the ability for 
an untrusted application to communicate from your host. The Java Security Manager provides an 
option to flag windows created by an untrusted application with a special, recognizable border to 
prevent it from impersonating another application and perhaps tricking you into revealing your 
password or your secret recipe collection. There is also a grey area, in which an application can 
do devious things that aren't quite destructive. An applet that can mail a bug report can also mail-
bomb your boss. The Java language provides the tools to implement whatever security policies 
you want. However, what these policies will be ultimately depends on who you are, what you are 
doing, and where you are doing it. 

1.6.1 Signing Classes 



Web browsers such as HotJava start by defining a few rules and some coarse levels of security 
that restrict where applets may come from and what system resources they may access. These 
rules are sufficient to keep the waving Duke applet from clutching your password file, but they 
aren't sufficient for applications you'd like to trust with sensitive information. To fully exploit the 
power of Java, we need to have some nontechnical basis on which to make reasonable decisions 
about what a program can be allowed to do. This nontechnical basis is trust; basically, you trust 
certain entities not to do anything that's harmful to you. For a home user, this may mean that you 
trust the "Bank of Boofa" to distribute applets that let you transfer funds between your accounts, 
or you may trust L.L. Bean to distribute an applet that debits your Visa account. For a company, 
that may mean that you trust applets originating behind your firewall, or perhaps applets from a 
few high-priority customers, to modify internal databases. In all of these cases, you don't need to 
know in detail what the program is going to do and give it permission for each operation. You only 
need to know that you trust your local bank. 

This doesn't mean that there isn't a technical aspect to the problem of trust. Trusting your local 
bank when you walk up to the ATM means one thing; trusting some web page that claims to 
come from your local bank means something else entirely. It would be very difficult to 
impersonate the ATM two blocks down the street (though it has been known to happen), but, 
depending on your position on the Net, it's not all that difficult to impersonate a web site, or to 
intercept data coming from a legitimate web site and substitute your own. 

That's where cryptography comes in. Digital signatures, together with certificates, are techniques 
for verifying that data truly comes from the source it claims to have come from and hasn't been 
modified en route. If the Bank of Boofa signs its checkbook applet, your browser can verify that 
the applet actually came from the bank, not an imposter, and hasn't been modified. Therefore, 
you can tell your browser to trust applets that have the Bank of Boofa's signature. Java supports 
digital signatures; the details are covered in . 

1.7 Java and the World Wide Web 

The application-level safety features of Java make it possible to develop new kinds of 
applications that were infeasible before now. A web browser that implements the Java runtime 
system can incorporate Java applets as executable content inside of documents. This means that 
web pages can contain not only static hypertext information but also full-fledged interactive 
applications. The added potential for use of the Web is enormous. A user can retrieve and use 
software simply by navigating with a web browser. Formerly static information can be paired with 
portable software for interpreting and using the information. Instead of just providing some data 
for a spreadsheet, for example, a web document might contain a fully functional spreadsheet 
application embedded within it that allows users to view and manipulate the information. 

1.7.1 Applets 

The term "applet" is used to mean a small, subordinate, or embeddable application. By 
"embeddable," we mean it's designed to be run and used within the context of a larger system. In 
that sense, most programs are embedded within a computer's operating system. An operating 
system manages its native applications in a variety of ways: it starts, stops, suspends, and 
synchronizes applications; it provides them with certain standard resources; and it protects them 
from one another by partitioning their environments. 

As far as the web browser model is concerned, an applet is just another type of object to display; 
it's embedded into an HTML page with a special tag. Browsers make a distinction between items 
presented inline and items anchored via hypertext links and made available by external means, 
such as a viewer or helper application. If you download an MPEG video clip, for instance, and 
your browser doesn't natively understand MPEG, it will look for a helper application (an MPEG 



player) to pass the information to. Java-enabled web browsers generally execute applets inline, in 
the context of a particular document, as shown in Figure 1.4. However, less capable browsers 
could initially provide some support for Java applets through an external viewer. 

Figure 1.4. Applets in a web document 

 

A Java applet is a compiled Java program, composed of classes just like any Java program. 
While a simple applet may consist of only a single class, most large applets should be broken into 
many classes. Each class is stored in a separate class file. The class files for an applet are 
retrieved from the network as they are needed. A large applet doesn't need to retrieve all its parts 
or all its data before beginning to interact with the user. Well-designed applets can take 
advantage of multithreading to wait for certain resources in the background, while performing 
other activities. 

An applet has a four-part life cycle. When an applet is initially loaded by a web browser, it's asked 
to initialize itself. The applet is then informed each time it's displayed and each time it's no longer 
visible to the user. Finally, the applet is told when it's no longer needed, so that it can clean up 
after itself. During its lifetime, an applet may start and suspend itself, do work, communicate with 
other applications, and interact with the Web browser. 

Applets are autonomous programs, but they are confined within the walls of a web browser or 
applet viewer, and have to play by its rules. We'll be discussing the details of what applets can 
and can't do as we explore features of the Java language. However, under the most conservative 
security policies, an applet can interact only with the user and can communicate only over the 
network with the host from which it originated. Other types of activities, like accessing files or 
interacting directly with outside applications, are typically prevented by the security manager that 
is part of the web browser or applet viewer. But aside from these restrictions, there is no 
fundamental difference between a Java applet and a standalone Java application. 

1.7.2 New Kinds of Media 

When it was first released, Java quickly achieved a reputation for multimedia capabilities. Frankly, 
this wasn't really deserved. At that point, Java provided facilities for doing simple animations and 
playing audio. You could animate and play audio simultaneously, though you couldn't 



synchronize the two. Still, this was a significant advance for the Web, and people thought it was 
pretty impressive. 

Java's multimedia capabilities have now taken shape. Java now has CD-quality sound, 3D 
animation, media players that synchronize audio and video, speech synthesis and recognition, 
and more. The Java Media Framework now supports most common audio and video file formats; 
The Java Sound API (part of the core classes) has the ability to record sound from a computer's 
microphone. 

1.7.3 New Software Development Models 

For some time now, people have been using visual development environments to develop user 
interfaces. These environments let you generate applications by moving components around on 
the screen, connecting components to each other, and so on. In short, designing a user interface 
is a lot more like drawing a picture than like writing code. 

For visual development environments to work well, you need to be able to create reusable 
software components. That's what the JavaBeans architecture is all about: it defines a way to 
package software as reusable building blocks. A graphical development tool can figure out a 
component's capabilities, customize the component, and connect it to other components to build 
applications. JavaBeans takes the idea of graphical development a step further. JavaBeans 
components, called Beans, aren't limited to visible, user interface components: you can have 
Beans that are entirely invisible and whose job is purely computational. For example, you could 
have a Bean that does database access; you could connect this to a Bean that lets the user 
request information from the database; and you could use another Bean to display the result. Or 
you could have a set of Beans that implement the functions in a mathematical library; you could 
then do numerical analysis by connecting different functions to each other. In either case, you 
could "write" programs without writing a single line of code. Granted, someone would have to 
write the Beans in the first place; but that's a much smaller task, and we expect markets to 
develop for "off the shelf " Bean collections. 

Before it can use a Bean, an application builder must find out the Bean's capabilities. There are a 
few ways it can do this; the simplest is called reflection. To write a Bean that uses reflection, all 
you need to do is follow some well-defined conventions (design patterns) that let the graphical 
interface builder (or any other tool that wants to do the work) analyze the Bean. 

If they need to, Beans can provide additional information using a process called introspection. But 
even without introspection, a graphical development tool can analyze a Bean, figure out what it 
can do, and let a user change the Bean's properties without writing any code. 

Of course, once a development tool has customized a Bean and connected it to other Beans, it 
needs a way to save the result. A process called serialization lets a tool save the Bean's current 
state, along with any extra code it has written to stitch Beans together in an application. 

Visual development tools that support Java Beans include IBM's VisualAge, Inprise's JBuilder 
(http://www.inprise.com), WebGain's Visual Cafe (http://www.webgain.com), and Sun's 
Forte for Java. By using a "bridge," Java Beans can function inside ActiveX. 

1.8 Java as a General Application Language 

The Java applet API is a framework that allows Java-enabled web browsers to manage and 
display embedded Java applications within web documents. However, Java is more than just a 
tool for building transportable multimedia applications. Java is a powerful, general-purpose 



programming language that just happens to be safe and architecture-independent. Standalone 
Java applications are not subject to the restrictions placed on applets; they can perform the same 
jobs as programs written in languages like C and C++ do. 

Any software that implements the Java runtime system can run Java applications. Applications 
written in Java can be large or small, standalone or component-like, as in other languages. Java 
applets are different from other Java applications only in that they expect to be managed by a 
larger application. They are normally considered untrusted code. In this book, we will build 
examples of both applets and standalone Java applications. With the exception of the few things 
untrusted applets can't do, such as access files, all of the tools we examine in this book apply to 
both applets and standalone Java applications. 

1.9 A Java Road Map 

With everything that's going on, it's hard to keep track of what's available now, what's promised, 
and what has been around for some time. Here's a road map that imposes some order on Java's 
past, present, and future. 

1.9.1 The Past: Java 1.0 and Java 1.1 

Java 1.0 provided the basic framework for Java development: the language itself plus packages 
that let you write applets and simple applications. Although Java 1.0 is officially obsolete, it will be 
some time before vendors catch up with the newer releases. 

Java 1.1 superseded Java 1.0. It incorporated major improvements in the AWT package ( Java's 
original GUI facility) and many new features. Java 1.1 remains important, because it is supported 
natively by both the Netscape Navigator and Microsoft Internet Explorer browsers. For various 
political reasons, the future of the browser world is uncertain; to execute applets using any 
features of Java 2, you need to use the Java plug-in, which allows Netscape and IE to execute 
Java 2 code. 

1.9.2 The Present: Java 2 

Java 2 was released in December 1998, providing many improvements and additions. The most 
notable addition is Swing, which is a new user interface toolkit with capabilities far exceeding 
AWT's. (Swing, AWT, and some other packages are now called the JFC, or Java Foundation 
Classes.) Here's a brief overview of the most important features of the core Java 2 API: 

JDBC (Java Database Connectivity)  

A general facility for interacting with databases. (Introduced with Java 1.1.) 

RMI (Remote Method Invocation)  

Java's distributed objects system. RMI lets you call methods on objects hosted by a 
server running somewhere else on the network. (Introduced with Java 1.1.) 

Java Security  

A facility for controlling access to system resources, combined with a uniform interface to 
cryptography. Java Security is the basis for signed classes, which were discussed earlier. 



JFC (Java Foundation Classes)  

A catch-all for a number of new features, including the Swing user interface components; 
"pluggable look-and-feel," which means the ability of the user interface to adapt itself to 
the "look-and-feel" of the platform you're using; drag and drop; and accessibility, which 
means the ability to integrate with special software and hardware for people with 
disabilities. 

Java 2D  

Part of JFC; enables high-quality graphics, font manipulation, and printing. 

Internationalization  

The ability to write programs that adapt themselves to the language the user wants to 
use; the program automatically displays text in the appropriate language. (Introduced with 
Java 1.1.) 

The following features aren't part of the core Java 2 definition; you may have to download them 
separately. Most of them are what Sun calls "standard extensions": 

JNDI (Java Naming and Directory Interface)  

A very general service for looking up resources. JNDI unifies access to directory services 
like LDAP, Novell's NDS, and others. 

JavaMail  

A uniform API for writing email software. 

Java 3D  

A facility for developing applications with 3D graphics. 

Java Media  

Another catch-all that includes Java 2D, Java 3D, the Java Media Framework (a 
framework for coordinating the display of many different kinds of media), Java Speech 
(for speech recognition and synthesis), Java Sound (high-quality audio), Java TV (for 
interactive television and similar applications), and others. 

Java Servlets  

A facility that lets you write custom Internet servers. It is most frequently used to write 
web server applications, but it's much more general. 

Java Cryptography  

Actual implementations of cryptographic algorithms. (This package was separated from 
Java Security for legal reasons.) 

JavaHelp  



A facility for writing help systems and incorporating them in Java programs. 

Enterprise JavaBeans  

A component architecture for building distributed server-side applications. 

Jini  

An extremely interesting catch-all that is designed to enable massively distributed 
computing, including computing on common household appliances. In a few years, your 
stereo may be able to execute Java programs. 

Java Card  

A version of Java for very small (i.e., credit card-sized) devices, which have severe 
limitations on speed and memory. 

In this book, we'll try to give you a taste of as many features as possible; unfortunately for us (but 
fortunately for Java software developers), the Java environment has become so rich that it's 
impossible to cover everything in a single book. 

1.9.3 The Future 

You can think of the first four years of Java development as a "big bang," followed by an 
"inflationary" phase as Sun added new features, and improved old features, at an incredible rate. 
Things seem to be slowing down now: new APIs aren't being announced as often, and those that 
are announced tend to be more specialized. At least for the moment, the Java world is stabilizing. 

But it's important to look into the new areas into which Java is headed. The most interesting of 
these is consumer devices. An interesting game to play is thinking of what an everyday appliance 
might be able to do if it had a Java processor in it. A common bread maker could download 
"breadlets" (applets that implement bread recipes) from the Internet; your stereo wouldn't just 
play CDs—it could find music sources on the Internet and perhaps even facilitate live, distributed 
jam sessions using technologies like Java Sound. These devices could probably be built without 
Java, but that's not saying much: after all, no software has yet been written that couldn't (in 
theory) be hand-coded in assembly language. More to the point, Java (and especially Jini) make 
it much easier to develop these kinds of applications in reliable, safe ways. 

Until now, discussion of Java on consumer devices has been limited to visionary, hypothetical 
talk. However, this is changing. There is already a version of the Java Virtual Machine that runs 
on 3Com's Palm devices; JVMs for cell phones, pagers, and other personal communication 
devices are on the way. While this book can't go into the details of development for such devices, 
it's important to realize that the vision is becoming reality. The step from a Palm hand-held 
computer to a cell phone to your VCR or television is extremely small—much smaller than the 
leap from a personal computer to the Palm. 

1.9.4 Availability 

By the time you read this book, you should have several choices for Java development 
environments and runtime systems. Sun's Java 2 SDK[5] is available for Solaris, Linux, and 
Windows. Visit Sun's Java web site at http://java.sun.com for more information about the Java 
2 SDK. There are also Java ports for other platforms, including NetWare, HP-UX, OSF/1 
(including Digital Unix), Silicon Graphics' IRIX, and various IBM operating systems (including AIX 



and OS2). For more information, see the web pages maintained by the vendor you're interested 
in. Sun maintains a web page summarizing porting efforts at http://java.sun.com/cgi-
bin/java-ports.cgi. Another good source for current information is the Java FAQ from the 
comp.lang.java newsgroup. 

[5] The Java 2 SDK used to be called the JDK. Sun's marketing group has an unfortunate tendency to 
change terminology for reasons that are no doubt clear to them, but only introduce confusion for everyone 
else. In this book, we'll use SDK, even for older versions of Java that were distributed as the JDK. 

There are efforts under way to produce a free clone of Java, redistributable in source form. The 
Java Open Language Toolkit ( JOLT) Project is working to assemble a high-quality Java 
implementation that will pass Sun's validation tests and earn a Java stamp. The JOLT Project 
web page is accessible from http://www.redhat.com. 

Netscape Navigator and Microsoft Internet Explorer both come with their own Java runtime 
system that runs Java applets and supports SDK 1.1. Neither supports Java 2 at present, 
although the newest release of Navigator (6.0) is supposed to support Java 2 and future versions 
through a new "open Java" API. To ameliorate the problem in general, Sun has released a Java 
plug-in that supports Java 2; it is distributed with the Java SDK for Windows. 



Chapter 2. A First Application 

Before getting into the details of the Java language, let's jump right into some working code. In 
this chapter, we'll build a friendly little application that illustrates a number of techniques we use 
throughout the book. We'll take this opportunity to introduce general features of the Java 
language and of Java applications. However, many details won't be fleshed out here, but in 
subsequent chapters. 

This chapter also serves as a brief introduction to the object-oriented and multithreaded features 
of Java. If these concepts are new to you, you can take comfort in the knowledge that 
encountering them for the first time in Java should be a straightforward and pleasant experience. 
If you have worked with another object-oriented or multithreaded programming environment, clear 
your mind; you will especially appreciate Java's simplicity and elegance. 

We can't stress enough the importance of experimentation as you learn new concepts. Don't just 
examine the examples—run them. Copy the source code from the accompanying CD-ROM, or 
from our web site at http://www.oreilly.com/catalog/learnjava. Compile the programs on 
your machine, and run them. 

If you follow along with the online examples, be sure to take some time and compile them locally. 
Then, turn our examples into your example: play with them; change their behavior, break them, 
fix them, and, as Java architect Arthur van Hoff would say: "Have fun!" 

2.1 HelloJava1 

In the tradition of introductory programming texts, we begin with Java's equivalent of the 
archetypal "Hello World" application. In the spirit of our new world, we'll call it HelloJava. 

We'll take four passes at this example (HelloJava1, HelloJava2, etc.), adding features and 
introducing new concepts along the way. Here's a minimalist version:[1]  

[1] All of the ready-to-run examples in this book are included on the accompanying CD-ROM. The comment 
line //file: ... indicates the name of the source file. 

//file: HelloJava1.java 
public class HelloJava1 extends javax.swing.JComponent { 
 
  public static void main(String[] args) { 
    javax.swing.JFrame f = new javax.swing.JFrame("HelloJava1"); 
    f.setSize(300, 300); 
    f.getContentPane().add(new HelloJava1( )); 
    f.setVisible(true); 
  } 
 
  public void paintComponent(java.awt.Graphics g) { 
    g.drawString("Hello, Java!", 125, 95); 
  } 
} 

Place this text in a file called HelloJava1.java. Now compile this source: 

% javac HelloJava1.java 



This produces the Java byte-code binary class file HelloJava1.class. 

You can run the application by starting the Java runtime system, specifying the class name (not 
the filename) as an argument: 

% java HelloJava1 

(The name of the Java interpreter varies among implementations. Microsoft's is named jview, 
not java.) You should see the proclamation shown in Figure 2.1. Now congratulate yourself: 
you have written your first application! Take a moment to bask in the glow of your monitor. 

Figure 2.1. The HelloJava1 application 

 

When you click on the window's close box, the window goes away, but your program will still be 
running. To stop the runtime system and return control to your command-line interpreter, type 
Ctrl-C or whatever key sequence stops a running application on your platform. We'll remedy this 
shortcoming in a later version of the example. 

HelloJava1 may be a small program, but there is actually quite a bit going on behind the scenes. 
Those few lines represent the tip of an iceberg. What lies under the surface are layers of 
functionality provided by the Java language and its foundation class libraries. In this chapter, we'll 
cover a lot of ground quickly in an effort to show you the big picture. We'll try to offer enough 
detail for a firm understanding of what is happening in each example, deferring full explanations 
until the appropriate chapters. This holds for both elements of the Java language and the object-
oriented concepts that apply to them. Later chapters will provide more detailed cataloging of 
Java's syntax, components, and object-oriented features. 

Salutations, Java! 

There are many ways to say "Hello, Java!" The simplest command-line version of 
HelloJava looks like this: 

public class HelloJavaCommandLine { 
  public static void main(String[] args) { 
    System.out.println("Hello, Java!"); 
  } 
} 

Weighing in at just five lines, this program uses the System class to write some text to 



the console. The HelloJava examples in this chapter are a little lengthier; they are 
structured to show off Java's user interface toolkit, Swing, and to provide a quick fly-
through of the Java language and libraries. 

If we weren't concerned about the tutorial, we could create a graphic example that's just 
as pithy as the command-line version, using the JOptionPane class: 

public class HelloJavaSimple { 
  public static void main(String[] args) { 
    javax.swing.JOptionPane.showMessageDialog(null, "Hello, 
Java!"); 
  } 
} 

2.1.1 Classes 

The previous example defines a class named HelloJava1. Classes are the fundamental 
building blocks of most object-oriented languages. A class in Java is very much like a class in 
C++, and somewhat like a struct in C. It's a group of data items, with associated functions that 
perform operations on this data. The data items in a class are called fields or variables; the 
functions are called methods . A class might represent something concrete, like a button on a 
screen or the information in a spreadsheet, or it could be something more abstract, such as a 
sorting algorithm or possibly the sense of ennui in your MUD character. A hypothetical 
spreadsheet class might, for example, have variables that represent the values of its individual 
cells and methods that perform operations on those cells, such as "clear a row" or "compute 
values." We'll talk more about this in a little while. 

Our HelloJava1 class contains an entire Java application. It holds two general types of 
variables and methods: those we need for our specific application's tasks and some special 
predesignated ones we provide to interact with the outside world. The Java runtime system, in 
this case the java command-line tool, calls methods in HelloJava1 to pass us information and 
prod us to perform actions. Our simple HelloJava1 class implements two important methods. 
The first, main( ), is called when the application is first started. We'll talk more about it in the 
next section. The second method, paintComponent( ), is called by Java when it's time for our 
application to draw itself on the screen. 

2.1.2 The main( ) Method 

When you run our example, what really happens? The java command looks in the HelloJava1 
class to see if it contains a special method called main( ). If it does, this method is run. The 
main( ) method is simply an entry point for an application. It's a piece of code that you want to 
be run when the application first starts. 

The main( ) method sets up a window (a JFrame) that will contain the visual output of the 
HelloJava1 class. What really interests us here is not the main( ) method but the rest of the 
class. We'll go through several incarnations of this class, adding features and methods. But the 
main( ) method will remain largely unchanged, keeping its basic function of creating a window 
that holds the HelloJava example. 

Let's quickly walk through the main( ) method, just so you know what it does. First, main( ) 
creates a JFrame, a window that will hold our example: 



javax.swing.JFrame f = new javax.swing.JFrame("HelloJava1"); 

The new word in this line of code is tremendously important: javax.swing.JFrame ( just 
JFrame for short) is the name of a class that represents a window you can see on your screen. 
The class itself is just a template, like a building plan. The new keyword tells Java to allocate 
memory and initialize a new JFrame object. 

When frame windows are first created, they are very small. Our next task is to set the size to 
something reasonable: 

f.setSize(300, 300); 

Then we create our actual example and put it inside the frame window: 

f.getContentPane().add(new HelloJava1( )); 

Here, we're actually creating a new HelloJava1 object and placing it inside the JFrame we just 
created. 

main( )'s final task is to show the frame window and its contents, which otherwise would be 
invisible. An invisible window makes for a pretty boring application. 

f.setVisible(true); 

That's the whole main( ) method. As we progress through the examples in this chapter, it will 
remain mostly unchanged as the HelloJava class evolves around it. Let's get started! 

2.1.3 Classes and Objects 

A class is a blueprint for a part of an application; it lists methods and variables that go into making 
up that part. Many individual working copies of a given class can exist while an application is 
active. These individual incarnations are called instances of the class, or objects. Two instances 
of a given class may contain different data, but they always have the same methods. 

As an example, consider a Button class. There is only one Button class, but an application can 
create many different Button objects, each one an instance of the same class. Furthermore, two 
Button instances might contain different data, perhaps giving each a different appearance and 
performing a different action. In this sense, a class can be considered a mold for making the 
object it represents: something like a cookie cutter stamping out working instances of itself in the 
memory of the computer. As you'll see later, there's a bit more to it than that—a class can in fact 
share information among its instances—but this explanation suffices for now. Chapter 5, has the 
whole story on classes and objects. 

The term object is very general and in some other contexts is used almost interchangeably with 
class. Objects are the abstract entities all object-oriented languages refer to in one form or 
another. We will use object as a generic term for an instance of a class. We might, therefore, 
refer to an instance of the Button class as a Button, a Button object, or, indiscriminately, as an 
object. 

The main( ) method in the previous example creates a single instance of the HelloJava1 
class and shows it in an instance of the JFrame class. You could modify main( ) to create 
many instances of HelloJava1, perhaps each in a separate window. 



2.1.4 Variables and Class Types 

In Java, every class defines a new type (data type). A variable can be of this type and then hold 
instances of that class. A variable could, for example, be of type Button and hold an instance of 
the Button class, or of type SpreadSheetCell and hold a SpreadSheetCell object, just as 
it could be any of the more familiar types such as int or float. 

Ignoring the main( ) method for the moment, there is only one variable in our simple HelloJava 
example. It's found in the declaration of the paintComponent( ) method: 

public void paintComponent(java.awt.Graphics g) {...} 

Just like functions in C (and many other languages), a method in Java declares a list of variables 
that hold its arguments, and it specifies the types of those arguments. Our paintComponent( ) 
method takes one argument named (somewhat tersely) g, which is of type Graphics. When the 
paintComponent( ) method is invoked, a Graphics object is assigned to g, which we use in 
the body of the method. We'll say more about paintComponent( ) and the Graphics class in 
a moment. 

But first, a few words about variables. We have loosely referred to variables as holding objects. In 
reality, variables that have class types don't so much contain objects as point to them. Class-type 
variables are references to objects. A reference is a pointer to or a name for an object. 

If you declare a class-type variable without assigning it to an object, it doesn't point to anything. 
It's assigned the default value of null, meaning "no value." If you try to use a variable with a null 
value as if it were pointing to a real object, a runtime error (NullPointerException) occurs.  

Where do you get an instance of a class to assign to a variable in the first place? The answer is 
through the use of the new operator. We'll examine object creation a little later in the chapter. 

2.1.5 Inheritance 

Java classes are arranged in a parent-child hierarchy, in which the parent and child are known as 
the superclass and subclass, respectively. We'll explore these concepts fully in Chapter 6. In 
Java, every class has exactly one superclass (a single parent), but possibly many subclasses. 
The only exception to this rule is the Object class, which sits atop the entire class hierarchy; it 
has no superclass. 

The declaration of our class in the previous example uses the keyword extends to specify that 
HelloJava1 is a subclass of the JComponent class: 

public class HelloJava1 extends javax.swing.JComponent {...} 

A subclass may be allowed to inherit some or all of the variables and methods of its superclass. 
Through inheritance, the subclass can use those variables and methods as if it has declared 
them itself. A subclass can add variables and methods of its own, and it can also override the 
meaning of inherited variables and methods. When we use a subclass, overridden variables and 
methods are hidden (replaced) by the subclass's own versions of them. In this way, inheritance 
provides a powerful mechanism whereby a subclass can refine or extend its superclass. 

For example, the hypothetical spreadsheet class might be subclassed to produce a new scientific 
spreadsheet class with extra mathematical functions and special built-in constants. In this case, 



the source code for the scientific spreadsheet might declare methods for the added mathematical 
functions and variables for the special constants, but the new class automatically has all the 
variables and methods that constitute the normal functionality of a spreadsheet; they are inherited 
from the parent spreadsheet class. This means the scientific spreadsheet maintains its identity as 
a spreadsheet, and we can use it anywhere the simpler spreadsheet is used. 

Our HelloJava1 class is a subclass of the JComponent class and inherits many variables and 
methods not explicitly declared in our source code. These members operate in the same way as 
the ones we add or override. 

2.1.6 The JComponent Class 

The JComponent class provides the framework for building user interface components (called 
controls or widgets in other windowing systems). Particular components, such as buttons, labels, 
and list boxes, are implemented as subclasses of JComponent. 

We override methods in such a subclass to implement the behavior of our particular component. 
This may sound restrictive, as if we are limited to some predefined set of routines, but that is not 
the case at all. Keep in mind that the methods we are talking about are means of interacting with 
the windowing system. A realistic application might involve hundreds or even thousands of 
classes, with legions of methods and variables and multiple threads of execution. The vast 
majority of these are related to the particulars of our job. The inherited methods of the 
JComponent class, and of other predefined classes, serve as a framework on which to hang 
code that handles certain types of events and performs special tasks. 

The paintComponent( ) method is an important method of the JComponent class; we 
override it to implement the way our particular component displays itself on the screen. The 
default behavior of paintComponent( ) doesn't do any drawing at all; here, we're overriding 
paintComponent( ) to do something interesting. We don't override any of the other inherited 
members of JComponent because they provide basic functionality and reasonable defaults for 
this (trivial) example. As HelloJava grows, we'll delve deeper into the inherited members and use 
additional methods. We will also add some application-specific methods and variables for the 
needs of HelloJava. 

JComponent is really the tip of another iceberg called SwingSwing. Swing is Java's user 
interface toolkit; we'll discuss it in some detail in Chapter 13 through Chapter 18. 

2.1.7 Relationships and Finger Pointing 

We can correctly refer to HelloJava1 as a JComponent because subclassing can be thought of 
as creating an "is a" relationship, in which the subclass is a kind of its superclass. HelloJava1 is 
therefore a kind of JComponent. When we refer to a kind of object, we mean any instance of that 
object's class or any of its subclasses. Later, we will look more closely at the Java class hierarchy 
and see that JComponent is itself a subclass of the Container class, which is further derived 
from a class called Component , and so on, as shown in Figure 2.2. 

Figure 2.2. Part of the Java class hierarchy 



 

In this sense, a HelloJava1 object is a kind of JComponent, which is a kind of Container, 
and each of these can ultimately be considered to be a kind of Component. It's from these 
classes that HelloJava1 inherits its basic graphical user interface functionality and the ability to 
have other graphical components embedded within it. 

Component is a subclass of the top-level Object class, so all of these classes define kinds of 
Objects. Every other class in the Java API inherits behavior from Object, which defines a few 
basic methods, as you'll see in Chapter 7. We'll continue to use the word object (lowercase o) in 
a generic way to refer to an instance of any class; we'll use Object to refer specifically to that 
class. 

2.1.8 Packages 

In our previous example, the JComponent class is referenced by its fully qualified name 
javax.swing.JComponent: 

public class HelloJava1 extends javax.swing.JComponent {...} 

The prefix on the class name identifies it as belonging to the javax.swing package. Packages 
provide a means for organizing Java classes. A package is a group of Java classes that are 
related by purpose or by application. Classes in the same package have special access privileges 
with respect to one another and may be designed to work together. Package names are 
hierarchical and are used somewhat like Internet domain and host names, to distinguish groups 
of classes by organization and application. Classes may be dynamically loaded over networks 
from arbitrary locations; within this context, packages provide a crude namespace of Java 
classes.[2]  

[2] There are many efforts under way to find a general solution to the problem of locating resources in a 
globally distributed computing environment. The Uniform Resource Identifier Working Group of the IETF has 
proposed Uniform Resource Names (URNs). A URN would be a more abstract and persistent identifier that 
would be resolved to a URL through the use of a name service. We can imagine a day when there will exist 
a global namespace of trillions of persistent objects forming the infrastructure for all computing resources. 
Java provides an important evolutionary step in this direction. 

javax.swing identifies a particular package that contains classes related to Swing, Java 2's 
fancy graphical user interface toolkit. javax.swing.JComponent identifies a specific class, the 
JComponent class, within that package. The java. hierarchy is special. Any package that 



begins with java. is part of the core Java API and is available on any platform that supports 
Java. While javax normally denotes a standard extension to the core platform, javax.swing is 
an exception—it really is part of the core API. Figure 2.3 illustrates some of the core Java 
packages, showing a representative class or two from each. 

Figure 2.3. Some core Java packages 

 

Some other notable core packages include: java.lang, which contains fundamental classes 
needed by the Java language itself; java.awt, which contains classes of the pre-Java 2 
Abstract Window Toolkit; and java.net, which contains the networking classes. 

A few classes contain methods that are not written in Java, but are instead part of the native Java 
implementation on a particular platform. These are the only classes that have to be ported to a 
new platform. They form the basis for all interaction with the operating system. All other classes 
are built on or around these and are completely platform-independent. 

2.1.9 The paintComponent( ) Method 

The source for our HelloJava1 class defines a method, paintComponent( ), that overrides 
the paintComponent( ) method from the JComponent class: 

public void paintComponent(java.awt.Graphics g) { 
    g.drawString("Hello, Java!", 125, 95); 
} 

The paintComponent( ) method is called when it's time for our example to draw itself on the 
screen. It takes a single argument, a Graphics object, and doesn't return any type of value 
(void) to its caller. 

Modifiers are keywords placed before classes, variables, and methods to alter their accessibility, 
behavior, or semantics. paintComponent( ) is declared as public, which means it can be 
invoked (called) by methods in classes other than HelloJava1. In this case, it's the Java 
windowing environment that is calling our paintComponent( ) method. A method or variable 
declared as private is inaccessible from outside of its class.  



The Graphics object, an instance of the Graphics class, represents a particular graphical 
drawing area. (It is also called a graphics context.) It contains methods that can be used to draw 
in this area, and variables that represent characteristics such as clipping or drawing modes. The 
particular Graphics object we are passed in the paintComponent( ) method corresponds to 
our component's area of the screen. 

The Graphics class provides methods for rendering shapes, images, and text. In HelloJava1, 
we invoke the drawString( ) method of our Graphics object to scrawl our message at the 
specified coordinates. (For a description of the methods available in the Graphics class, see 
Chapter 17.) 

As in C++, a method or variable of an object is accessed in a hierarchical way by appending a dot 
(.) and its name to the object that holds it. We invoked the drawString( ) method of the 
Graphics object (referenced by our g variable) in this way: 

g.drawString("Hello, Java!", 125, 95); 

You may need to get used to the idea that our application is drawn by a method that is called by 
an outside agent at arbitrary times. How can we do anything useful with this? How do we control 
what gets done and when? These answers will be forthcoming. For now, just think about how you 
would structure applications that draw themselves on command. 

2.2 HelloJava2: The Sequel 

Let's make our application a little more interactive, shall we? The following improvement, 
HelloJava2, allows us to drag the message around with the mouse. 

HelloJava2 is a new application—another subclass of the JComponent class. In that sense, 
it's a sibling of HelloJava1. Having just seen inheritance at work, you might wonder why we 
aren't creating a subclass of HelloJava1 and exploiting inheritance to build upon our previous 
example and extend its functionality. Well, in this case, that would not necessarily be an 
advantage, and for clarity we simply start over.[3]  

[3] You are left to consider whether such subclassing would even make sense. Should HelloJava2 really 
be a kind of HelloJava? Are we looking for refinement or just code reuse? 

Here is HelloJava2: 

//file: HelloJava2.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class HelloJava2 
    extends JComponent implements MouseMotionListener { 
 
  // Coordinates for the message 
  int messageX = 125, messageY = 95; 
  String theMessage; 
 
  public HelloJava2(String message) { 
    theMessage = message; 
    addMouseMotionListener(this); 



  } 
   
  public void paintComponent(Graphics g) { 
    g.drawString(theMessage, messageX, messageY); 
  } 
 
  public void mouseDragged(MouseEvent e) { 
    // Save the mouse coordinates and paint the message. 
    messageX = e.getX( ); 
    messageY = e.getY( ); 
    repaint( ); 
  } 
 
  public void mouseMoved(MouseEvent e) {} 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("HelloJava2"); 
    // Make the application exit when the window is closed. 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setSize(300, 300); 
    f.getContentPane( ).add(new HelloJava2("Hello, Java!")); 
    f.setVisible(true); 
  } 
} 

Two slashes in a row indicates that the rest of the line is a comment. We've added a few 
comments to HelloJava2 to help you keep track of everything. 

Place the text of this example in a file called HelloJava2.java and compile it as before. You should 
get a new class file, HelloJava2.class, as a result. 

To run the new example, use the following command line: 

% java HelloJava2 

Feel free to substitute your own salacious comment for the "Hello, Java!" message, and enjoy 
many hours of fun, dragging the text around with your mouse. 

2.2.1 The import Statement 

So, what have we added? First you may notice that a few lines are now hovering above our class: 

import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class HelloJava2 
... 

The import statement lists external classes to use in this file and tells the compiler where to look 
for them. In our first example, we designated the JComponent class as the superclass of 
HelloJava1. JComponent was not defined by us, and the compiler therefore had to look 



elsewhere for it. In that case, we referred to JComponent by its fully qualified name, which is 
javax.swing.JComponent. The JComponent class and all the other classes in the 
javax.swing package are stored in a standard location, known to the compiler. 

In this example, the statement import javax.swing.* enables us to refer to all the classes in 
the javax.swing package by their simple names. For example, we don't have to use fully 
qualified names to refer to the JComponent and JFrame classes. Our current example uses only 
the Graphics class from the java.awt package. So we could have used import 
java.awt.Graphics instead of using the wildcard * to import all of the AWT package's 
classes. However, we are anticipating using several more classes from this package in the 
upcoming examples. 

We also import all the classes from the package java.awt.event ; these classes provide the 
Event objects that we use to communicate with the user. By listening for events, we find out 
when the user moved the mouse, clicked a button, and so on. Notice that importing java.awt.* 
doesn't automatically import the event package. The asterisk imports only the classes in a 
particular package, not other packages. Packages don't contain other packages, even if the 
hierarchical naming scheme would seem to imply such a thing. 

The import statement may seem a bit like the C or C++ preprocessor #include statement, 
which injects header files into programs at the appropriate places. This is not true; there are no 
header files in Java. The import statement does not copy any code into a source file. It's just a 
convenience. Think of it as "introducing" one or more external classes to the compiler; after 
they've been introduced, you can call them by their simple names, instead of by their fully-
qualified names. 

2.2.2 Instance Variables 

We have added some variables to our example: 

int messageX = 125, messageY = 95; 
String theMessage; 

messageX and messageY are integers that hold the current coordinates of our movable 
message. They are initialized to default values, which should place the message somewhere 
near the center of the window. Java integers are always 32-bit signed numbers. There is no 
fretting about what architecture your code is running on; numeric types in Java are precisely 
defined. The variable theMessage is of type String and can hold instances of the String 
class. 

You should note that these three variables are declared inside the braces of the class definition, 
but not inside any particular method in that class. These variables are called instance variables or 
member variables because they belong to the entire class, and copies of them appear in each 
separate instance of the class. Instance variables are always visible (usable) in any of the 
methods inside their class. Depending on their modifiers, they may also be accessible from 
outside the class. 

Unless otherwise initialized, instance variables are set to a default value of 0 (zero), false, or 
null. Numeric types are set to zero, boolean variables are set to false, and class type 
variables always have their value set to null, which means "no value." Attempting to use an 
object with a null value results in a runtime error. 



Instance variables differ from method arguments and other variables that are declared inside of a 
single method. The latter are called local variables. They are effectively private variables that can 
be seen only by code inside the method. Java doesn't initialize local variables, so you must 
assign values yourself. If you try to use a local variable that has not yet been assigned a value, 
your code will generate a compile-time error. Local variables live only as long as the method is 
executing and then disappear (which is fine, since nothing outside of the method can see them 
anyway). Each time the method is invoked, its local variables are recreated and must be assigned 
values. 

We have made some changes to our previously stodgy paintComponent( ) method. All of the 
arguments in the call to drawString( ) are now variables. 

2.2.3 Constructors 

The HelloJava2 class includes a special kind of a method called a constructor. A constructor is 
called to set up a new instance of a class. When a new object is created, Java allocates storage 
for it, sets instance variables to their default values, and then calls the constructor method for the 
class to do whatever application-level setup is required. 

A constructor method is a method with the same name as its class. For example, the constructor 
for the HelloJava2 class is called HelloJava2( ). Constructors don't have a return type; by 
definition, they return an object of that class. But like other methods, constructors can take 
arguments. Their sole mission in life is to configure and initialize newly born class instances, 
possibly using information passed to them in parameters. 

An object is created by using the new operator with the constructor for the class and any 
necessary arguments. The resulting object instance is returned as a value. In our example, a new 
HelloJava2 is created in the main( ) method, in this line: 

f.getContentPane( ).add(new HelloJava2("Hello, Java!")); 

This line actually does three things. The following lines are equivalent, and a little easier to 
understand: 

HelloJava2 newobj = new HelloJava2("Hello, Java!"); 
Container content = f.getContentPane( ); 
content.add(newobj); 

The first line is the important one, where a new HelloJava2 object is created. The HelloJava2 
constructor takes a String as an argument and, as it turns out, uses it to set the message that is 
displayed in the window. A class could also provide methods that allow us to configure an object 
manually after it's created or to change its configuration at a later time. Many classes do both; the 
constructor simply takes its arguments and passes them to the appropriate methods or variables. 
The HelloJava2 class, for example, could have a public method, setMessage( ), that 
allowed us to set the message at any time. Constructors with parameters are therefore a 
convenience that allows a sort of shorthand to set up a new object. 

HelloJava2's constructor does two things: it sets the text of the theMessage instance variable, 
and it tells the system "Hey, I'm interested in anything that happens involving the mouse": 

public HelloJava2(String message) { 
  theMessage = message; 
  addMouseMotionListener(this); 



} 

So what, you may ask, is the type of the argument to the HelloJava2 constructor, back in the 
main( ) method? It, too, is a String. With a little magic from the Java compiler, quoted strings 
in Java source code are turned into String objects. A bit of funny business is going on here, but 
it's simply for convenience. (See Chapter 9, for a complete discussion of the String class.) 

We can use a special read-only variable, called this , to explicitly refer to our object. A method 
can use this to refer to the instance of the object that holds it. The following two statements are 
therefore equivalent ways to assign a value to an instance variable: 

theMessage = message; 

or: 

this.theMessage = message; 

We'll always use the shorter, implicit, form to refer to instance variables. But we'll need the this 
variable when we have to pass a reference to our object to a method in another class. We often 
do this so that methods in other classes can invoke our public methods (a callback, explained 
later in this chapter) or use our public variables. 

The other method that we call in HelloJava2's constructor is addMouse-MotionListener( 
). This method is part of the event mechanism, which we discuss next. 

2.2.4 Events 

The last two methods of HelloJava2 let us get information from the mouse. Each time the user 
performs an action, such as pressing a key on the keyboard, moving the mouse, or perhaps 
banging his or her head against a touch-sensitive screen, Java generates an event. An event 
represents an action that has occurred; it contains information about the action, such as its time 
and location. Most events are associated with a particular graphical user interface (GUI) 
component in an application. A keystroke, for instance, could correspond to a character being 
typed into a particular text entry field. Pressing a mouse button could activate a particular button 
on the screen. Even just moving the mouse within a certain area of the screen could be intended 
to trigger effects such as highlighting or changing the cursor's shape. 

The way events work was one of the major changes between Java 1.0 and Java 1.1. We're going 
to talk about the Java 1.1 (and later) events only; they're a big improvement, and there's no sense 
in learning yesterday's news. In Java 1.1 and later, there are many different event classes 
including MouseEvent, KeyEvent, and ActionEvent. For the most part, the meaning of these 
events is fairly intuitive. A MouseEvent occurs when the user does something with the mouse, a 
KeyEvent occurs when the user types a key, and so on. ActionEvent is a little special; we'll 
see it at work later in this chapter in our third version of HelloJava. For now, we'll focus on dealing 
with a MouseEvent. 

The various GUI components in Java generate events. For example, if you click the mouse inside 
a component, the component generates a mouse event. (We can view events as a general-
purpose way to communicate between Java objects; but for the moment, let's limit ourselves to 
the simplest case.) In Java 1.1 and later, any object can ask to receive the events generated by 
another component. We will call the object that wants to receive events a "listener." For example, 
to declare that a listener wants to receive a component's mouse-motion events, you invoke that 



component's addMouseMotionListener( ) method, specifying the listener object as an 
argument. That's what our example is doing in its constructor. In this case, the component is 
calling its own addMouseMotionListener( ) method, with the argument this, meaning "I 
want to receive my own mouse-motion events." 

That's how we register to receive events. But how do we actually get them? That's what the two 
remaining methods in our class are for. The mouseDragged( ) method is called automatically 
to receive the event generated whenever the user drags the mouse—that is, moves the mouse 
with any button pressed. The mouseMoved( ) method is called whenever the user moves the 
mouse over the area without pressing a button. Our mouseMoved( ) method is boring: it doesn't 
do anything. We're ignoring simple mouse motions. 

mouseDragged( ) has a bit more meat to it. It is called repeatedly to give us updates on the 
position of the mouse. Here it is: 

public void mouseDragged(MouseEvent e) { 
  messageX = e.getX( ); 
  messageY = e.getY( ); 
  repaint( ); 
} 

The first argument to mouseDragged( ) is a MouseEvent object, e, that contains all the 
information we need to know about this event. We ask the MouseEvent to tell us the x and y 
coordinates of the mouse's current position by calling its getX( ) and getY( ) methods. These 
are saved in the messageX and messageY instance variables. Now, having changed the 
coordinates for the message, we would like HelloJava2 to redraw itself. We do this by calling 
repaint( ), which asks the system to redraw the screen at a later time. We can't call 
paintComponent( ) directly because we don't have a graphics context to pass to it. 

There's one other place where we've added an event handler: the main( ) method. There, we 
created an event handler that shuts down the application (by calling System.exit( )) when 
the user closes our main window. The syntax might look a little weird; we've used something 
tricky called an inner class to get the job done. Inner classes are discussed in Chapter 6. 
They're very useful for event handlers. 

The real beauty of the event model is that you have to handle only the kinds of events you want. 
If you don't care about keyboard events, you just don't register a listener for them; the user can 
type all he or she wants, and you won't be bothered. Java 1.1 and Java 2 don't go around asking 
potential recipients whether they might be interested in some event, as happened in Java 1.0. If 
there are no listeners for a particular kind of event, Java won't even generate it. The result is that 
event handling is quite efficient. 

We've danced around one question that may be bothering you by now: how does the system 
know to call mouseDragged( ) and mouseMoved( )? And why do we have to supply a 
mouseMoved( ) method that doesn't do anything? The answer to these questions has to do with 
interfaces. We'll discuss interfaces after clearing up some unfinished business with repaint( ). 

2.2.5 The repaint( ) Method 

We can use the repaint( ) method of the JComponent class to request our component be 
redrawn. repaint( ) causes the Java windowing system to schedule a call to our 



paintComponent( ) method at the next possible time; Java supplies the necessary Graphics 
object, as shown in Figure 2.4. 

Figure 2.4. Invoking the repaint( ) method 

 

This mode of operation isn't just an inconvenience brought about by not having the right graphics 
context handy at the moment. The foremost advantage to this mode of operation is that the 
repainting is handled by someone else, while we are free to go about our business. The Java 
system has a separate, dedicated thread of execution that handles all repaint( ) requests. It 
can schedule and consolidate repaint( ) requests as necessary, which helps to prevent the 
windowing system from being overwhelmed during painting-intensive situations like scrolling. 
Another advantage is that all of the painting functionality can be kept in our paintComponent( 
) method; we aren't tempted to spread it throughout the application. 

2.2.6 Interfaces 

Now it's time to face up to the question we avoided earlier: how does the system know to call 
mouseDragged( ) when a mouse event occurs? Is it simply a matter of knowing that 
mouseDragged( ) is some magic name that our event handling method must have? Not quite; 
the answer to the question touches on the discussion of interfaces, which are one of the most 
important features of the Java language. 

The first sign of an interface comes on the line of code that introduces the HelloJava2 class: we 
say that the class implements the MouseMotionListener interface. Essentially, an interface is 
a list of methods that the class must have; this particular interface requires our class to have 
methods called mouseDragged( ) and mouseMoved( ). The interface doesn't say what these 
methods have to do—and indeed, mouseMoved( ) doesn't do anything. It does say that the 
methods must take a MouseEvent as an argument and return void (i.e., no return value). 

Another way of looking at an interface is as a contract between you, the code developer, and the 
compiler. By saying that your class implements the MouseMotionListener interface, you're 
saying that these methods will be available for other parts of the system to call. If you don't 
provide them, a compilation error will occur. 

But that's not the only way interfaces impact this program. An interface also acts like a class. For 
example, a method could return a MouseMotionListener or take a MouseMotionListener 
as an argument. This means that you don't care about the object's class; the only requirement is 
that the object implement the given interface. addMouseMotionListener( ) is such a 
method: its argument must be an object that implements the MouseMotionListener interface. 
The argument we pass is this, the HelloJava2 object itself. The fact that it's an instance of 
JComponent is irrelevant—it could be a Cookie, an Aardvark, or any other class we dream up. 
What's important is that it implements MouseMotionListener, and thus declares that it will 
have the two named methods. That's why we need a mouseMoved( ) method, even though the 
one we supplied doesn't do anything: the MouseMotionListener interface says we have to 
have one. 



In other languages, you'd handle this problem by passing a function pointer; for example, in C, 
the argument to addMouseMotionListener( ) might be a pointer to the function you want to 
have called when an event occurs. This technique is called a callback. For a variety of reasons, 
the Java language has eliminated function pointers. Instead, we use interfaces to make contracts 
between classes and the compiler. (Some new features of the language make it easier to do 
something similar to a callback, but that's beyond the scope of this discussion.) 

The Java distribution comes with many interfaces that define what classes have to do in various 
situations. This idea of a contract between the compiler and a class is very important. There are 
many situations like the one we just saw, where you don't care what class something is, you just 
care that it has some capability, like listening for mouse events. Interfaces give you a way of 
acting on objects based on their capabilities, without knowing or caring about their actual type. 

Furthermore, interfaces provide an important escape clause to the Java rule that any new class 
can extend only a single class ("single inheritance"). They provide most of the advantages of 
multiple inheritance (a feature of languages like C++) without the confusion. A class in Java can 
extend only one class but can implement as many interfaces as it wants; our next example will 
implement two interfaces, and the final example in this chapter will implement three. In many 
ways, interfaces are almost like classes, but not quite. They can be used as data types, they can 
even extend other interfaces (but not classes), and can be inherited by classes (if class A 
implements interface B, subclasses of A also implement B). The crucial difference is that classes 
don't actually inherit methods from interfaces; the interfaces merely specify the methods the class 
must have. 

2.3 HelloJava3: The Button Strikes! 

Well, now that we have those concepts under control, we can move on to some fun stuff. 
HelloJava3 brings us a new graphical interface component: the JButton.[4] We add a 
JButton component to our application that changes the color of our text each time the button is 
pressed. The draggable-message capability is still there, too. Our new example is: 

[4] Why isn't it just called a Button? Button is the name that was used in Java's original GUI toolkit, the 
Abstract Windowing Toolkit (AWT). AWT had some significant shortcomings, so it was extended and 
essentially replaced by Swing in Java 2. Since AWT already took the reasonable names such as Button 
and MenuBar, Swing user interface components have names that are prefixed with "J", like JButton and 
JMenuBar. 

//file: HelloJava3.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class HelloJava3 
    extends JComponent 
    implements MouseMotionListener, ActionListener { 
 
  // Coordinates for the message 
  int messageX = 125, messageY = 95; 
  String theMessage; 
 
  JButton theButton; 
 
  // Current index into someColors 
  int colorIndex; 
  static Color[] someColors = { Color.black, Color.red, 



      Color.green, Color.blue, Color.magenta }; 
   
  public HelloJava3(String message) { 
    theMessage = message; 
    theButton = new JButton("Change Color"); 
    setLayout(new FlowLayout( )); 
    add(theButton); 
    theButton.addActionListener(this); 
    addMouseMotionListener(this); 
  } 
   
  public void paintComponent(Graphics g) { 
    g.drawString(theMessage, messageX, messageY); 
  } 
   
  public void mouseDragged(MouseEvent e) { 
    // Save the mouse coordinates and paint the message. 
    messageX = e.getX( ); 
    messageY = e.getY( ); 
    repaint( ); 
  } 
   
  public void mouseMoved(MouseEvent e) {} 
   
  public void actionPerformed(ActionEvent e) { 
    // Did somebody push our button? 
    if (e.getSource( ) == theButton) 
      changeColor( ); 
  } 
   
  synchronized private void changeColor( ) { 
    // Change the index to the next color. 
    if (++colorIndex == someColors.length) 
      colorIndex = 0; 
    setForeground(currentColor( )); // Use the new color. 
    repaint( ); // Paint again so we can see the change. 
  } 
   
  synchronized private Color currentColor( ) { 
    return someColors[colorIndex]; 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("HelloJava3"); 
    // Make the application exit when the window is closed. 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setSize(300, 300); 
    f.getContentPane( ).add(new HelloJava3("Hello, Java!")); 
    f.setVisible(true); 
  } 
} 



Create HelloJava3 in the same way as the other applications. Run the example, and you 
should see the display shown in Figure 2.5. Drag the text. Each time you press the button the 
color should change. Call your friends! They should be duly impressed. 

Figure 2.5. The HelloJava3 application 

 

So what have we added this time? Well, for starters we have a new variable: 

JButton theButton; 

The theButton variable is of type JButton and is going to hold an instance of the 
javax.swing.JButton class. The JButton class, as you might expect, represents a graphical 
button, like other buttons in your windowing system. 

Three additional lines in the constructor create the button and display it: 

theButton = new JButton("Change Color"); 
setLayout(new FlowLayout( )); 
add(theButton); 

In the first line, the new keyword creates an instance of the JButton class. Recall that the 
variable we have declared is just an empty reference and doesn't yet point to a real object—in 
this case, an instance of the JButton class. This is a fundamental and important concept. The 
new operator provides the general mechanism for instantiating objects. It's the feature of the Java 
language that creates a new instance of a specified class. It arranges for Java to allocate storage 
for the object and then calls the constructor method of the object's class to initialize it. 

2.3.1 Method Overloading 

JButton has more than one constructor. A class can have multiple constructors, each taking 
different parameters and presumably using them to do different kinds of setup. When there are 
multiple constructors for a class, Java chooses the correct one based on the types of arguments 
that are passed to it. We call the JButton constructor and pass it a String argument, so Java 
locates the constructor method of the JButton class that takes a single String argument and 
uses it to set up the object. This is called method overloading. All methods in Java, not just 
constructors, can be overloaded; this is one aspect of the object-oriented programming principle 
of polymorphism . 

Overloaded constructors generally provide a convenient way to initialize a new object. The 
JButton constructor we've used sets the text of the button as it is created: 

theButton = new JButton("Change Color"); 

This is shorthand for creating the button and setting its label, like this: 



theButton = new JButton( ); 
theButton.setText("Change Color"); 

2.3.2 Garbage Collection 

We've told you how to create a new object with the new operator, but we haven't said anything 
about how to get rid of an object when you are done with it. If you are a C programmer, you're 
probably wondering why not. The reason is that you don't have to do anything to get rid of objects 
when you are done with them. 

The Java runtime system uses a garbage collection mechanism to deal with objects no longer in 
use. The garbage collector sweeps up objects not referenced by any variables and removes them 
from memory. Garbage collection is one of the most important features of Java. It frees you from 
the error-prone task of having to worry about details of memory allocation and deallocation. 

2.3.3 Components 

We have used the terms "component" and "container" somewhat loosely to describe graphical 
elements of Java applications. But these terms are the names of actual classes in the java.awt 
package. 

Component is a base class from which all of Java's GUI components are derived. It contains 
variables that represent the location, shape, general appearance, and status of the object, as well 
as methods for basic painting and event handling. javax.swing.JComponent extends the 
fundamental Component class for the Swing toolkit. The paintComponent( ) method we have 
been using in our example is inherited from the JComponent class. HelloJava3 is a kind of 
JComponent and inherits all of its public members, just as other (perhaps simpler) types of GUI 
components do. 

The JButton class is also derived from JComponent and therefore shares this functionality. 
This means that the developer of the JButton class had methods like paintComponent( ) 
available with which to implement the behavior of the JButton object, just as we did when 
creating our example. What's exciting is that we are perfectly free to further subclass components 
like JButton and override their behavior to create our own special types of user-interface 
components. JButton and HelloJava3 are, in this respect, equivalent types of things. 

2.3.4 Containers 

The Container class is an extended type of Component that maintains a list of child 
components and helps to group them. The Container causes its children to be displayed and 
arranges them on the screen according to a particular layout strategy. A Container also 
commonly arranges to receive events related to its child components. This strategy gives us a 
great deal of flexibility in managing interface components. We implement the strategy here by 
having JButton's container, HelloJava3, deal with the button's events. (Alternatively, we could 
create a smart button that handles its own clicks, by subclassing the JButton class and 
overriding certain methods to deal with the action of being pressed.) 

Remember that a Container is a Component, too. It can be placed alongside other 
Component objects in other Containers, in a hierarchical fashion, as shown in Figure 2.6. Our 
HelloJava3 class is a kind of Container and can therefore hold and manage other Java 
components and containers like buttons, sliders, text fields, and panels. 



Figure 2.6. Layout of Java containers and components 

 

In Figure 2.6, the italicized items are Components, and the bold items are Containers. The 
keypad is implemented as a container object that manages a number of keys. The keypad itself is 
contained in the GizmoTool container object. 

Since JComponent descends from Container, it can be both a component and a container. In 
fact, we've already used it in this capacity in the HelloJava3 example. It does its own drawing 
and handles events, just like any component. But it also contains a button, just like any container. 

2.3.5 Layout 

Having created a JButton object, we need to place it in the container (HelloJava3 ), but 
where? An object called a LayoutManager determines the location within the HelloJava3 
container at which to display the JButton. A LayoutManager object embodies a particular 
scheme for arranging components on the screen and adjusting their sizes. You'll learn more 
about layout managers in Chapter 16. There are several standard layout managers to choose 
from, and we can, of course, create new ones. In our case, we specify one of the standard 
managers, a FlowLayout . The net result is that the button is centered at the top of the 
HelloJava3 container: 

setLayout(new FlowLayout( )); 

To add the button to the layout, we invoke the add( ) method that HelloJava3 inherits from 
Container, passing the JButton object as a parameter: 

add(theButton); 

add( ) is a method inherited by our class from the Container class. It appends our JButton 
to the list of components that the HelloJava3 container manages. Thereafter, HelloJava3 is 
responsible for the JButton: it causes the button to be displayed and it determines where in its 
window the button should be placed. 

2.3.6 Subclassing and Subtypes 

If you look up the add( ) method of the Container class, you'll see that it takes a Component 
object as an argument. But in our example we've given it a JButton object. What's going on? 



JButton is a subclass, indirectly, of the Component class (eventually). Because a subclass is a 
kind of its superclass and has, at minimum, the same public methods and variables, we can use 
an instance of a subclass anywhere we use an instance of its superclass. This is a very important 
concept, and it's a second aspect of the object-oriented principle of polymorphism. JButton is a 
kind of Component, so any method that expects a Component as an argument will accept a 
JButton. 

2.3.7 More Events and Interfaces 

Now that we have a JButton, we need some way to communicate with it: that is, to get the 
events it generates. We could just listen for mouse clicks within the button and act accordingly. 
But that would require customization, via subclassing of the JButton; we would be giving up the 
advantages of using a prebuilt component. Instead, we have the HelloJava3 container object 
listen for button clicks. A JButton generates a special kind of event called an ActionEvent 
when someone clicks on it with the mouse. To receive these events, we have added another 
method to the HelloJava3 class: 

public void actionPerformed(ActionEvent e) { 
  if (e.getSource( ) == theButton) 
    changeColor( ); 
} 

If you understood the previous example, you shouldn't be surprised to see that HelloJava3 now 
declares that it implements the ActionListener interface, in addition to 
MouseMotionListener. ActionListener requires us to implement an actionPerformed( 
) method, which is called whenever an ActionEvent occurs. You also shouldn't be surprised to 
see that we added a line to the HelloJava3 constructor, registering itself (this) as a listener for 
the button's action events: 

theButton.addActionListener(this); 

The actionPerformed( ) method takes care of any action events that arise. First, it checks to 
make sure that the event's source (the component generating the event) is what we think it 
should be: theButton, the only button we've put in the application. This may seem superfluous; 
after all, what else could possibly generate an action event? In this application, nothing. But it's a 
good idea to check, because another application may have several buttons, and you may need to 
figure out which one has been clicked. Or you may add a second button to this application later, 
and you don't want it to break something. To check this, we call the getSource( ) method of 
the ActionEvent object, e. Then we use the == operator to make sure that the event source 
matches theButton. 

 

In Java, == is a test for identity, not equality; it is true if the event source 
and theButton are the same object. The distinction between equality 
and identity is important. We would consider two String objects to be 
equal if they have the same characters in the same sequence. However, 
they might not be the same object. In Chapter 7, we'll look at the 
equals( ) method, which tests for equality. Once we establish that the 
event e comes from the right button, we call our changeColor( ) 
method, and we're finished. 

 
 



You may be wondering why we don't have to change mouseDragged( ) now that we have a 
JButton in our application. The rationale is that the coordinates of the event are all that matter 
for this method. We are not particularly concerned if the event happens to fall within an area of 
the screen occupied by another component. This means that you can drag the text right through 
the JButton and even lose it behind the JButton if you aren't careful: try it and see! 

2.3.8 Color Commentary 

To support HelloJava3's colorful side, we have added a couple of new variables and two 
helpful methods. We create and initialize an array of Color objects representing the colors 
through which we cycle when the button is pressed. We also declare an integer variable that 
serves as an index for this array, specifying the current color: 

int colorIndex; 
static Color[] someColors = { Color.black, Color.red, 
    Color.green, Color.blue, Color.magenta }; 

A number of things are going on here. First let's look at the Color objects we are putting into the 
array. Instances of the java.awt.Color class represent colors; they are used by all classes in 
the java.awt package that deal with color graphics. Notice that we are referencing variables 
such as Color.black and Color.red . These look like normal examples of an object's 
instance variables; however, Color is not an object, it's a class. What is the meaning of this? 

2.3.9 Static Members 

A class can contain variables and methods that are shared among all instances of the class. 
These shared members are called static variables and static methods. The most common use of 
static variables in a class is to hold predefined constants or unchanging objects, which all of the 
instances can use. 

There are two advantages to this approach. The more obvious advantage is that static members 
take up space only in the class; the members are not replicated in each instance. The second 
advantage is that static members can be accessed even if no instances of the class exist. In this 
example, we use the static variable Color.red , without having to create an instance of the 
Color class. 

An instance of the Color class represents a visible color. For convenience, the Color class 
contains some static, predefined objects with friendly names like green, red , and (our favorite) 
magenta. The variable green, for example, is a static member in the Color class. The data 
type of the variable green is Color; it is initialized like this: 

public final static Color green = new Color(0, 255, 0); 

The green variable and the other static members of Color are not changeable (after they've 
been initialized), so they are effectively constants and can be optimized as such by the compiler. 
Constant (or final) static members are the closest thing to a #define construct that you'll find 
in Java. The alternative to using these predefined colors is to create a color manually by 
specifying its red, green, and blue (RGB) components using a Color class constructor. 

2.3.10 Arrays 



Next, we turn our attention to the array. We have declared a variable called someColors, which 
is an array of Color objects. In Java, arrays are first-class objects. This means that an array is, 
itself, a type of object that knows how to hold an indexed list of some other type of object. An 
array is indexed by integers; when you index an array, the resulting value is an object reference—
that is, a reference to the object that is located in the array's specified slot. Our code uses the 
colorIndex variable to index someColors. It's also possible to have an array of simple 
primitive types, such as floats, rather than objects. 

When we declare an array, we can initialize it by using the familiar C-like curly brace construct. 
Specifying a comma-separated list of elements inside of curly braces is a convenience that 
instructs the compiler to create an instance of the array with those elements and assign it to our 
variable. Alternatively, we could have just declared our someColors variable and, later, allocated 
an array object for it and assigned individual elements to that array's slots. See Chapter 5 for a 
complete discussion of arrays. 

2.3.11 Using Color Methods 

So, we now have an array of Color objects and a variable with which to index the array. Two 
private methods do the actual work for us. The private modifier on these methods specifies 
that they can be called only by other methods in the same instance of the class. They cannot be 
accessed outside of the object that contains them. We declare members to be private to hide 
the detailed inner workings of a class from the outside world. This is called encapsulation and is 
another tenet of object-oriented design, as well as good programming practice. Private methods 
are also often created as helper functions for use solely in the class implementation. 

The first method, currentColor( ), is simply a convenience routine that returns the Color 
object representing the current text color. It returns the Color object in the someColors array at 
the index specified by our colorIndex variable: 

synchronized private Color currentColor( ) { 
  return someColors[colorIndex]; 
} 

We could just as readily have used the expression someColors[colorIndex] everywhere we 
use currentColor( ); however, creating methods to wrap common tasks is another way of 
shielding ourselves from the details of our class. In an alternative implementation, we might have 
shuffled off details of all color-related code into a separate class. We could have created a class 
that takes an array of colors in its constructor and then provided two methods: one to ask for the 
current color and one to cycle to the next color ( just some food for thought). 

The second method, changeColor( ), is responsible for incrementing the colorIndex 
variable to point to the next Color in the array. changeColor( ) is called from our 
actionPerformed( ) method whenever the button is pressed: 

synchronized private void changeColor( ) { 
  if (++colorIndex == someColors.length) 
    colorIndex = 0; 
  setForeground(currentColor( )); 
  repaint( ); 
} 

We increment colorIndex and compare it to the length of the someColors array. All array 
objects have a variable called length that specifies the number of elements in the array. If we 



have reached the end of the array, we "wrap around to the beginning" by resetting the index to 
zero. After changing the currently selected color, we do two things. First, we call the component's 
setForeground( ) method, which changes the color used to draw text in the application. Then 
we call repaint( ) to cause the component to be redrawn with the new color for the draggable 
message. 

What is the synchronized keyword that appears in front of our currentColor( ) and 
changeColor( ) methods? Synchronization has to do with threads, which we'll examine in the 
next section. For now, all you need know is that the synchronized keyword indicates these two 
methods can never be running at the same time. They must always run one after the other. 

The reason is that in changeColor( ) we increment colorIndex before testing its value. That 
means that for some brief period of time while Java is running through our code, colorIndex 
can have a value that is past the end of our array. If our currentColor( ) method happened 
to run at that same moment, we would see a runtime "array out of bounds" error. There are, of 
course, ways in which we could fudge around the problem in this case, but this simple example is 
representative of more general synchronization issues we need to address. In the next section, 
you'll see that Java makes dealing with these problems easy through language-level 
synchronization support. 

2.4 HelloJava4: Netscape's Revenge 

We have explored quite a few features of Java with the first three versions of the HelloJava 
application. But until now, our application has been rather passive; it has waited patiently for 
events to come its way and responded to the whims of the user. Now our application is going to 
take some initiative—HelloJava4 will blink! Here is the code for our latest version: 

//file: HelloJava4.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class HelloJava4 
    extends JComponent 
    implements MouseMotionListener, ActionListener, Runnable { 
   
  // Coordinates for the message 
  int messageX = 125, messageY = 95; 
  String theMessage; 
 
  JButton theButton; 
 
  int colorIndex; // Current index into someColors. 
  static Color[] someColors = { Color.black, Color.red, 
      Color.green, Color.blue, Color.magenta }; 
 
  boolean blinkState; 
   
  public HelloJava4(String message) { 
    theMessage = message; 
    theButton = new JButton("Change Color"); 
    setLayout(new FlowLayout( )); 
    add(theButton); 
    theButton.addActionListener(this); 



    addMouseMotionListener(this); 
    Thread t = new Thread(this); 
    t.start( ); 
  } 
   
  public void paintComponent(Graphics g) { 
    g.setColor(blinkState ? getBackground() : currentColor( )); 
    g.drawString(theMessage, messageX, messageY); 
  } 
   
  public void mouseDragged(MouseEvent e) { 
    messageX = e.getX( ); 
    messageY = e.getY( ); 
    repaint( ); 
  } 
   
  public void mouseMoved(MouseEvent e) {} 
   
  public void actionPerformed(ActionEvent e) { 
    // Did somebody push our button? 
    if (e.getSource( ) == theButton) 
      changeColor( ); 
  } 
   
  synchronized private void changeColor( ) { 
    // Change the index to the next color. 
    if (++colorIndex == someColors.length) 
      colorIndex = 0; 
    setForeground(currentColor( )); // Use the new color. 
    repaint( ); // Paint again so we can see the change. 
  } 
   
  synchronized private Color currentColor( ) { 
    return someColors[colorIndex]; 
  } 
   
  public void run( ) { 
    try { 
      while(true) { 
        blinkState = !blinkState; // Toggle blinkState. 
        repaint( ); // Show the change. 
        Thread.sleep(500); 
      } 
    } 
    catch (InterruptedException ie) {} 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("HelloJava4"); 
    // Make the application exit when the window is closed. 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setSize(300, 300); 
    f.getContentPane( ).add(new HelloJava4("Hello, Java!")); 
    f.setVisible(true); 
  } 



} 

Compile and run this version of HelloJava just like the others. You'll see that the text does in fact 
blink. Our apologies if you don't like blinking text—we're not overly fond of it either—but it does 
make for a simple, instructive example. 

2.4.1 Threads 

All the changes we've made in HelloJava4 have to do with setting up a separate thread of 
execution to make the text blink. Java is a multithreaded language, which means there can be 
many threads running at the same time. A thread is a separate flow of control within a program. 
Conceptually, threads are similar to processes, except that unlike processes, multiple threads 
share the same address space, which means that they can share variables and methods (but 
also have their own local variables). Threads are also quite lightweight in comparison to 
processes, so it's conceivable for a single application to be running hundreds of threads 
concurrently. 

Multithreading provides a way for an application to handle many different tasks at the same time. 
It's easy to imagine multiple things going on at the same time in an application like a web 
browser. The user could be listening to an audio clip while scrolling an image; at the same time, 
the browser can be downloading an image. Multithreading is especially useful in GUI-based 
applications, as it improves the interactive performance of these applications. 

Unfortunately for us, programming with multiple threads can be quite a headache. The difficulty 
lies in making sure routines are implemented so they can be run by multiple concurrent threads. If 
a routine changes the value of a state variable, for example, then only one thread should be 
executing the routine at a time. Later in this section, we'll examine briefly the issue of coordinating 
multiple threads' access to shared data. In other languages, synchronization of threads can be 
extremely complex and error-prone. You'll see that Java gives you a few simple tools that help 
you deal with many of these problems. Java threads can be started, stopped, suspended, and 
prioritized. Threads are preemptive, so a higher priority thread can interrupt a lower priority thread 
when vying for processor time. See Chapter 8, for a complete discussion of threads. 

The Java runtime system creates and manages a number of threads. (Exactly how varies with the 
implementation.) We've already mentioned the repaint thread, which manages repaint( ) 
requests and event processing for GUI components that belong to the java.awt and 
javax.swing packages. Our example applications have done most of their work in one thread. 
Methods like mouseDragged( ) and actionPerformed( ) are invoked by the windowing 
thread and run on its time. Similarly, our constructor runs as part of the main application thread. 
This means we are somewhat limited in the amount of processing we do within these methods. If 
we were, for instance, to go into an endless loop in our constructor, our application would never 
appear, as it would never finish initializing. If we want an application to perform any extensive 
processing, such as animation, a lengthy calculation, or communication, we should create 
separate threads for these tasks. 

2.4.2 The Thread Class 

As you might have guessed, threads are created and controlled as Thread objects. An instance 
of the Thread class corresponds to a single thread. It contains methods to start, control, and stop 
the thread's execution. Our basic plan is to create a Thread object to handle our blinking code. 
We call the Thread's start( ) method to begin execution. Once the thread starts, it continues 
to run until we call the Thread's interrupt( ) method to terminate it. 



So how do we tell the thread which method to run? Well, the Thread object is rather picky; it 
always expects to execute a method called run( ) to perform the action of the thread. The run( 
) method can, however, with a little persuasion, be located in any class we desire. 

We specify the location of the run( ) method in one of two ways. First, the Thread class itself 
has a method called run( ). One way to execute some Java code in a separate thread is to 
subclass Thread and override its run( ) method to do our bidding. Invoking the start( ) 
method of the subclass object causes its run( ) method to execute in a separate thread. 

It's not always desirable or possible to create a subclass of Thread to contain our run( ) 
method. The Thread class has a constructor that takes an object reference as its argument. If 
we create a Thread object using this constructor and call its start( ) method, the Thread 
executes the run( ) method of the argument object, rather than its own. In order to accomplish 
this, Java needs a guarantee that the object we are passing it does indeed contain a compatible 
run( ) method. We already know how to make such a guarantee: we use an interface. Java 
provides an interface named Runnable that must be implemented by any class that wants to 
become a Thread. 

2.4.3 The Runnable Interface 

We've used the second technique in the HelloJava4 example. To create a thread, a 
HelloJava4 object passes itself (this) to the Thread constructor. This means that 
HelloJava4 itself must implement the Runnable interface, by implementing the run( ) 
method. This method is called automatically when the runtime system needs to start the thread. 

We indicate that the class implements the interface in our class declaration: 

public class HelloJava4 
    extends JComponent 
    implements MouseMotionListener, ActionListener, Runnable {...} 

At compile time, the Java compiler checks to make sure we abide by this statement. We have 
carried through by adding an appropriate run( ) method to HelloJava4. It takes no arguments 
and returns no value. Our run( ) method accomplishes blinking by changing the color of our 
text a couple of times a second. It's a very short routine, but we're going to delay looking at it until 
we tie up some loose ends in dealing with the Thread itself. 

2.4.4 Starting the Thread 

We want the blinking to begin when the application starts. So we'll start the thread in the 
initialization code in HelloJava4's constructor. It takes only two lines: 

Thread t = new Thread(this); 
t.start( ); 

First, the constructor creates a new instance of Thread , passing it the object that contains the 
run( ) method to the constructor. Since HelloJava4 itself contains our run( ) method, we 
pass the special variable this to the constructor. this always refers to our object. After creating 
the new Thread, we call its start( ) method to begin execution. This, in turn, invokes 
HelloJava4's run( ) method in a separate thread. 



2.4.5 Running Code in the Thread 

Our run( ) method does its job by setting the value of the variable blinkState. We have 
added blinkState, a boolean value, to represent whether we are currently blinking on or off: 

boolean blinkState; 

A setColor( ) call has been added to our paintComponent( ) method to handle blinking. 
When blinkState is true, the call to setColor( ) draws the text in the background color, 
making it disappear: 

g.setColor(blinkState ? getBackground() : currentColor( )); 

Here we are being somewhat terse, using the C-like ternary operator to return one of two 
alternative color values based on the value of blinkState. 

Finally, we come to the run( ) method itself: 

public void run( ) { 
  try { 
    while(true) { 
      blinkState = !blinkState; 
      repaint( ); 
      Thread.sleep(500); 
    } 
  } 
  catch (InterruptedException ie) {} 
} 

Basically, run( ) is an infinite while loop. This means the method will run continuously until the 
thread is terminated by a call to the controlling Thread object's interrupt( ) method. 

The body of the loop does three things on each pass: 

• Flips the value of blinkState to its opposite value using the not operator, "!" 
• Calls repaint( ) to redraw the text 
• Sleeps for 500 milliseconds (half a second) 

sleep( ) is a static method of the Thread class. The method can be invoked from anywhere 
and has the effect of putting the current thread to sleep for the specified number of milliseconds. 
The effect here is to give us approximately two blinks per second. The try/catch construct, 
described in the next section, traps any errors in the call to the sleep( ) method of the Thread 
class. 

2.4.6 Exceptions 

The try/catch statement in Java is used to handle special conditions called exceptions. An 
exception is a message that is sent, normally in response to an error, during the execution of a 
statement or a method. When an exceptional condition arises, an object is created that contains 
information about the particular problem or condition. Exceptions act somewhat like events. Java 
stops execution at the place where the exception occurred, and the exception object is said to be 
thrown by that section of code. Like an event, an exception must be delivered somewhere and 



handled. The section of code that receives the exception object is said to catch the exception. An 
exception causes the execution of the instigating section of code to stop abruptly and transfers 
control to the code that receives the exception object. 

The try/catch construct allows you to catch exceptions for a section of code. If an exception is 
caused by any statement inside of a try clause, Java attempts to deliver the exception to the 
appropriate catch clause. A catch clause looks like a method declaration with one argument 
and no return type. If Java finds a catch clause with an argument type that matches the type of 
the exception, that catch clause is invoked. A try clause can have multiple catch clauses with 
different argument types; Java chooses the appropriate one in a way that is analogous to the 
selection of overloaded methods. You can catch multiple types of exceptions from a block of 
code. Depending on the type of exception thrown, the appropriate catch clause will be executed. 

If there is no try/catch clause surrounding the code, or a matching catch clause is not found, 
the exception is thrown up the call stack to the calling method. If the exception is not caught 
there, it's thrown up another level, and so on until the exception is handled. This provides a very 
flexible error-handling mechanism, so that exceptions in deeply nested calls can bubble up to the 
surface of the call stack for handling. As a programmer, you need to know what exceptions a 
particular statement can generate, so methods in Java are required to declare the exceptions 
they can throw. If a method doesn't handle an exception itself, it must specify that it can throw 
that exception, so that its calling method knows that it may have to handle it. See Chapter 4, for 
a complete discussion of exceptions and the try/catch clause. 

So, why do we need a try/catch clause in the run( ) method? What kind of exception can 
Thread's sleep( ) method throw and why do we care about it, when we don't seem to check 
for exceptions anywhere else? Under some circumstances, Thread's sleep( ) method can 
throw an InterruptedException, indicating that it was interrupted by another thread. Since 
the run( ) method specified in the Runnable interface doesn't declare it can throw an 
InterruptedException, we must catch it ourselves, or the compiler will complain. The 
try/catch statement in our example has an empty catch clause, which means that it handles 
the exception by ignoring it. In this case, our thread's functionality is so simple it doesn't matter if 
it's interrupted. All of the other methods we have used either handle their own exceptions or throw 
only general-purpose exceptions that are assumed to be possible everywhere and don't need to 
be explicitly declared. 

2.4.7 A Word About Synchronization 

At any given time, there can be a number of threads running in the Java runtime system. Unless 
we explicitly coordinate them, these threads will be executing methods without any regard for 
what the other threads are doing. Problems can arise when these methods share the same data. 
If one method is changing the value of some variables at the same time that another method is 
reading these variables, it's possible that the reading thread might catch things in the middle and 
get some variables with old values and some with new. Depending on the application, this 
situation could cause a critical error. 

In our HelloJava examples, both our paintComponent( ) and mouseDragged( ) methods 
access the messageX and messageY variables. Without knowing the implementation of our 
particular Java environment, we have to assume that these methods could conceivably be called 
by different threads and run concurrently. paintComponent( ) could be called while 
mouseDragged( ) is in the midst of updating messageX and messageY. At that point, the data 
is in an inconsistent state and if paintComponent( ) gets lucky, it could get the new x value 
with the old y value. Fortunately, in this case, we probably would not even notice if this were to 
happen in our application. We did, however, see another case, in our changeColor( ) and 



currentColor( ) methods, where there is the potential for a more serious "out of bounds" 
error. 

The synchronized modifier tells Java to acquire a lock for the class that contains the method 
before executing that method. Only one method can have the lock on a class at any given time, 
which means that only one synchronized method in that class can be running at a time. This 
allows a method to alter data and leave it in a consistent state before a concurrently running 
method is allowed to access it. When the method is done, it releases the lock on the class. 

Unlike synchronization in other languages, the synchronized keyword in Java provides locking 
at the language level. This means there is no way that you can forget to unlock a class. Even if 
the method throws an exception or the thread is terminated, Java will release the lock. This 
feature makes programming with threads in Java much easier than in other languages. See 
Chapter 8 for more details on coordinating threads and shared data. 

Whew! Now it's time to say goodbye to HelloJava. We hope that you have developed a feel for 
the major features of the Java language, and that this will help you as you go on to explore the 
details of programming with Java.  



Chapter 3. Tools of the Trade 

You have many options for Java development environments, from the traditional text-editor-and-
command-line environment to IDEs like WebGain's Visual Café, Inprise's JBuilder, Tek-Tools' 
KAWA, or Sun's Forte for Java. The examples in this book were developed using the Solaris and 
Windows versions of the Java Software Development Kit (SDK), so we will describe those tools 
here. When we refer to the compiler or interpreter, we'll be referring to the command-line versions 
of these tools, so the book is decidedly biased toward those of you who are working in a Unix or 
DOS-like environment with a shell and filesystem. However, the basic features we'll be describing 
for Sun's Java interpreter and compiler should be applicable to other Java environments as well. 

In this chapter, we'll describe the tools you'll need to compile and run Java applications. The last 
part of the chapter discusses how to pack Java class files into Java archives ( JAR files). 
Chapter 20, describes the ability to "sign" classes within a JAR file, and to give greater 
privileges to classes with a signature that you trust. 

3.1 The Java Interpreter 

A Java interpreter is software that implements the Java virtual machine and runs Java 
applications. It can be a standalone application like the SDK's java program, or part of a larger 
application like the Netscape Navigator web browser. It's likely that the interpreter itself is written 
in a native, compiled language for your particular platform. Other tools, like Java compilers and 
development environments, can be written in Java (and should be, we'd argue, in order to 
maximize the portability of the Java development environment). Sun's Forte for Java is one 
example of a pure-Java IDE. 

The Java interpreter performs all of the activities of the Java runtime system. It loads Java class 
files and interprets the compiled byte-code. It verifies compiled classes that are loaded from 
untrusted sources. In an implementation that supports dynamic, or just-in-time, compilation, the 
interpreter also serves as a specialized compiler that turns Java byte-code into native machine 
instructions. 

Throughout the rest of this book, we'll be building both standalone Java programs and applets. 
Both are kinds of Java applications run by a Java interpreter. The difference is that a standalone 
Java application has all of its parts; it's a complete program that runs independently. An applet is 
more like an embeddable program module. The Java interpreter can't run an applet directly, 
because it is used as part of a larger application. To run an applet, you can use a web browser 
like Sun's HotJava or Netscape Navigator, or the appletviewer tool that comes with the SDK. 
Both HotJava and appletviewer are standalone Java applications run directly by the Java 
interpreter; these programs implement the additional structure needed to run Java applets. 

Sun's Java interpreter is called java. In a standalone Java application, one class includes a 
main( ) method, which contains the statements to be executed upon startup. To run the 
application, execute the interpreter, specifying that class as an argument. You can also specify 
options to the interpreter, as well as arguments to be passed to the application:  

% java  [interpreter options ] class_name  [program arguments ] 

The class should be specified as a fully qualified class name, including the package name, if any. 
Note, however, that you don't include the .class file extension. Here are a few examples: 

% java animals.birds.BigBird  



% java test 

The interpreter searches for the class in the class path, a list of directories where packages of 
classes are stored. We'll discuss the class path in detail in the next section. The class path is 
typically specified by an environment variable, which you can override with the command-line 
option -classpath. 

After loading the class specified on the command line, the interpreter executes the class's main( 
) method. From there, the application can start additional threads, reference other classes, and 
create its user interface or other structures, as shown in Figure 3.1. 

Figure 3.1. Starting a Java application 

 

The main( ) method must have the right method signature. A method signature is a collection 
of information about the method, like a C prototype or a forward function declaration in other 
languages. It includes the method's name, type, and visibility, as well as its arguments and return 
type. The main( ) method must be a public, static method that takes an array of String 
objects as its argument and does not return any value (void): 

public static void main ( String [] myArgs ) 

Because main( ) is a public and static method, it can be accessed directly from another 
class using the name of the class that contains it. We'll discuss the implications of visibility 
modifiers such as public and the meaning of static in through Chapter 6. 

The main( ) method's single argument, the array of String objects, holds the command-line 
arguments passed to the application. As in C, the name that we give the parameter doesn't 
matter; only the type is important. Unlike C, the content of myArgs is a true array. There's no 
need for an argument count parameter, because myArgs knows how many arguments it contains 
and can happily provide that information: 

int argc = myArgs.length; 

Java also differs from C in another respect here: myArgs[0] is the first command-line argument, 
not the name of the application. If you're accustomed to parsing C command-line arguments, 
you'll need to be careful not to trip over this difference. 

The Java interpreter continues to run until the main( )method of the initial class file has 
returned, and until any threads that it started are complete. Special threads designated as 
"daemon" threads are silently killed when the rest of the application has completed. 



3.2 Policy Files 

Java 2 provides a simple mechanism for protecting your computer from evil programs like 
viruses. If you download a program from somewhere on the Internet, how can you prevent it from 
stealing information on your computer and sending it back out into the Internet? How can you 
prevent a malicious program from disabling your computer or erasing data on your disk? Most 
computing platforms have no answer for these questions. 

Java 2 offers powerful ways to limit the actions of running code. Before Java 2, much of the buzz 
about security had to do with the security of applets. The applet ran with security restrictions that 
prevented the applet from doing questionable things like reading from or writing to the disk or 
contacting arbitrary computers on the network. In Java 2, it's just as easy to apply applet-style 
security to applications. Furthermore, it's easy to fine-tune the access you allow applications. For 
example, you can allow an application to access the disk, but only in a specific directory, or you 
can allow network access to certain addresses. 

Why is this important? Let's suppose that you need a certain application, like a calendar or an 
address manager. You go to your favorite Internet search engine and find a promising-looking 
Java application that does just what you want. You download and run it. But it's entirely possible 
that what you've downloaded is not what you wanted. It could be a computer virus that infects 
your computer. Or it could simply be a malicious program that erases files from your disk. In this 
case, it would have been a really good idea to restrict the application's actions. 

3.2.1 The Default Security Manager 

You can use an option of the java interpreter to install a default security manager. This security 
manager enforces many of the same rules as for applets. To see how this works, let's write a little 
program that does something questionable, making a network connection to some computer on 
the Internet. (We'll cover the specifics of network programming later, in Chapter 11 and 
Chapter 12.) 

//file: EvilEmpire.java 
import java.net.*; 
 
public class EvilEmpire { 
  public static void main(String[] args) throws Exception{ 
    try { 
      Socket s = new Socket("207.46.131.13", 80); 
      System.out.println("Connected!"); 
    } 
    catch (SecurityException e) { 
      System.out.println("SecurityException: could not connect."); 
    } 
  } 
} 

If you just run this program with the Java interpreter, it will make the network connection: 

C:\> java EvilEmpire 
Connected! 
 
C:\> 

This is kind of scary. Let's install the default security manager, like this: 



C:\> java -Djava.security.manager EvilEmpire 
SecurityException: could not connect. 
 
C:\> 

That's better, but suppose that the application actually has a legitimate reason to make its 
network connection. We'd like to leave the default security manager in place, just to be safe, but 
we'd like to grant this application permission to make a network connection. 

3.2.2 The policytool Utility 

To permit our EvilEmpire example to make a network connection, we need to create a policy 
file that contains the appropriate permission. A handy utility called policytool, included in SDK 
1.2 and later, helps you make policy files. Fire it up from a command line like this: 

C:\> policytool 

You may get an error message when policytool starts up about not finding a default policy 
file. Don't worry about this; just click OK to make the message go away. 

We want to add a network permission for the EvilEmpire application. The application is 
identified by its origin, also called a codebase . A codebase is described by a URL. In this case, it 
will be a file: URL that points to the location of the EvilEmpire application on your disk. 

If you started up policytool, you should be looking at its main window, shown in Figure 3.2. 
Click on Add Policy Entry. Another window pops up, like the one shown in Figure 3.3 (but with 
the fields empty). 

Figure 3.2. The policytool window 

 

Figure 3.3. Adding a policy entry 



 

First, fill in the codebase with the URL of the directory containing EvilEmpire as shown in the 
figure. Then click on Add Permission. Yet another window pops up, shown in Figure 3.4. 

Figure 3.4. Creating a new permission 

 

Choose SocketPermission from the first combo box. Then fill out the second text field on the 
right side with the network address that EvilEmpire will connect to. Finally, choose connect 
from the third combo box. Click on OK; you should see the new permission in the policy entry 
window, as shown in Figure 3.3. 

Click on Done to finish creating the policy. Then choose Save As from the File menu and save 
the policy file as something memorable, like EvilEmpire.policy. You can quit policytool now; 
we're all done with it. 

There's nothing magical about the policy file you just created. Take a look at it with a text editor. It 
has a simple syntax; here's the important part, showing the policy we just created: 

grant codeBase "file:/c:/Projects/Exploring/" { 
  permission java.net.SocketPermission "207.46.131.13", "connect"; 
}; 

You can eschew policytool entirely and just create policy files with a text editor, if you're more 
comfortable that way. 

3.2.3 Using a Policy File with the Default Security Manager 



Now that we've gone to the trouble of creating a policy file, let's use it. You can tell the default 
security manager to use the policy file with another command-line option to the java interpreter: 

C:\> java -Djava.security.manager -
Djava.security.policy=EvilEmpire.policy EvilEmpire 
Connected! 

EvilEmpire can now make its socket connection because we have explicitly granted it 
permission with a policy file. The default security manager still protects us in other ways, 
however; EvilEmpire cannot write or read files on the disk except in the directory it came from; 
it cannot make connections to any other network addresses except the one we specified. Take a 
moment and bask in this warm fuzzy feeling. 

Later, in Chapter 20, you'll see policytool again when we explain signed applets. In this 
chapter, codebases are identified by URLs, which isn't the most secure option. Through tricky 
network shenanigans, a clever forger may be able to give you code that appears to be from 
somewhere it's not. Crytpographically signed code is even more trustworthy; see Chapter 20 for 
the full details. 

3.3 The Class Path 

The concept of a path should be familiar to anyone who has worked on a DOS or Unix platform. 
It's an environment variable that provides an application with a list of places to look for some 
resource. The most common example is a path for executable programs. In a Unix shell, the 
PATH environment variable is a colon-separated list of directories that are searched, in order, 
when the user types the name of a command. The Java CLASSPATH environment variable, 
similarly, is a list of locations that can be searched for packages containing Java class files. Both 
the Java interpreter and the Java compiler use CLASSPATH when searching for packages and 
classes on the local host. 

A location on the class path can be a directory name or the name of a class archive file. Java 
supports archives of class files in its own Java archive ( JAR) format, and in the conventional ZIP 
format. JAR and ZIP are really the same format, but JAR archives include extra files that describe 
each archive's contents. JAR files are created with the SDK's jar utility; many tools for creating 
ZIP archives are publicly available. The archive format enables large groups of classes to be 
distributed in a single file; the Java interpreter automatically extracts individual class files from an 
archive, as needed. 

The precise means and format for setting the class path vary from system to system. On a Unix 
system, you set the CLASSPATH environment variable with a colon-separated list of directories 
and class archive files: 

CLASSPATH=/home/vicky/Java/classes:/home/josh/oldstuff/foo.zip:. 

On a Windows system, the CLASSPATH environment variable is set with a semicolon-separated 
list of directories and class archive files: 

set CLASSPATH=D:\users\vicky\Java\classes;. 

The first example above, for Unix, specifies a class path with three locations: a directory in the 
user's home, a ZIP file in another user's directory, and the current directory, which is always 
specified with a dot (.). The last component of the class path, the current directory, is useful 



when tinkering with classes, but as a general rule, it's bad practice to put the current directory in 
any kind of path. 

The Java interpreter and the other command-line tools also know how to find core classes, which 
are the classes included in every Java installation. The classes in the java.lang, java.io, 
java.net, and javax.swing packages, for example, are all core classes. You don't need to 
include these classes in your class path; the Java interpreter and the other tools can find them by 
themselves. 

To find other classes, the Java interpreter searches the locations on the class path in order. The 
search combines the path location and the fully qualified class name. For example, consider a 
search for the class animals.birds.BigBird. Searching the class path directory /usr/lib/java 
means the interpreter looks for an individual class file at /usr/lib/java/animals/birds/BigBird.class. 
Searching a ZIP or JAR archive on the class path, say /home/vicky/Java/utils/classutils.jar, 
means that the interpreter looks for component file animals/birds/BigBird.class in the archive. 

For the Java interpreter, java, and the Java compiler, javac, the class path can also be 
specified with the -classpath option: 

% javac -classpath /pkg/sdk/lib/classes.zip:/home/pat/java:. Foo.java 

If you don't specify the CLASSPATH environment variable, it defaults to the current directory (.); 
this means that the files in your current directory are always available. If you change the class 
path and don't include the current directory, these files will no longer be accessible. 

3.4 The Java Compiler 

In this section, we'll say a few words about javac, the Java compiler that is supplied as part of 
Sun's SDK. (If you are happily working in another development environment, you may want to 
skip ahead to the next section.) The javac compiler is written entirely in Java, so it's available for 
any platform that supports the Java runtime system. The ability to support its own development 
environments is an important stage in a language's development. Java makes this bootstrapping 
automatic by supplying a ready-to-run compiler at the same cost as porting the interpreter. 

javac turns Java source code into a compiled class that contains Java virtual machine byte-
code. By convention, source files are named with a .java extension; the resulting class files have 
a .class extension. Each source code file is a single compilation unit. As you'll see in Chapter 6, 
classes in a given compilation unit share certain features, such as package and import 
statements. 

javac allows you one public class per file and insists the file have the same name as the class. If 
the filename and class name don't match, javac issues a compilation error. A single file can 
contain multiple classes, as long as only one of the classes is public. Avoid packing many classes 
into a single source file. Including non-public classes in a .java file is one easy way to tightly 
couple such classes to a public class. But you might also consider using inner classes (see 
Chapter 6). 

Now for an example. Place the following source code in file BigBird.java: 

package animals.birds;   
   
public class BigBird extends Bird {   



    ...   
} 

Then compile it with: 

% javac BigBird.java 

Unlike the Java interpreter, which takes just a class name as its argument, javac needs a 
filename to process. The previous command produces the class file BigBird.class in the same 
directory as the source file. While it's useful to have the class file in the same directory as the 
source for testing a simple example, for most real applications you'll need to store the class file in 
an appropriate place in the class path. 

You can use the -d option to javac to specify an alternative directory for storing the class files it 
generates. The specified directory is used as the root of the class hierarchy, so .class files are 
placed in this directory or in a subdirectory below it, depending on whether the class is contained 
in a package. (The compiler creates intermediate subdirectories automatically, if necessary.) For 
example, we can use the following command to create the BigBird.class file at 
/home/vicky/Java/classes/animals/birds/BigBird.class: 

% javac -d /home/vicky/Java/classes BigBird.java 

You can specify multiple .java files in a single javac command; the compiler creates a class file 
for each source file. But you don't need to list source files for other classes that your class 
references, as long as the other classes have already been compiled. During compilation, Java 
resolves other class references using the class path. If our class refers to other classes in 
animals.birds or other packages, the appropriate paths should be listed in the class path at 
compile time, so that javac can find the appropriate class files. 

The Java compiler is more intelligent than your average compiler, replacing some of the 
functionality of a make utility. For example, javac compares the modification times of the source 
and class files for all referenced classes and recompiles them as necessary. A compiled Java 
class remembers the source file from which it was compiled, so as long as the source file is in the 
same directory as the class file, javac can recompile the source if necessary. If, in the previous 
example, class BigBird references another class, animals.furry.Grover, javac looks for 
the source file Grover.java in an animals.furry package and recompiles it if necessary to 
bring the Grover.class class file up-to-date. 

By default, however, javac checks only source files that are referenced directly from other 
source files. This means that if you have an out-of-date class file that is referenced only by an up-
to-date class file, it may not be noticed and recompiled. You can force javac to walk the entire 
graph of objects using the -depend option. But be warned, this can increase compilation time 
significantly. And this technique still won't help if you want to keep class libraries or other 
collections of classes up to date even if they aren't being referenced at all. For that you should 
consider a make utility. 

Finally, it's important to note that javac can compile an application even if only the compiled 
versions of referenced classes are available. You don't need source code for all of your objects. 
Java class files contain all the data type and method signature information that source files 
contain, so compiling against binary class files is as type-safe (and exception-safe) as compiling 
with Java source code. 



3.5 Java Archive (JAR) Files 

Java archive files (JAR files) are Java's suitcases. They are the standard and portable way to 
pack up all of the parts of your Java application into a compact bundle for distribution or 
installation. You can put whatever you want into a JAR file: Java class files, serialized objects, 
data files, images, sounds, etc. As we'll see in Chapter 20, a JAR file can carry one or more 
digital signatures that attest to the integrity and authenticity of that data. A signature can be 
attached to the file as a whole or to individual items in the file. 

The Java runtime system understands JAR files and can load class files directly from an archive. 
So you can pack your application's classes in a JAR file and place it in your CLASSPATH. You can 
do the equivalent for applets by listing the JAR file in the ARCHIVE attribute of the HTML 
<APPLET> tag. Other types of files (data, images, etc.) contained in your JAR file can be 
retrieved using the getResource( ) method. (described in Chapter 10). Therefore, your code 
doesn't have to know whether any resource is a plain file or a member of a JAR archive. Whether 
a given class or data file is an item in a JAR file, is an individual file on the class path, or is 
located on a remote applet server, you can always refer to it in a standard way, and let Java's 
class loader resolve the location. 

3.5.1 File Compression 

Items stored in JAR files may be compressed with ZLIB[1] compression. JAR files are completely 
compatible with the ZIP archives familiar to Windows users. You could even use tools like pkzip 
to create and maintain simple JAR files. But jar, the Java archive utility, can do a bit more. 

[1] See http://www.simtel.net/pub/pd/2530.shtml and RFC 1950. 

Compression makes downloading classes over a network much faster. A quick survey of the SDK 
distribution shows that a typical class file shrinks by about 40 percent when it is compressed. Text 
files such as arbitrary HTML or ASCII containing English words often compress by as much as 75 
percent—to one-quarter of their original size. (On the other hand, image files don't get smaller 
when compressed; both of the common image formats have compression built in.) 

Compression is not the only advantage that a JAR file has for transporting files over a network. 
For an application with many components, the amount of time it takes to transport all of the parts 
may be less significant than the time involved in setting up the connections and making the 
requests for them. This is especially important for applets loaded via the Web. The typical web 
browser has to make a separate HTTP request for each class or data file. An applet comprising 
100 classes, for example, would require at least 100 separate trips to the web server to gather all 
its parts. Placing all the classes in a single JAR file enables them to be downloaded in a single 
transaction. Eliminating the overhead of making HTTP requests is likely to be a big savings, since 
individual class files tend to be small, and a complex applet could easily require many of them. 

3.5.2 The jar Utility 

The jar utility provided with the SDK is a simple tool for creating and reading JAR files. Its user 
interface isn't friendly; it mimics the Unix tar (tape archive) command. If you're familiar with tar, 
you'll recognize the following incantations: 

jar -cvf   jarFile path [   path ] [ .. . ]    

Create jarFile containing path(s) 



jar -tvf   jarFile [   path ] [ ... ]    

List the contents of jarFile, optionally showing just path(s) 

jar -xvf   jarFile [   path ] [ ... ]    

Extract the contents of jarFile, optionally extracting just path(s) 

In these commands, the letters c, t, and x tell jar whether it is creating an archive, listing an 
archive's contents, or extracting files from an archive. The f means that the next argument will be 
the name of the JAR file on which to operate. The v tells jar to be more verbose when 
displaying information about files. In verbose mode you can get information about file sizes, 
modification times, and compression ratios. 

Subsequent items on the command line (i.e., anything aside from the letters telling jar what to 
do and the file on which jar should operate) are taken as names of archive items. If you're 
creating an archive, the files and directories you list are placed in it. If you're extracting, only the 
filenames you list are extracted from the archive. (If you don't list any files, jar extracts 
everything in the archive.) 

For example, let's say we have just completed our new game: "spaceblaster." All the files 
associated with the game are in three directories. The Java classes themselves are in the 
spaceblaster/game directory; spaceblaster/images contains the game's images; and 
spaceblaster/docs contains associated game data. We can pack all of this in an archive with this 
command: 

% jar cvf spaceblaster.jar spaceblaster 

Because we requested verbose output, jar tells us what it is doing: 

adding:spaceblaster/ (in=0) (out=0) (stored 0%)  
adding:spaceblaster/game/ (in=0) (out=0) (stored 0%)  
adding:spaceblaster/game/Game.class (in=8035) (out=3936) (deflated 51%)  
adding:spaceblaster/game/Planetoid.class (in=6254) (out=3288) (deflated 
47%)  
adding:spaceblaster/game/SpaceShip.class (in=2295) (out=1280) (deflated 
44%)  
adding:spaceblaster/images/ (in=0) (out=0) (stored 0%)  
adding:spaceblaster/images/spaceship.gif (in=6174) (out=5936) (deflated 
3%)  
adding:spaceblaster/images/planetoid.gif (in=23444) (out=23454) 
(deflated 0%)  
adding:spaceblaster/docs/ (in=0) (out=0) (stored 0%)  
adding:spaceblaster/docs/help1.html (in=3592) (out=1545) (deflated 56%)  
adding:spaceblaster/docs/help2.html (in=3148) (out=1535) (deflated 51%) 

jar creates the file spaceblaster.jar and adds the directory spaceblaster, in turn adding the 
directories and files within spaceblaster to the archive. In verbose mode, jar reports the savings 
gained by compressing the files in the archive. 

We can unpack the archive with this command: 



% jar xvf spaceblaster.jar 

Likewise, we can extract an individual file or directory with: 

% jar xvf spaceblaster.jar  filename  

But you normally don't have to unpack a JAR file to use its contents; Java tools know how to 
extract files from archives automatically. We can list the contents of our JAR with the command: 

% jar tvf spaceblaster.jar 

Here's the output; it lists all the files, their sizes, and creation times: 

0 Thu May 15 12:18:54 PDT 1997 META-INF/   
  1074 Thu May 15 12:18:54 PDT 1997 META-INF/MANIFEST.MF  
     0 Thu May 15 12:09:24 PDT 1997 spaceblaster/  
     0 Thu May 15 11:59:32 PDT 1997 spaceblaster/game/  
  8035 Thu May 15 12:14:08 PDT 1997 spaceblaster/game/Game.class  
  6254 Thu May 15 12:15:18 PDT 1997 spaceblaster/game/Planetoid.class  
  2295 Thu May 15 12:15:26 PDT 1997 spaceblaster/game/SpaceShip.class  
     0 Thu May 15 12:17:00 PDT 1997 spaceblaster/images/  
  6174 Thu May 15 12:16:54 PDT 1997 spaceblaster/images/spaceship.gif  
 23444 Thu May 15 12:16:58 PDT 1997 spaceblaster/images/planetoid.gif  
     0 Thu May 15 12:10:02 PDT 1997 spaceblaster/docs/  
  3592 Thu May 15 12:10:16 PDT 1997 spaceblaster/docs/help1.html  
  3148 Thu May 15 12:10:02 PDT 1997 spaceblaster/docs/help2.html 

3.5.2.1 JAR manifests 

Note that jar adds a directory called META-INF to our archive. It contains one file: 
MANIFEST.MF. The META-INF directory holds files describing the contents of the JAR file. The 
MANIFEST.MF file that jar adds is an automatically generated packing list naming the files in 
the archive along with cryptographic checksums for each. 

The manifest is a text file containing a set of lines in the form keyword: value. The format of the 
manifest file changed between SDK 1.1 and SDK 1.2. In SDK 1.2 and later, the manifest file is 
very simple, containing no information on the items in the archive: 

Manifest-Version: 1.0 
Created-By: 1.2.1 (Sun Microsystems Inc.) 

Basically the file just describes its version number. In SDK 1.1, the manifest contains entries 
describing each item in the archive. In our case, the beginning of our manifest file looks like this 
(in SDK 1.1 only): 

Manifest-Version: 1.0  
  
Name: spaceblaster/game/Game.class  
Digest-Algorithms: SHA MD5  
SHA-Digest: D5Vi4UV+O+XprdFYaUt0bCv2GDo=  
MD5-Digest: 9/W62mC4th6G/x8tTnP2Ng==  
  
Name: spaceblaster/game/Planetoid.class  



Digest-Algorithms: SHA MD5  
SHA-Digest: SuSUd6pYAASO5JiIGlBrWYzLGVk=  
MD5-Digest: KN/4cLDxAxDk/INKHi2emA==  
  
... 

The first line is the same version number as before. Following it are groups of lines describing 
each item. The first line tells you the item's name; in this case, the lines describing the files 
Game.class and Planetoid.class. The remaining lines in each section describe various attributes 
of the item. In this case, the Digest-Algorithms line specifies that the manifest provides 
message digests (similar to checksums) in two forms: SHA and MD5.[2] This is followed by the 
actual message digest for the item, computed using these two algorithms. 

[2] SHA and MD5 stand for Secure Hashing Algorithm and Message Digest 5. That's all you really need to 
know about them; an explanation of these algorithms is beyond the scope of this book. 

As we'll discuss in the next section, the META-INF directory and manifest file can also hold digital 
signature information for items in the archive. Since the message digest information is really 
necessary only for signed JAR files, it is omitted when you create an archive in SDK 1.2 and later. 

You can add your own information to the manifest descriptions by specifying a supplementary 
manifest file when you create the archive. This is a good place to store other simple kinds of 
attribute information about the files in the archive, perhaps version or authorship information. 

For example, we can create a file with the following keyword: value lines: 

Name: spaceblaster/images/planetoid.gif  
RevisionNumber: 42.7  
Artist-Temperment: moody 

To add this information to the manifest in our archive, place it in a file called myManifest.mf and 
give the following jar command: 

% jar -cvmf myManifest.mf spaceblaster.jar spaceblaster 

We've added an additional option to the command, m, which specifies that jar should read 
additional manifest information from the file given on the command line. How does jar know 
which file is which? Because m is before f, it expects to find the manifest information before the 
name of the JAR file it will create. If you think that's awkward, you're right; get the names in the 
wrong order, and jar will do the wrong thing. Be careful. 

Aside from information for your own use, there are special values (in SDK 1.2) you can put in the 
manifest file that are useful. One of these, Main-Class , allows you to specify a class that 
contains a main( ) method: 

Main-Class: Game 

If you incorporate this specification in your JAR file manifest (using the m option described 
earlier), you can actually run the JAR from the command line: 

% java -jar spaceblaster.jar 



The interpreter looks for the Main-Class value in the manifest. Then it loads the named class as 
the application's initial class. 

What can we do with the revision and temperament information we've so cleverly included in the 
JAR file? Unfortunately, nothing, except for unpacking the archive and reading the manifest. 
However, if you were writing your own JAR utility or some kind of resource loader, you could 
include code to look at the manifest, check for your private keywords, and act accordingly—
perhaps darkening the display if the artist's temperament is moody. 

Another important keyword is Java-Bean. The value of this keyword should be true if the item 
is a Java Bean; this information is used by the BeanBox and other utilities that work with Beans 
(see Chapter 19). 



Chapter 4. The Java Language 

In this chapter, we'll introduce the framework of the Java language and some of its fundamental 
facilities. We're not going to try to provide a full language reference here. Instead, we'll lay out the 
basic structures of Java with special attention to how it differs from other languages. For example, 
we'll take a close look at arrays in Java, because they are significantly different from those in 
some other languages. We won't, on the other hand, spend much time explaining basic language 
constructs like loops and control structures. Nor will we talk much about Java's object-oriented 
side here, as that's covered in detail in Chapter 5 through Chapter 7. 

As always, we'll try to provide meaningful examples to illustrate how to use Java in everyday 
programming tasks. 

4.1 Text Encoding 

Java is a language for the Internet. Since the people of the Net speak and write in many different 
human languages, Java must be able to handle a large number of languages as well. One of the 
ways in which Java supports international access is through Unicode character encoding. 
Unicode uses a 16-bit character encoding; it's a worldwide standard that supports the scripts 
(character sets) of most languages.[1]  

[1] For more information about Unicode, see http://www.unicode.org. Ironically, one of the scripts listed 
as "obsolete and archaic" and not currently supported by the Unicode standard is Javanese—a historical 
language of the people of the Island of Java. 

Java source code can be written using the Unicode character encoding and stored either in its full 
16-bit form or with ASCII-encoded Unicode character values. This makes Java a friendly 
language for non-English-speaking programmers who can use their native alphabet for class, 
method, and variable names in Java code. 

The Java char type and String objects also support Unicode. But if you're concerned about 
having to labor with two-byte characters, you can relax. The String API makes the character 
encoding transparent to you. Unicode is also ASCII-friendly; the first 256 characters are defined 
to be identical to the first 256 characters in the ISO8859-1 (Latin-1) encoding; if you stick with 
these values, there's really no distinction between the two. 

Most platforms can't display all currently defined Unicode characters. As a result, Java programs 
can be written with special Unicode escape sequences. A Unicode character can be represented 
with this escape sequence: 

\uxxxx  

xxxx is a sequence of one to four hexadecimal digits. The escape sequence indicates an ASCII-
encoded Unicode character. This is also the form Java uses to output a Unicode character in an 
environment that doesn't otherwise support them. 

Java stores and manipulates characters and strings internally as Unicode values. Java also 
comes with classes to read and write Unicode-formatted character streams. 

4.2 Comments 



Java supports both C-style block comments delimited by /* and */ and C++ - style line 
comments indicated by //: 

/*  This is a   
        multiline   
            comment.    */   
   
// This is a single-line comment   
// and so // is this 

As in C, block comments can't be nested. Single-line comments are delimited by the end of a line; 
extra // indicators inside a single line have no effect. Line comments are useful for short 
comments within methods; they don't conflict with wrapping block comment indicators around 
large chunks of code during development. 

4.2.1 Javadoc Comments 

By convention, a block comment beginning with /** indicates a special doc comment. A doc 
comment is designed to be extracted by automated documentation generators, such as the 
DSK's javadoc program. A doc comment is terminated by the next */, just as with a regular 
block comment. Leading spacing up to a * on each line is ignored; lines beginning with @ are 
interpreted as special tags for the documentation generator. 

Here's an example: 

/**   
 * I think this class is possibly the most amazing thing you will   
 * ever see. Let me tell you about my own personal vision and  
 * motivation in creating it.   
 * <p>   
 * It all began when I was a small child, growing up on the   
 * streets of Idaho. Potatoes were the rage, and life was good...   
 *   
 * @see PotatoPeeler   
 * @see PotatoMasher   
 * @author John 'Spuds' Smith   
 * @version 1.00, 19 Dec 1996   
 */ 

javadoc creates HTML format documentation of classes by reading the source code and the 
embedded comments. The author and version information is presented in the output, and the 
@see tags make hypertext links to the appropriate class documentation. The compiler also looks 
at the doc comments; in particular, it is interested in the @deprecated tag, which means that the 
method has been declared obsolete and should be avoided in new programs. The compiler 
generates a warning message whenever it sees the usage of a deprecated feature in your code. 

Doc comments can appear above class, method, and variable definitions, but some tags may not 
be applicable to all of these. For example, a variable declaration can contain only a @see tag. 
Table 4.1 summarizes the tags used in doc comments. 

Table 4.1. Doc Comment Tags 
Tag Description Applies to 



@see Associated class name Class, method, or variable 

@author Author name Class 
@version Version string Class 
@param Parameter name and description Method 

@return Description of return value Method 
@exception Exception name and description Method 

@deprecated Declares an item to be obsolete Class, method, or variable 

4.3 Types 

The type system of a programming language describes how its data elements (variables and 
constants) are associated with actual storage. In a statically typed language, like C or C++, the 
type of a data element is a simple, unchanging attribute that often corresponds directly to some 
underlying hardware phenomenon, like a register value or a pointer indirection. In a more 
dynamic language like Smalltalk or Lisp, variables can be assigned arbitrary elements and can 
effectively change their type throughout their lifetime. A considerable amount of overhead goes 
into validating what happens in these languages at runtime. Scripting languages like Perl and Tcl 
achieve ease of use by providing drastically simplified type systems in which only certain data 
elements can be stored in variables, and values are unified into a common representation, such 
as strings. 

Java combines the best features of both statically and dynamically typed languages. As in a 
statically typed language, every variable and programming element in Java has a type that is 
known at compile time, so the runtime system doesn't normally have to check the type validity of 
assignments while the code is executing. Unlike C or C++, though, Java also maintains runtime 
information about objects and uses this to allow truly safe runtime polymorphism and casting 
(using an object as a type other than its declared type). 

Java data types fall into two categories. Primitive types represent simple values that have built-in 
functionality in the language; they are fixed elements, such as literal constants and numbers. 
Reference types (or class types) include objects and arrays; they are called reference types 
because they are passed "by reference," as we'll explain shortly. 

4.3.1 Primitive Types 

Numbers, characters, and boolean values are fundamental elements in Java. Unlike some other 
(perhaps more pure) object-oriented languages, they are not objects. For those situations where 
it's desirable to treat a primitive value as an object, Java provides "wrapper" classes (see 
Chapter 9). One major advantage of treating primitive values as such is that the Java compiler 
can more readily optimize their usage. 

Another important portability feature of Java is that primitive types are precisely defined. For 
example, you never have to worry about the size of an int on a particular platform; it's always a 
32-bit, signed, two's complement number. Table 4.2 summarizes Java's primitive types. 

Table 4.2. Java Primitive Data Types  
Type Definition 

Boolean true or false 

Char 16-bit Unicode character 

Byte 8-bit signed two's complement integer 



Short 16-bit signed two's complement integer 

Int 32-bit signed two's complement integer 
Long 64-bit signed two's complement integer 
Float 32-bit IEEE 754 floating-point value 

Double 64-bit IEEE 754 floating-point value 

If you think the primitive types look like an idealization of C scalar types on a 32-bit machine, 
you're absolutely right. That's how they're supposed to look. The 16-bit characters were forced by 
Unicode, and ad hoc pointers were deleted for other reasons. But overall, the syntax and 
semantics of Java primitive types are meant to fit a C programmer's mental habits. 

4.3.1.1 Floating-point precision 

Floating-point operations in Java are standardized to follow the IEEE 754 international 
specification, which means that the result of floating-point calculations will generally be the same 
on different Java platforms. More recent versions of Java have been enhanced to allow for 
extended precision on platforms that support it. This can introduce extremely small-valued and 
arcane differences in the results of high-precision operations. Most applications would never 
notice this, but if you want to ensure that your application will produce exactly the same results on 
different platforms, use the special keyword strictfp as a class modifier on the class 
containing the floating-point manipulation. 

4.3.1.2 Variable declaration and initialization 

Variables are declared inside of methods or classes in C style. For example: 

int foo;   
double d1, d2;   
boolean isFun; 

Variables can optionally be initialized with an appropriate expression when they are declared: 

int foo = 42;   
double d1 = 3.14, d2 = 2 * 3.14;   
boolean isFun = true; 

Variables that are declared as instance variables in a class are set to default values if they are 
not initialized. (In this case, they act much like static variables in C or C++.) Numeric types 
default to the appropriate flavor of zero, characters are set to the null character (\0), and 
boolean variables have the value false. Local variables declared in methods, on the other hand, 
must be explicitly initialized before they can be used. 

4.3.1.3 Integer literals 

Integer literals can be specified in octal (base 8), decimal (base 10), or hexadecimal (base 16). A 
decimal integer is specified by a sequence of digits beginning with one of the characters 1-9: 

int i = 1230; 

Octal numbers are distinguished from decimal numbers by a leading zero: 



int i = 01230;             // i = 664 decimal 

As in C, a hexadecimal number is denoted by the leading characters 0x or 0X (zero "x"), followed 
by digits and the characters a-f or A-F, which represent the decimal values 10-15, respectively: 

int i = 0xFFFF;            // i = 65535 decimal 

Integer literals are of type int unless they are suffixed with an L, denoting that they are to be 
produced as a long value: 

long l = 13L;   
long l = 13;       // equivalent: 13 is converted from type int 

(The lowercase character l ("el") is also acceptable, but should be avoided because it often looks 
like the numeral 1.) 

When a numeric type is used in an assignment or an expression involving a type with a larger 
range, it can be promoted to the larger type. For example, in the second line of the previous 
example, the number 13 has the default type of int, but it's promoted to type long for 
assignment to the long variable. Certain other numeric and comparison operations also cause 
this kind of arithmetic promotion. A numeric value can never be assigned to a type with a smaller 
range without an explicit (C-style) cast, however: 

int i = 13;   
byte b = i;          // Compile-time error, explicit cast needed 
byte b = (byte) i;   // OK 

Conversions from floating-point to integer types always require an explicit cast because of the 
potential loss of precision. 

4.3.1.4 Floating-point literals 

Floating-point values can be specified in decimal or scientific notation. Floating-point literals are 
of type double unless they are suffixed with an f or F denoting that they are to be produced as a 
float value: 

double d = 8.31;   
double e = 3.00e+8;   
float f = 8.31F;   
float g = 3.00e+8F; 

4.3.1.5 Character literals 

A literal character value can be specified either as a single-quoted character or as an escaped 
ASCII or Unicode sequence: 

char a = 'a';   
char newline = '\n';   
char smiley = '\u263a'; 

4.3.2 Reference Types 



In C, you can make a new, complex data type by creating a struct . In Java (and other object-
oriented languages), you instead create a class that defines a new type in the language. For 
instance, if we create a new class called Foo in Java, we are also implicitly creating a new type 
called Foo. The type of an item governs how it's used and where it's assigned. An item of type 
Foo can, in general, be assigned to a variable of type Foo or passed as an argument to a method 
that accepts a Foo value. 

In an object-oriented language like Java, a type is not necessarily just a simple attribute. 
Reference types are related in the same way as the classes they represent. Classes exist in a 
hierarchy, where a subclass is a specialized kind of its parent class. The corresponding types 
have the same relationship, where the type of the child class is considered a subtype of the 
parent class. Because child classes always extend their parents and have, at a minimum, the 
same functionality, an object of the child's type can be used in place of an object of the parent's 
type. For example, if I create a new class, Bar, that extends Foo, there is a new type Bar that is 
considered a subtype of Foo. Objects of type Bar can then be used anywhere an object of type 
Foo could be used; an object of type Bar is said to be assignable to a variable of type Foo. This 
is called subtype polymorphism and is one of the primary features of an object-oriented language. 
We'll look more closely at classes and objects in Chapter 5. 

Primitive types in Java are used and passed "by value." In other words, when a primitive value is 
assigned or passed as an argument to a method, it's simply copied. Reference types, on the 
other hand, are always accessed "by reference." A reference is simply a handle or a name for an 
object. What a variable of a reference type holds is a reference to an object of its type (or of a 
subtype, as described earlier). A reference is like a pointer in C or C++, except that its type is 
strictly enforced and the reference value itself is a primitive entity that can't be examined directly. 
A reference value can't be created or changed other than through assignment to an appropriate 
object. When references are assigned or passed to methods, they are copied by value. You can 
think of a reference as a pointer type that is automatically dereferenced whenever it's mentioned. 

Let's run through an example. We specify a variable of type Foo, called myFoo, and assign it an 
appropriate object:[2]  

[2] The comparable code in C++ would be: 

Foo myFoo = new Foo( );   
Foo anotherFoo = myFoo; 

myFoo is a reference-type variable that holds a reference to the newly constructed Foo object. 
(For now, don't worry about the details of creating an object; we'll cover that in Chapter 5.) We 
designate a second Foo type variable, anotherFoo, and assign it to the same object. There are 
now two identical references: myFoo and anotherFoo. If we change things in the state of the 
Foo object itself, we will see the same effect by looking at it with either reference. 

We can pass an object to a method by specifying a reference-type variable (in this case, either 
myFoo or anotherFoo) as the argument: 

myMethod( myFoo ); 

An important, but sometimes confusing, distinction to make at this point is that the reference itself 
is passed by value. That is, the argument passed to the method (a local variable from the 
method's point of view) is actually a third copy of the reference. The method can alter the state of 
the Foo object itself through that reference, but it can't change the caller's notion of the reference 
to myFoo. That is, the method can't change the caller's myFoo to point to a different Foo object; it 



can change only its own. For those occasions when we want a method to have the side effect of 
changing a reference passed in to it, we have to wrap that reference in another object, to provide 
a layer of indirection. 

Reference types always point to objects, and objects are always defined by classes. However, 
two special kinds of reference types specify the type of object they point to in a slightly different 
way. Arrays in Java have a special place in the type system. They are a special kind of object 
automatically created to hold a series of some other type of object, known as the base type. 
Declaring an array-type reference implicitly creates the new class type, as you'll see in the next 
section. 

Interfaces are a bit sneakier. An interface defines a set of methods and a corresponding type. 
Any object that implements all methods of the interface can be treated as an object of that type. 
Variables and method arguments can be declared to be of interface types, just like class types, 
and any object that implements the interface can be assigned to them. This allows Java to cross 
the lines of the class hierarchy in a type-safe way. 

4.3.3 A Word About Strings 

Strings in Java are objects; they are therefore a reference type. String objects do, however, 
have some special help from the Java compiler that makes them look more like primitive types. 
Literal string values in Java source code are turned into String objects by the compiler. They 
can be used directly, passed as arguments to methods, or assigned to String type variables: 

System.out.println( "Hello World..." );   
String s = "I am the walrus...";   
String t = "John said: \"I am the walrus...\""; 

The + symbol in Java is overloaded to provide string concatenation as well as numeric addition. 
Along with its sister +=, this is the only overloaded operator in Java: 

String quote = "Four score and " + "seven years ago,";   
String more = quote + " our" + " fathers" +  " brought..."; 

Java builds a single String object from the concatenated strings and provides it as the result of 
the expression. We will discuss the String class in Chapter 9. 

4.4 Statements and Expressions 

Although the method declaration syntax of Java is quite different from that of C++, Java 
statement and expression syntax is like that of C. Again, the intention was to make the low-level 
details of Java easily accessible to C programmers, so that they can concentrate on learning the 
parts of the language that are really different. Java statements appear inside of methods and 
classes; they describe all activities of a Java program. Variable declarations and assignments, 
such as those in the previous section, are statements, as are the basic language structures like 
conditionals and loops. Expressions describe values; an expression is evaluated to produce a 
result, to be used as part of another expression or in a statement. Method calls, object 
allocations, and, of course, mathematical expressions are examples of expressions. Technically, 
since variable assignments can be used as values for further assignments or operations (in 
somewhat questionable programming style), they can be considered to be both statements and 
expressions. 



One of the tenets of Java is to keep things simple and consistent. To that end, when there are no 
other constraints, evaluations and initializations in Java always occur in the order in which they 
appear in the code—from left to right. We'll see this rule used in the evaluation of assignment 
expressions, method calls, and array indexes, to name a few cases. In some other languages, 
the order of evaluation is more complicated or even implementation-dependent. Java removes 
this element of danger by precisely and simply defining how the code is evaluated. This doesn't, 
however, mean you should start writing obscure and convoluted statements. Relying on the order 
of evaluation of expressions is a bad programming habit, even when it works. It produces code 
that is hard to read and harder to modify. Real programmers, however, are not made of stone, 
and you may catch us doing this once or twice when we can't resist the urge to write terse code. 

4.4.1 Statements 

As in C or C++, statements and expressions in Java appear within a code block . A code block is 
syntactically just a series of statements surrounded by an open curly brace ({) and a close curly 
brace (}). The statements in a code block can contain variable declarations:  

{   
    int size = 5;   
    setName("Max");   
    ...   
} 

Methods, which look like C functions, are in a sense code blocks that take parameters and can be 
called by name: 

setUpDog( String name ) {   
    int size = 5;   
    setName( name );   
    ...   
} 

Variable declarations are limited in scope to their enclosing code block. That is, they can't be 
seen outside of the nearest set of braces: 

{   
    int i = 5;   
}   
   
i = 6;           // Compile-time error, no such variable i 

In this way, code blocks can be used to arbitrarily group other statements and variables. The 
most common use of code blocks, however, is to define a group of statements for use in a 
conditional or iterative statement. 

Since a code block is itself collectively treated as a statement, we define a conditional like an 
if/else clause as follows: 

if ( condition )   
    statement;   
[ else   
    statement; ] 



Thus, the if clause has the familiar (to C/C++ programmers) functionality of taking two different 
forms: 

if ( condition )   
    statement; 

or: 

if ( condition )  {   
    [ statement; ]   
    [ statement; ]   
    [ ... ]   
} 

Here the condition is a boolean expression. You can't use an integer expression or a 
reference type, as in C. In other words, while i==0 is legitimate, i is not (unless i itself is 
boolean). 

In the second form, the statement is a code block, and all of its enclosed statements are executed 
if the conditional succeeds. Any variables declared within that block are visible only to the 
statements within the successful branch of the condition. Like the if/else conditional, most of 
the remaining Java statements are concerned with controlling the flow of execution. They act for 
the most part like their namesakes in C or C++. 

The do and while iterative statements have the familiar functionality; their conditional test is also 
a boolean expression: 

while ( condition ) 
    statement;   
   
do   
    statement;   
while ( condition ); 

The for statement also looks like it does in C: 

for ( initialization; condition; incrementor )   
    statement; 

The variable initialization expression can declare a new variable; this variable is limited to the 
scope of the for statement: 

for (int i = 0; i < 100; i++ ) {   
    System.out.println( i )   
    int j = i;   
    ...   
} 

Java does not support the C comma operator, which groups multiple expressions into a single 
expression. However, you can use multiple comma-separated expressions in the initialization and 
increment sections of the for loop. For example: 

for (int i = 0, j = 10; i < j; i++, j-- ) {   



   ...   
} 

The Java switch statement takes an integer type (or an argument that can be automatically 
promoted to an integer type) and selects among a number of alternative case branches: 

switch ( int expression ) {   
    case int expression :   
        statement;   
    [ case int expression   
        statement;   
    ...   
    default :   
        statement;  ]   
} 

No two of the case expressions can evaluate to the same value. As in C, an optional default 
case can be specified to catch unmatched conditions. Normally, the special statement break is 
used to terminate a branch of the switch: 

switch ( retVal ) {   
    case myClass.GOOD :   
        // something good   
        break;   
    case myClass.BAD :   
        // something bad   
        break;   
    default :  
        // neither one   
        break;   
} 

The Java break statement and its friend continue perform unconditional jumps out of a loop or 
conditional statement. They differ from the corresponding statements in C by taking an optional 
label as an argument. Enclosing statements, like code blocks and iterators, can be labeled with 
identifier statements: 

one:   
    while ( condition ) {   
        ...   
        two:   
            while ( condition ) {   
                ...   
                // break or continue point   
            }   
        // after two   
    }   
// after one 

In this example, a break or continue without argument at the indicated position would have the 
normal, C-style effect. A break would cause processing to resume at the point labeled "after 
two"; a continue would immediately cause the two loop to return to its condition test. 



The statement break two at the indicated point would have the same effect as an ordinary 
break, but break one would break both levels and resume at the point labeled "after one." 
Similarly, continue two would serve as a normal continue, but continue one would return 
to the test of the one loop. Multilevel break and continue statements remove the remaining 
justification for the evil goto statement in C/C++. 

There are a few Java statements we aren't going to discuss right now. The try , catch, and 
finally statements are used in exception handling, as we'll discuss later in this chapter. The 
synchronized statement in Java is used to coordinate access to statements among multiple 
threads of execution; see Chapter 8, for a discussion of thread synchronization. 

4.4.1.1 Unreachable statements 

On a final note, we should mention that the Java compiler flags "unreachable" statements as 
compile-time errors. An unreachable statement is one that the compiler determines won't be 
called at all. Of course there may be many methods that are actually never called in your code, 
but the compiler will only detect those that it can "prove" will never be called simply by checking 
at compile time. For example, a method with an unconditional return statement in the middle of it 
will cause a compile-time error. So will a method with something like this: 

if (1 < 2) 
 return; 
// unreachable statements 

4.4.2 Expressions 

An expression produces a result, or value, when it is evaluated. The value of an expression can 
be a numeric type, as in an arithmetic expression; a reference type, as in an object allocation; or 
the special type void, which is the declared type of a method that doesn't return a value. In the 
last case, the expression is evaluated only for its side effects (i.e., the work it does aside from 
producing a value). The type of an expression is known at compile time. The value produced at 
runtime is either of this type or, in the case of a reference type, a compatible (assignable) 
subtype. 

4.4.2.1 Operators 

Java supports almost all standard C operators. These operators also have the same precedence 
in Java as they do in C, as shown in Table 4.3. 

Table 4.3. Java Operators  

Precedence Operator Operand 
Type Description 

1 ++, — Arithmetic Increment and decrement 
1 +, - Arithmetic Unary plus and minus 

1 ~ Integral Bitwise complement 
1 ! Boolean Logical complement 

1 ( type ) Any Cast 

2 *, /, % Arithmetic Multiplication, division, 
remainder 

3 +, - Arithmetic Addition and subtraction 



3 + String String concatenation 

4 << Integral Left shift 
4 >> Integral Right shift with sign extension 
4 >>> Integral Right shift with no extension 

5 <, <=, >, >= Arithmetic Numeric comparison 
5 instanceof Object Type comparison 

6 ==, != Primitive Equality and inequality of 
value 

6 ==, != Object Equality and inequality of 
reference 

7 & Integral Bitwise AND 

7 & Boolean Boolean AND 
8 ^ Integral Bitwise XOR 
8 ^ Boolean Boolean XOR 

9 | Integral Bitwise OR 
9 | Boolean Boolean OR 

10 && Boolean Conditional AND 
11 || Boolean Conditional OR 

12 ?: NA Conditional ternary operator 
13 = Any Assignment 

13 *=, /=, %=, +=, -=, <<=, >> =, >>>=, 
&=, ^=, |= Any Assignment with operation 

There are a few operators missing from the standard C collection. For example, Java doesn't 
support the comma operator for combining expressions, although the for statement allows you 
to use it in the initialization and increment sections. Java doesn't allow direct pointer 
manipulation, so it doesn't support the reference (&), dereference (*), and sizeof operators that 
are familiar to C/C++ programmers. 

Java also adds some new operators. As we've seen, the + operator can be used with String 
values to perform string concatenation. Because all integral types in Java are signed values, the 
>> operator performs a right-arithmetic-shift operation with sign extension. The >>> operator 
treats the operand as an unsigned number and performs a right-arithmetic-shift with no sign 
extension. The new operator, as in C++, is used to create objects; we will discuss it in detail 
shortly. 

4.4.2.2 Assignment 

While variable initialization (i.e., declaration and assignment together) is considered a statement, 
with no resulting value, variable assignment alone is also an expression: 

int i, j;          // statement 
i = 5;             // both expression and statement 

Normally, we rely on assignment for its side effects alone, but, as in C, an assignment can be 
used as a value in another part of an expression: 

j = ( i = 5 ); 



Again, relying on order of evaluation extensively (in this case, using compound assignments in 
complex expressions) can make code very obscure and hard to read. Do so at your own peril. 

4.4.2.3 The null value 

The expression null can be assigned to any reference type. It has the meaning of "no 
reference." A null reference can't be used to reference anything and attempting to do so 
generates a NullPointerException at runtime. 

4.4.2.4 Variable access 

The dot (.) operator has multiple meanings. It can retrieve the value of an instance variable (of 
some object) or a static variable (of some class). It can also specify a method to be invoked on an 
object or class. Using the dot (.) to access a variable in an object is an expression that results in 
the value of the variable accessed. This can be either a numeric type or a reference type: 

int i;   
String s;   
i = myObject.length;   
s = myObject.name; 

A reference-type expression can be used in further evaluations, by selecting variables or calling 
methods within it: 

int len = myObject.name.length( );   
int initialLen = myObject.name.substring(5, 10).length( ); 

Here we have found the length of our name variable by invoking the length( ) method of the 
String object. In the second case, we took an intermediate step and asked for a substring of the 
name string. The substring method of the String class also returns a String reference, for 
which we ask the length. 

4.4.2.5 Method invocation 

A method invocation is essentially a function call: an expression that results in a value. The 
value's type is the return type of the method. Thus far, we have seen methods invoked by name: 

System.out.println( "Hello World..." );   
int myLength = myString.length( ); 

Selecting which method to invoke is more complicated than it appears, because Java allows 
method overloading and overriding; the details are discussed in Chapter 5. 

Like the result of any expression, the result of a method invocation can be used in further 
evaluations, as we saw earlier. You can allocate intermediate variables to make it absolutely clear 
what your code is doing, or you can opt for brevity where appropriate; it's all a matter of coding 
style. The following are equivalent: 

int initialLen = myObject.name.substring(5, 10).length( ); 

and: 



String temp1 = myObject.name; 
String temp2 = temp1.substring(5, 10); 
int initialLen = temp2.length( ); 

4.4.2.6 Object creation 

Objects in Java are allocated with the new operator: 

Object o = new Object( ); 

The argument to new is the constructor for the class. The constructor is a method which always 
has the same name as the class. The constructor specifies any required parameters to create an 
instance of the object. The value of the new expression is a reference of the type of the created 
object. Objects always have one or more constructors. 

We'll look at object creation in detail in Chapter 5. For now, just note that object creation is a 
type of expression, and that the resulting object reference can be used in general expressions. In 
fact, because the binding of new is "tighter" than that of dot (.), you can easily create a new 
object and invoke a method in it, without assigning the object to a reference type variable: 

int hours = new Date().getHours( ); 

The Date class is a utility class that represents the current time. Here we create a new instance 
of Date with the new operator and call its getHours( ) method to retrieve the current hour as 
an integer value. The Date object reference lives long enough to service the method call and is 
then cut loose and garbage-collected at some point in the future. 

Calling methods in object references in this way is, again, a matter of style. It would certainly be 
clearer to allocate an intermediate variable of type Date to hold the new object and then call its 
getHours( ) method. However, combining operations like this is common. 

4.4.2.7 The instanceof operator 

The instanceof operator can be used to determine the type of an object at run- time. It is used 
to compare an object against a particular type. instanceof returns a boolean value that 
indicates whether an object is an instance of a specified class or a subclass of that class: 

Boolean b;   
String str = "foo";   
b = ( str instanceof String );   // true 
b = ( str instanceof Object );   // also true 
b = ( str instanceof Date );     // false, not a Date or subclass 

instanceof also correctly reports if the object is of the type of an array or a specified interface: 

if ( foo instanceof byte[] ) 
    ... 

It is also important to note that the value null is not considered an instance of any object. So the 
following test will return false, no matter what the declared type of the variable: 

String s = null;  



if ( s instanceof String )  
    // won't happen 

4.5 Exceptions 

Java's roots are in embedded systems—software that runs inside specialized devices like hand-
held computers, cellular phones, and fancy toasters. In those kinds of applications, it's especially 
important that software errors be handled robustly. Most users would agree that it's unacceptable 
for their phone to simply crash or for their toast (and perhaps their house) to burn because their 
software failed. Given that we can't eliminate the possibility of software errors, it's a step in the 
right direction to recognize and deal with anticipated application-level errors in a methodical way. 

Dealing with errors in a language like C is entirely the responsibility of the programmer. There is 
no help from the language itself in identifying error types, and there are no tools for dealing with 
them easily. In C, a routine generally indicates a failure by returning an "unreasonable" value 
(e.g., the idiomatic -1 or null). As the programmer, you must know what constitutes a bad 
result, and what it means. It's often awkward to work around the limitations of passing error 
values in the normal path of data flow.[3] An even worse problem is that certain types of errors can 
legitimately occur almost anywhere, and it's prohibitive and unreasonable to explicitly test for 
them at every point in the software. 

[3] The somewhat obscure setjmp( ) and longjmp( ) statements in C can save a point in the execution 
of code and later return to it unconditionally from a deeply buried location. In a limited sense, this is the 
functionality of exceptions in Java. 

Java offers an elegant solution to these problems with exception handling. (Java exception 
handling is similar to, but not quite the same as, exception handling in C++.) An exception 
indicates an unusual condition or an error condition. Program control becomes unconditionally 
transferred or "thrown" to a specially designated section of code where it's caught and handled. In 
this way, error handling is somewhat orthogonal to the normal flow of the program. We don't have 
to have special return values for all our methods; errors are handled by a separate mechanism. 
Control can be passed long distance from a deeply nested routine and handled in a single 
location when that is desirable, or an error can be handled immediately at its source. There are 
still some methods that return -1 as a special value, but these are generally limited to situations 
where we are expecting a special value.[4]  

[4] For example, the getHeight( ) method of the Image class returns -1 if the height isn't known yet. No 
error has occurred; the height will be available in the future. In this situation, throwing an exception would be 
inappropriate. 

A Java method is required to specify the exceptions it can throw (i.e., the ones that it doesn't 
catch itself); this means that the compiler can make sure we handle them. In this way, the 
information about what errors a method can produce is promoted to the same level of importance 
as its argument and return types. You may still decide to punt and ignore obvious errors, but in 
Java you must do so explicitly. 

4.5.1 Exceptions and Error Classes 

Exceptions are represented by instances of the class java.lang.Exception and its 
subclasses. Subclasses of Exception can hold specialized information (and possibly behavior) 
for different kinds of exceptional conditions. However, more often they are simply "logical" 
subclasses that serve only to identify a new exception type. Figure 4.1 shows the subclasses of 
Exception in the java.lang package. It should give you a feel for how exceptions are 



organized. Most other packages define their own exception types, which usually are subclasses 
of Exception itself, or of its subclass RuntimeException. 

Another important exception class is IOException, in the package java.io. The 
IOException class has many subclasses for typical I/O problems (like 
FileNotFoundException) and networking problems (like SocketException). Network 
exceptions belong to the java.net package. Another important descendant of IOException is 
RemoteException, which belongs to the java.rmi package. It is used when problems arise 
during remote method invocation (RMI). Throughout this book we'll mention the exceptions you 
need to be aware of as we run into them. 

Figure 4.1. The java.lang.Exception subclasses 

 

An Exception object is created by the code at the point where the error condition arises. It can 
hold whatever information is necessary to describe the exceptional condition, optionally including 
a full stack trace for debugging. The Exception object is passed as an argument to the handling 
block of code, along with the flow of control. This is where the terms "throw" and "catch" come 
from: the Exception object is thrown from one point in the code and caught by the other, where 
execution resumes. 

The Java API also defines the java.lang.Error class for unrecoverable errors. The 
subclasses of Error in the java.lang package are shown in Figure 4.2. Although a few other 
packages define their own subclasses of Error, subclasses of Error are much less common 
(and less important) than subclasses of Exception. You needn't worry about these errors (i.e., 
you do not have to catch them); they normally indicate fatal linkage problems or virtual machine 
errors. An error of this kind usually causes the Java interpreter to display a message and exit. 

Figure 4.2. The java.lang.Error subclasses 



 

4.5.2 Exception Handling 

The try/catch guarding statements wrap a block of code and catch designated types of 
exceptions that occur within it: 

try {   
    readFromFile("foo");   
    ...   
}    
catch ( Exception e ) {   
    // Handle error   
    System.out.println( "Exception while reading file: " + e ); 
    ...   
} 

In this example, exceptions that occur within the body of the try portion of the statement are 
directed to the catch clause for possible handling. The catch clause acts like a method; it 
specifies an argument of the type of exception it wants to handle and, if it's invoked, it receives 
the Exception object as an argument. Here we receive the object in the variable e and print it 
along with a message. 

A try statement can have multiple catch clauses that specify different types (subclasses) of 
Exception: 

try {   
    readFromFile("foo");   
    ...   
}    
catch ( FileNotFoundException e ) {   
    // Handle file not found   
    ...   
}    



catch ( IOException e ) {   
    // Handle read error   
    ...   
}    
catch ( Exception e ) {   
    // Handle all other errors   
    ...   
} 

The catch clauses are evaluated in order, and the first possible (assignable) match is taken. At 
most, one catch clause is executed, which means that the exceptions should be listed from most 
specific to least. In the previous example, we'll anticipate that the hypothetical readFromFile( 
) can throw two different kinds of exceptions: one that indicates the file is not found; the other 
indicates a more general read error. Any subclass of Exception is assignable to the parent type 
Exception, so the third catch clause acts like the default clause in a switch statement and 
handles any remaining possibilities. 

One beauty of the try/catch scheme is that any statement in the try block can assume that 
all previous statements in the block succeeded. A problem won't arise suddenly because a 
programmer forgot to check the return value from some method. If an earlier statement fails, 
execution jumps immediately to the catch clause; later statements are never executed. 

4.5.3 Bubbling Up 

What if we hadn't caught the exception? Where would it have gone? Well, if there is no enclosing 
try/catch statement, the exception pops to the top of the method in which it appeared and is, 
in turn, thrown from that method up to its caller. If that point in the calling method is within a try 
clause, control passes to the corresponding catch clause. Otherwise the exception continues 
propagating up the call stack. In this way, the exception bubbles up until it's caught, or until it 
pops out of the top of the program, terminating it with a runtime error message. There's a bit more 
to it than that because, in this case, the compiler would have reminded us to deal with it, but we'll 
get back to that in a moment. 

Let's look at another example. In Figure 4.3, the method getContent( ) invokes the method 
openConnection( ) from within a try/catch statement. In turn, openConnection( ) 
invokes the method sendRequest( ), which calls the method write( ) to send some data. 

Figure 4.3. Exception propagation 

 

In this figure, the second call to write( ) throws an IOException. Since sendRequest( ) 
doesn't contain a try/catch statement to handle the exception, it's thrown again, from the point 
where it was called in the method openConnection( ). Since openConnection( ) doesn't 



catch the exception either, it's thrown once more. Finally it's caught by the try statement in 
getContent( ) and handled by its catch clause. 

Since an exception can bubble up quite a distance before it is caught and handled, we may need 
a way to determine exactly where it was thrown. All exceptions can dump a stack trace that lists 
their method of origin and all of the nested method calls that it took to arrive there, using the 
printStackTrace( ) method.  

try {  
    // complex task  
} catch ( Exception e ) {  
    // dump information about exactly where the exception occurred  
    e.printStackTrace( System.err );  
    ...  
} 

4.5.4 Checked and Unchecked Exceptions 

We explained earlier how Java forces us to be explicit about our error handling. But it's not 
realistic to require that every conceivable type of error be handled in every situation. So Java 
exceptions are divided into two categories: checked exceptions and unchecked exceptions. Most 
application-level exceptions are checked, which means that any method that throws one, either 
by generating it itself (as we'll discuss later) or by ignoring one that occurs within it, must declare 
that it can throw that type of exception in a special throws clause in its method declaration. We 
haven't yet talked in detail about declaring methods; we'll cover that in Chapter 5. For now all 
you need know is that methods have to declare the checked exceptions they can throw or allow 
to be thrown. 

Again in Figure 4.3, notice that the methods openConnection( ) and sendRequest( ) 
both specify that they can throw an IOException. If we had to throw multiple types of 
exceptions, we could declare them separated with commas: 

void readFile( String s ) throws IOException, InterruptedException {   
    ...   
} 

The throws clause tells the compiler that a method is a possible source of that type of checked 
exception and that anyone calling that method must be prepared to deal with it. The caller may 
use a try/catch block to catch it, or it may declare that it can throw the exception itself. 

In contrast, exceptions that are subclasses of either the class java.lang. RuntimeException 
or the class java.lang.Error are unchecked. See Figure 4.1 for the subclasses of 
RuntimeException. (Subclasses of Error are generally reserved for serious class linkage or 
runtime system problems.) It's not a compile- time error to ignore the possibility of these 
exceptions; methods don't have to declare they can throw them. In all other respects, unchecked 
exceptions behave the same as other exceptions. We are free to catch them if we wish; we 
simply aren't required to. 

Checked exceptions include application-level problems like missing files and unavailable hosts. 
As good programmers (and upstanding citizens), we should design software to recover gracefully 
from these kinds of conditions. Unchecked exceptions include problems such as "out of memory" 
and " array index out of bounds." While these may indicate application-level programming errors, 
they can occur almost anywhere and usually aren't easy to recover from. Fortunately, because 



there are unchecked exceptions, you don't have to wrap every one of your array-index operations 
in a try/catch statement. 

In sum, checked exceptions are problems that a reasonable application should try to handle 
gracefully; unchecked exceptions (runtime exceptions or errors) are problems from which we 
would not expect our software to recover. 

4.5.5 Throwing Exceptions 

We can throw our own exceptions: either instances of Exception or one of its existing 
subclasses, or our own specialized exception classes. All we have to do is create an instance of 
the Exception and throw it with the throw statement: 

throw new Exception( ); 

Execution stops and is transferred to the nearest enclosing try/catch statement. (There is little 
point in keeping a reference to the Exception object we've created here.) An alternative 
constructor lets us specify a string with an error message: 

throw new Exception("Something really bad happened"); 

You can retrieve this string by using the Exception object's getMessage( ) method. Often, 
though, you can just refer to the object itself; in the first example in the earlier section, "Exception 
Handling," an exception's string value is automatically provided to the println( ) method. 

By convention, all types of Exception have a String constructor like this. The earlier String 
message is somewhat facetious and vague. Normally you won't be throwing a plain old 
Exception, but a more specific subclass. For example: 

public void checkRead( String s ) {    
    if ( new File(s).isAbsolute( ) || (s.indexOf("..") != -1) )   
        throw new SecurityException(  
           "Access to file : "+ s +" denied.");   
} 

In this code, we partially implement a method to check for an illegal path. If we find one, we throw 
a SecurityException, with some information about the transgression. 

Of course, we could include whatever other information is useful in our own specialized 
subclasses of Exception. Often, though, just having a new type of exception is good enough, 
because it's sufficient to help direct the flow of control. For example, if we are building a parser, 
we might want to make our own kind of exception to indicate a particular kind of failure: 

class ParseException extends Exception {  
    ParseException( ) {   
        super( );  
    }  
    ParseException( String desc ) {   
        super( desc );  
    } 
} 



See Chapter 5 for a full description of classes and class constructors. The body of our 
Exception class here simply allows a ParseException to be created in the conventional 
ways that we have created exceptions previously (either generically, or with a simple string 
description). Now that we have our new exception type, we can guard like this: 

// Somewhere in our code  
...  
try {  
    parseStream( input );  
} catch ( ParseException pe ) {  
    // Bad input...  
} catch ( IOException ioe ) {  
    // Low-level communications problem  
} 

As you can see, although our new exception doesn't currently hold any specialized information 
about the problem (it certainly could), it does let us distinguish a parse error from an arbitrary I/O 
error in the same chunk of code. 

4.5.5.1 Re-throwing exceptions 

Sometimes you'll want to take some action based on an exception and then turn around and 
throw a new exception in its place. For example, suppose that we want to handle an 
IOException by freeing up some resources before allowing the failure to pass on to the rest of 
the application. You can do this in the obvious way, by simply catching the exception and then 
throwing it again or throwing a new one. 

4.5.6 Try Creep 

The try statement imposes a condition on the statements that it guards. It says that if an 
exception occurs within it, the remaining statements will be abandoned. This has consequences 
for local variable initialization. If the compiler can't determine whether a local variable assignment 
we placed inside a try/catch block will happen, it won't let us use the variable: 

void myMethod( ) {   
    int foo;   
   
    try {   
        foo = getResults( );   
    }    
    catch ( Exception e ) {   
        ...   
    }   
   
    int bar = foo;  // Compile-time error -- foo may not have been 
initialized 

In this example, we can't use foo in the indicated place because there's a chance it was never 
assigned a value. One obvious option is to move the assignment inside the try statement: 

try {   
    foo = getResults( );  
   
    int bar = foo;  // Okay because we get here only 



                    // if previous assignment succeeds 
}    
catch ( Exception e ) {   
    ...   
} 

Sometimes this works just fine. However, now we have the same problem if we want to use bar 
later in myMethod( ). If we're not careful, we might end up pulling everything into the try 
statement. The situation changes if we transfer control out of the method in the catch clause:  

try {   
    foo = getResults( );   
}    
catch ( Exception e ) {   
    ...   
    return;   
}   
   
int bar = foo;  // Okay because we get here only 
                // if previous assignment succeeds 

Your code will dictate its own needs; you should just be aware of the options. 

4.5.7 The finally Clause 

What if we have some cleanup to do before we exit our method from one of the catch clauses? 
To avoid duplicating the code in each catch branch and to make the cleanup more explicit, use 
the finally clause. A finally clause can be added after a try and any associated catch 
clauses. Any statements in the body of the finally clause are guaranteed to be executed, no 
matter why control leaves the try body: 

try {   
    // Do something here   
}    
catch ( FileNotFoundException e ) {   
    ...   
}    
catch ( IOException e ) {   
    ...   
}    
catch ( Exception e ) {   
    ...   
}    
finally {   
    // Clean up here   
} 

In this example, the statements at the cleanup point will be executed eventually, no matter how 
control leaves the try. If control transfers to one of the catch clauses, the statements in 
finally are executed after the catch completes. If none of the catch clauses handles the 
exception, the finally statements are executed before the exception propagates to the next 
level. 



If the statements in the try execute cleanly, or if we perform a return, break, or continue, 
the statements in the finally clause are executed. To perform cleanup operations, we can 
even use try and finally without any catch clauses: 

try {   
    // Do something here   
    return;   
}  
finally {   
    System.out.println("Whoo-hoo!");   
} 

Exceptions that occur in a catch or finally clause are handled normally; the search for an 
enclosing try/catch begins outside the offending try statement. 

4.5.8 Performance Issues 

We mentioned at the beginning of this section that there are methods in the core Java APIs that 
will still return "out of bounds" values like -1 or null, instead of throwing Exceptions. Why is 
this? Well, for some it is simply a matter of convenience; where a special value is easily 
discernible, we may not want to have to wrap those methods in try/catch blocks. 

But there is also a performance issue. Because of the way the Java virtual machine is 
implemented, guarding against an exception being thrown (using a try) is free. It doesn't add 
any overhead to the execution of your code. However, throwing an exception is not free. When an 
exception is thrown, Java has to locate the appropriate try/catch block and perform other time-
consuming activities at runtime. 

The result is that you should throw exceptions only in truly "exceptional" circumstances and try to 
avoid using them for expected conditions, especially when performance is an issue. For example, 
if you have a loop, it may be better to perform a small test on each pass and avoid throwing the 
exception, rather than throwing it frequently. On the other hand, if the exception is thrown only 
one in a gazillion times, you may want to eliminate the overhead of the test code and not worry 
about the cost of throwing that exception. 

4.6 Arrays 

An array is a special type of object that can hold an ordered collection of elements. The type of 
the elements of the array is called the base type of the array; the number of elements it holds is a 
fixed attribute called its length. Java supports arrays of all primitive and reference types. 

The basic syntax of arrays looks much like that of C or C++. We create an array of a specified 
length and access the elements with the index operator, []. Unlike other languages, however, 
arrays in Java are true, first-class objects. An array is an instance of a special Java array class 
and has a corresponding type in the type system. This means that to use an array, as with any 
other object, we first declare a variable of the appropriate type and then use the new operator to 
create an instance of it. 

Array objects differ from other objects in Java in three respects: 



• Java implicitly creates a special array class for us whenever we declare an arraytype 
variable. It's not strictly necessary to know about this process in order to use arrays, but it 
helps in understanding their structure and their relationship to other objects in Java. 

• Java lets us use the special [] operator to access array elements, so that arrays look as 
we expect. We could implement our own classes that act like arrays, but because Java 
doesn't have user-defined operator overloading, we would have to settle for having 
methods like get( ) and put( ) instead of using the special [] notation. 

• Java provides a corresponding special form of the new operator that lets us construct an 
instance of an array and specify its length with the [] notation. 

4.6.1 Array Types 

An array-type variable is denoted by a base type followed by the empty brackets, []. 
Alternatively, Java accepts a C-style declaration, with the brackets placed after the array name. 

The following are equivalent: 

int [] arrayOfInts;   
int arrayOfInts []; 

In each case, arrayOfInts is declared as an array of integers. The size of the array is not yet 
an issue, because we are declaring only the array-type variable. We have not yet created an 
actual instance of the array class, with its associated storage. It's not even possible to specify the 
length of an array when creating an array-type variable. 

An array of objects can be created in the same way: 

String [] someStrings;   
Button someButtons []; 

4.6.2 Array Creation and Initialization 

The new operator is used to create an instance of an array. After the new operator, we specify the 
base type of the array and its length, with a bracketed integer expression: 

arrayOfInts = new int [42];   
someStrings = new String [ number + 2 ]; 

We can, of course, combine the steps of declaring and allocating the array: 

double [] someNumbers = new double [20];   
Component widgets [] = new Component [12]; 

As in C, array indices start with zero. Thus, the first element of someNumbers[] is 0 and the last 
element is 19. After creation, the array elements are initialized to the default values for their type. 
For numeric types, this means the elements are initially zero: 

int [] grades = new int [30];   
grades[0] = 99;  
grades[1] = 72;   
// grades[2] == 0 



The elements of an array of objects are references to the objects, not actual instances of the 
objects. The default value of each element is therefore null, until we assign instances of 
appropriate objects: 

String names [] = new String [4];   
names [0] = new String( );   
names [1] = "Boofa";   
names [2] = someObject.toString( );   
// names[3] == null 

This is an important distinction that can cause confusion. In many other languages, the act of 
creating an array is the same as allocating storage for its elements. In Java, a newly allocated 
array of objects actually contains only reference variables, each with the value null.[5] That's not 
to say that there is no memory associated with an empty array—there is memory needed to hold 
those references (the empty "slots" in the array). Figure 4.4 illustrates the names array of the 
previous example. 

[5] The analog in C or C++ would be an array of pointers to objects. However, pointers in C or C++ are 
themselves two- or four-byte values. Allocating an array of pointers is, in actuality, allocating the storage for 
some number of those pointer objects. An array of references is conceptually similar, although references 
are not themselves objects. We can't manipulate references or parts of references other than by 
assignment, and their storage requirements (or lack thereof ) are not part of the high-level Java language 
specification. 

Figure 4.4. A Java array 

 

names is a variable of type String[] (i.e., a string array). This particular String[] object 
contains four String type variables. We have assigned String objects to the first three array 
elements. The fourth has the default value null. 

Java supports the C-style curly braces {} construct for creating an array and initializing its 
elements: 

int [] primes = { 1, 2, 3, 5, 7, 7+4 };    // primes[2] == 3 

An array object of the proper type and length is implicitly created and the values of the comma-
separated list of expressions are assigned to its elements. 

We can use the {} syntax with an array of objects. In this case, each of the expressions must 
evaluate to an object that can be assigned to a variable of the base type of the array, or the value 
null. Here are some examples: 



String [] verbs = { "run", "jump", someWord.toString( ) };   
Button [] controls = { stopButton, new Button("Forwards"),    
    new Button("Backwards") };   
// All types are subtypes of Object   
Object [] objects = { stopButton, "A word", null }; 

The following are equivalent: 

Button [] threeButtons = new Button [3];   
Button [] threeButtons = { null, null, null }; 

4.6.3 Using Arrays 

The size of an array object is available in the public variable length: 

char [] alphabet = new char [26];   
int alphaLen = alphabet.length;             // alphaLen == 26   
   
String [] musketeers = { "one", "two", "three" };   
int num = musketeers.length;                // num == 3 

length is the only accessible field of an array; it is a variable, not a method. (Don't worry, the 
compiler will tell you when you accidentally put those parentheses on, as if it were a method; 
everyone does now and then.) 

Array access in Java is just like array access in C; you access an element by putting an integer-
valued expression between brackets after the name of the array. The following example creates 
an array of Button objects called keyPad and then fills the array with Button objects: 

Button [] keyPad = new Button [ 10 ];   
for ( int i=0; i < keyPad.length; i++ )        
   keyPad[ i ] = new Button( Integer.toString( i ) ); 

Attempting to access an element that is outside the range of the array generates an 
ArrayIndexOutOfBoundsException. This is a type of RuntimeException, so you can 
either catch and handle it yourself, or ignore it, as we've already discussed: 

String [] states = new String [50];   
   
try {   
    states[0] = "California";   
    states[1] = "Oregon";   
    ...   
    states[50] = "McDonald's Land";  // Error: array out of bounds 
}    
catch ( ArrayIndexOutOfBoundsException err ) {   
    System.out.println( "Handled error: " + err.getMessage( ) );   
} 

It's a common task to copy a range of elements from one array into another. Java supplies the 
arraycopy( ) method for this purpose; it's a utility method of the System class: 

System.arraycopy(source,sourceStart,destination,destStart,length); 



The following example doubles the size of the names array from an earlier example: 

String [] tmpVar = new String [ 2 * names.length ];   
System.arraycopy( names, 0, tmpVar, 0, names.length );   
names = tmpVar; 

A new array, twice the size of names, is allocated and assigned to a temporary variable tmpVar. 
arraycopy( ) is used to copy the elements of names to the new array. Finally, the new array is 
assigned to names. If there are no remaining references to the old array object after names has 
been copied, it will be garbage-collected on the next pass. 

4.6.4 Anonymous Arrays 

You often want to create "throw-away" arrays: arrays that are only used in one place and never 
referenced anywhere else. Such arrays don't need to have a name, because you never need to 
refer to them again in that context. For example, you may want to create a collection of objects to 
pass as an argument to some method. It's easy enough to create a normal, named array—but if 
you don't actually work with the array (if you use the array only as a holder for some collection), 
you shouldn't have to. Java makes it easy to create "anonymous" (i.e., unnamed) arrays. 

Let's say you need to call a method named setPets( ), which takes an array of Animal 
objects as arguments. Cat and Dog are subclasses of Animal. Here's how to call setPets( ) 
using an anonymous array: 

Dog pokey = new Dog ("gray");  
Cat squiggles = new Cat ("black");  
Cat jasmine = new Cat ("orange");  
setPets ( new Animal [] { pokey, squiggles, jasmine }); 

The syntax looks just like the initialization of an array in a variable declaration. We implicitly 
define the size of the array and fill in its elements using the curly brace notation. However, since 
this is not a variable declaration, we have to explicitly use the new operator to create the array 
object. 

You can use anonymous arrays to simulate variable-length argument lists (called VARARGS in 
C), a feature of many programming languages that Java doesn't provide. The advantage of 
anonymous arrays over variable-length argument lists is that the former allow stricter type 
checking; the compiler always knows exactly what arguments are expected, and therefore it can 
verify that method calls are correct. 

4.6.5 Multidimensional Arrays 

Java supports multidimensional arrays in the form of arrays of array type objects. You create a 
multidimensional array with C-like syntax, using multiple bracket pairs, one for each dimension. 
You also use this syntax to access elements at various positions within the array. Here's an 
example of a multidimensional array that represents a chess board: 

ChessPiece [][] chessBoard;   
chessBoard = new ChessPiece [8][8];   
chessBoard[0][0] = new ChessPiece( "Rook" );   
chessBoard[1][0] = new ChessPiece( "Pawn" );   
... 



Here chessBoard is declared as a variable of type ChessPiece[][] (i.e., an array of 
ChessPiece arrays). This declaration implicitly creates the type ChessPiece[] as well. The 
example illustrates the special form of the new operator used to create a multidimensional array. 
It creates an array of ChessPiece[] objects and then, in turn, creates each array of 
ChessPiece objects. We then index chessBoard to specify values for particular ChessPiece 
elements. (We'll neglect the color of the pieces here.) 

Of course, you can create arrays with more than two dimensions. Here's a slightly impractical 
example: 

Color [][][] rgbCube = new Color [256][256][256];   
rgbCube[0][0][0] = Color.black;   
rgbCube[255][255][0] = Color.yellow;   
... 

As in C, we can specify the initial index of a multidimensional array to get an array-type object 
with fewer dimensions. In our example, the variable chessBoard is of type ChessPiece[][]. 
The expression chessBoard[0] is valid and refers to the first element of chessBoard, which is 
of type ChessPiece[]. For example, we can create a row for our chess board: 

ChessPiece [] startRow =  {   
    new ChessPiece("Rook"), new ChessPiece("Knight"),   
    new ChessPiece("Bishop"), new ChessPiece("King"),   
    new ChessPiece("Queen"), new ChessPiece("Bishop"),   
    new ChessPiece("Knight"), new ChessPiece("Rook")   
};   
   
chessBoard[0] = startRow; 

We don't necessarily have to specify the dimension sizes of a multidimensional array with a 
single new operation. The syntax of the new operator lets us leave the sizes of some dimensions 
unspecified. The size of at least the first dimension (the most significant dimension of the array) 
has to be specified, but the sizes of any number of the less significant array dimensions may be 
left undefined. We can assign appropriate array-type values later. 

We can create a checkerboard of boolean values (which is not quite sufficient for a real game of 
checkers) using this technique: 

boolean [][] checkerBoard;   
checkerBoard = new boolean [8][]; 

Here, checkerBoard is declared and created, but its elements, the eight boolean[] objects of 
the next level, are left empty. Thus, for example, checkerBoard[0] is null until we explicitly 
create an array and assign it, as follows: 

checkerBoard[0] = new boolean [8];   
checkerBoard[1] = new boolean [8];   
...   
checkerBoard[7] = new boolean [8]; 

The code of the previous two examples is equivalent to: 

boolean [][] checkerBoard = new boolean [8][8]; 



One reason we might want to leave dimensions of an array unspecified is so that we can store 
arrays given to us by another method. 

Note that since the length of the array is not part of its type, the arrays in the checkerboard do not 
necessarily have to be of the same length. That is, multidimensional arrays do not have to be 
rectangular. Here's a defective (but perfectly legal, to Java) checkerboard: 

checkerBoard[2] = new boolean [3];   
checkerBoard[3] = new boolean [10]; 

And here's how you could create and initialize a triangular array: 

int [][] triangle = new int [5][];   
for (int i = 0; i < triangle.length; i++) {    
    triangle[i] = new int [i + 1];   
    for (int j = 0; j < i + 1; j++)   
        triangle[i][j] = i + j;      
} 

4.6.6 Inside Arrays 

We said earlier that arrays are instances of special array classes in the Java language. If arrays 
have classes, where do they fit into the class hierarchy and how are they related? These are 
good questions; however, we need to talk more about the object-oriented aspects of Java before 
answering them. That's the subject of the next chapter. For now, take it on faith that arrays fit into 
the class hierarchy. 



Chapter 5. Objects in Java 

In this chapter, we'll get to the heart of Java and explore the object-oriented aspects of the 
language. Object-oriented design is the art of decomposing an application into some number of 
objects—self-contained application components that work together. The goal is to break the 
problem down into a number of smaller problems that are simpler and easier to understand. 
Ideally, the components can be implemented as straightforward objects in the Java language. 
And if things are truly ideal, the components correspond to well-known objects that already exist, 
so they don't have to be created at all. 

An object design methodology is a system or a set of rules created to help you identify objects in 
your application domain and pick the real ones from the noise. In other words, such a 
methodology helps you factor your application into a good set of reusable objects. The problem is 
that though it wants to be a science, good object-oriented design is still pretty much an art form. 
While you can learn from the various off-the-shelf design methodologies, none of them will help 
you in all situations. The truth is that there is no substitute for experience. 

We won't try to push you into a particular methodology here; there are shelves full of books to do 
that.[1] Instead, we'll provide a few hints to get you started. Here are some general design 
guidelines, which should be taken with a liberal amount of salt and common sense: 

[1] Once you have some experience with basic object-oriented concepts, you might want to take a look at 
Design Patterns: Elements of Reusable Object-Oriented Software, by Gamma, Helm, Johnson, Vlissides 
(Addison-Wesley). This book catalogs useful object-oriented designs that have been refined over the years 
by experience. Many appear in the design of the Java APIs. 

• Think of an object in terms of its interface, not its implementation. It's perfectly fine for an 
object's internals to be unfathomably complex, as long as its "public face" is easy to 
understand. 

• Hide and abstract as much of your implementation as possible. Avoid public variables in 
your objects, with the possible exception of constants. Instead define accessor methods 
to set and return values (even if they are simple types). Later, when you need to, you'll be 
able to modify and extend the behavior of your objects without breaking other classes 
that rely on them. 

• Specialize objects only when you have to. When you use an object in its existing form, as 
a piece of a new object, you are composing objects. When you change or refine the 
behavior of an object, you are using inheritance. You should try to reuse objects by 
composition rather than inheritance whenever possible, because when you compose 
objects you are taking full advantage of existing tools. Inheritance involves breaking down 
the barrier of an object and should be done only when there's a real advantage. Ask 
yourself if you really need to inherit the whole public interface of an object (do you want to 
be a "kind" of that object), or if you can just delegate certain jobs to the object and use it 
by composition. 

• Minimize relationships between objects and try to organize related objects in packages. 
To enhance your code's reusability, write it as if there is a tomorrow. Determine what one 
object needs to know about another to get its job done and try to minimize the coupling 
between them. 

5.1 Classes 

Classes are the building blocks of a Java application. A class can contain methods, variables, 
initialization code, and, as we'll discuss later on, even other classes. It serves as a blueprint for 
making class instances, which are runtime objects that implement the class structure. You 



declare a class with the class keyword. Methods and variables of the class appear inside the 
braces of the class declaration: 

class Pendulum {   
    float mass;    
    float length = 1.0;   
    int cycles;   
   
    float position ( float time ) {   
        ...   
    }   
    ...   
} 

The Pendulum class contains three variables: mass, length, and cycles. It also defines a 
method called position( ), which takes a float value as an argument and returns a float 
value. Variables and method declarations can appear in any order, but variable initializers can't 
use forward references to uninitialized variables. Once we've defined the Pendulum class, we 
can create a Pendulum object (an instance of that class) as follows: 

Pendulum p;   
p = new Pendulum( ); 

Recall that our declaration of the variable p does not create a Pendulum object; it simply creates 
a variable that refers to an object of type Pendulum. We still have to create the object, using the 
new keyword. Now that we've created a Pendulum object, we can access its variables and 
methods, as we've already seen many times: 

p.mass = 5.0;   
float pos = p.position( 1.0 ); 

Two kinds of variables can be defined in a class: instance variables and static variables. Every 
object has its own set of instance variables; the values of these variables in one object can differ 
from the values in another object. If you don't initialize an instance variable when you declare it, 
it's given a default value appropriate for its type. 

Figure 5.1 shows a hypothetical TextBook application, which uses two instances of Pendulum 
through the reference-type variables bigPendulum and smallPendulum. Each of these 
Pendulum objects has its own copy of mass, length, and cycles. As with variables, methods 
defined in a class may be instance methods or static methods. An instance method is associated 
with an instance of the class, but each instance doesn't really have its own copy of the method. 
Instead, there's just one copy of the method, which operates on the values of the instance 
variables of a particular object. As you'll see in Chapter 6, we talk about subclassing; there's 
more to learn about how methods see variables. 

Figure 5.1. Instances of the Pendulum class 



 

5.1.1 Accessing Fields and Methods 

Inside a class, we can access instance variables and call instance methods of the class directly 
by name. Here's an example that expands upon our Pendulum: 

class Pendulum {   
    ...   
    void resetEverything( ) {   
        mass = 1.0; 
        length = 1.0; 
        cycles = 0; 
        ...   
        float startingPosition = position( 0.0 );   
    }   
    ...   
} 

Other classes access members of an object through a reference, using the C-style dot notation: 

class TextBook {   
    ...   
    void showPendulum( ) {   
        Pendulum bob = new Pendulum( );   
        ...   
        int i = bob.cycles;   
        bob.resetEverything( );   
        bob.mass = 1.01;   
        ...   
    }   
    ...   
} 

Here we have created a second class, TextBook, that uses a Pendulum object. It creates an 
instance in showPendulum( ) and then invokes methods and accesses variables of the object 
through the reference bob. Several factors affect whether class members can be accessed from 
outside the class. You can use the visibility modifiers public, private, and protected to 



control access; classes can also be placed into packages, which affects their scope. The 
private modifier, for example, designates a variable or method for use only by other members 
of the class itself. In the previous example, we could change the declaration of our variable 
cycles to private: 

class Pendulum {   
    ...   
    private int cycles;   
    ... 

Now we can't access cycles from TextBook: 

class TextBook {   
    ...   
    void showPendulum( ) {   
        ...   
        int i = bob.cycles;         // Compile time error 

If we need to access cycles, we might add a public getCycles( ) method to the Pendulum 
class. We'll take a detailed look at access modifiers and how they affect the visibility of variables 
and methods in Chapter 6. 

5.1.2 Static Members 

Instance variables and methods are associated with and accessed through an instance of the 
class—i.e., through a particular object. In contrast, members that are declared with the static 
modifier live in the class and are shared by all instances of the class. Variables declared with the 
static modifier are called static variables or class variables; similarly, these kinds of methods 
are called static methods or class methods. We can add a static variable to our Pendulum 
example: 

class Pendulum {   
    ...   
    static float gravAccel = 9.80;   
    ... 

We have declared the new float variable gravAccel as static. That means if we change its 
value in any instance of a Pendulum, the value changes for all Pendulum objects, as shown in 
Figure 5.2. 

Figure 5.2. Static variables shared by all instances of a class 



 

Static members can be accessed like instance members. Inside our Pendulum class, we can 
refer to gravAccel by name, like an instance variable: 

class Pendulum {   
    ...   
    float getWeight ( ) {   
        return mass * gravAccel;   
    }   
    ...   
} 

However, since static members exist in the class itself, independent of any instance, we can also 
access them directly through the class. We don't need a Pendulum object to set the variable 
gravAccel; instead we can use the class name in place of a reference-type variable: 

Pendulum.gravAccel = 8.76; 

This changes the value of gravAccel for any current or future instances. Why would we want to 
change the value of gravAccel? Well, perhaps we want to explore how pendulums would work 
on different planets. Static variables are also very useful for other kinds of data shared among 
classes at runtime. For instance, you can create methods to register your objects so that they can 
communicate, or you can count references to them. We can use static variables to define 
constant values. In this case, we use the static modifier along with the final modifier. So, if 
we cared only about pendulums under the influence of the Earth's gravitational pull, we could 
change Pendulum as follows: 

class Pendulum {   
    ...   
    static final float EARTH_G = 9.80;   
    ... 

We have followed a common convention and named our constant with capital letters; C 
programmers should recognize the capitalization convention, which resembles the C convention 



for #define statements. Now the value of EARTH_G is a constant; it can be accessed by any 
instance of Pendulum (or anywhere, for that matter), but its value can't be changed at runtime. 

It's important to use the combination of static and final only for things that are really 
constant. That's because the compiler is allowed to "inline" such values within classes that 
reference them. This is probably okay for constants like , but it may not be ideal for other 
variables. Static members are useful as flags and identifiers, which can be accessed from 
anywhere. They are especially useful for values needed in the construction of an instance itself. 
In our example, we might declare a number of static values to represent various kinds of 
Pendulum objects: 

class Pendulum {   
    ...   
    static int SIMPLE = 0, ONE_SPRING = 1, TWO_SPRING = 2;   
    ... 

We might then use these flags in a method that sets the type of a Pendulum or, more likely, in a 
special constructor, as we'll discuss shortly: 

Pendulum pendy = new Pendulum( );   
pendy.setType( Pendulum.ONE_SPRING ); 

Inside the Pendulum class, we can use static members directly by name, as well; there's no 
need for the Pendulum. prefix: 

class Pendulum {   
    ...   
    void resetEverything( ) {   
        setType ( SIMPLE );   
        ...   
    }   
    ...   
} 

5.2 Methods 

Methods appear inside class bodies. They contain local variable declarations and other Java 
statements that are executed by a calling thread when the method is invoked. Method 
declarations in Java look like ANSI C-style function declarations with two restrictions: a method in 
Java always specifies a return type (there's no default). The returned value can be a primitive 
type, a reference type, or the type void, which indicates no returned value. A method always has 
a fixed number of arguments. The combination of method overloading and true arrays lessens the 
need for a variable number of arguments. These techniques are type-safe and easier to use than 
C's variable-argument list mechanism. 

Here's a simple example: 

class Bird {   
    int xPos, yPos;   
   
    double fly ( int x, int y ) {   
        double distance = Math.sqrt( x*x + y*y );   
        flap( distance );   



        xPos = x;   
        yPos = y;   
        return distance;   
    }   
    ...   
} 

In this example, the class Bird defines a method, fly( ), that takes as arguments two integers: 
x and y. It returns a double type value as a result. 

5.2.1 Local Variables 

The fly( ) method declares a local variable called distance, which it uses to compute the 
distance flown. A local variable is temporary; it exists only within the scope of its method. Local 
variables are allocated and initialized when a method is invoked; they are normally destroyed 
when the method returns. They can't be referenced from outside the method itself. If the method 
is executing concurrently in different threads, each thread has its own copies of the method's 
local variables. A method's arguments also serve as local variables within the scope of the 
method. 

An object created within a method and assigned to a local variable may or may not persist after 
the method has returned. As with all objects in Java, it depends on whether any references to the 
object remain. If an object is created, assigned to a local variable, and never used anywhere else, 
that object will no longer be referenced when the local variable is destroyed, so garbage 
collection will remove the object. If, however, we assign the object to an instance variable, pass it 
as an argument to another method, or pass it back as a return value, it may be saved by another 
variable holding its reference. We'll discuss object creation and garbage collection in more detail 
shortly. 

5.2.2 Shadowing 

If a local variable and an instance variable have the same name, the local variable shadows or 
hides the name of the instance variable within the scope of the method. In the following example, 
the local variables xPos and yPos hide the instance variables of the same name: 

class Bird {   
    int xPos, yPos;   
    int xNest, yNest;   
    ...   
    double flyToNest( ) {   
        int xPos = xNest;   
        int yPos = yNest:   
        return ( fly( xPos, yPos ) );   
    }   
    ...   
} 

When we set the values of the local variables in flyToNest( ), it has no effect on the values of 
the instance variables. 

5.2.2.1 The "this" reference 



You can use the special reference this any time you need to refer explicitly to the current object. 
At times you don't need to use this, because the reference to the current object is implicit; this is 
the case with using instance variables and methods inside a class. But we can use this to refer 
explicitly to instance variables in the object, even if they are shadowed. The following example 
shows how we can use this to allow argument names that shadow instance variable names. 
This is a fairly common technique, as it saves your having to make up alternative names. Here's 
how we could implement our fly( ) method with shadowed variables: 

class Bird {   
    int xPos, yPos;   
   
    double fly ( int xPos, int yPos ) {   
        double distance = Math.sqrt( xPos*xPos + yPos*yPos ); 
        flap( distance );   
        this.xPos = xPos;   
        this.yPos = yPos;   
        return distance;   
    }   
    ...   
} 

In this example, the expression this.xPos refers to the instance variable xPos and assigns it 
the value of the local variable xPos, which would otherwise hide its name. The only reason we 
need to use this in the previous example is because we've used argument names that hide our 
instance variables, and we want to refer to the instance variables. 

5.2.3 Static Methods 

Static methods (class methods), like static variables, belong to the class and not to an individual 
instance of the class. What does this mean? Well, foremost, a static method lives outside of any 
particular class instance. It can be invoked by name, through the class name, without any objects 
around. Because it is not bound to a particular object instance, a static method can directly 
access only other static members of the class. It can't directly see any instance variables or call 
any instance methods, because to do so we'd have to ask, "on which instance?" Static methods 
can be called from instances, just like instance methods, but the important thing is that they can 
also be used independently. 

Our fly() method uses a static method: Math.sqrt( ), which is defined by the 
java.lang.Math class; we'll explore this class in detail in Chapter 9. For now, the important 
thing to note is that Math is the name of a class and not an instance of a Math object. (It so 
happens that you can't even make an instance of the Math class.) Because static methods can 
be invoked wherever the class name is available, class methods are closer to normal C-style 
functions. Static methods are particularly useful for utility methods that perform work that is useful 
either independently of instances or in creating instances. For example, in our Bird class we can 
enumerate all types of birds that can be created: 

class Bird {   
    ...   
    static String [] getBirdTypes( ) {   
  String [] types;   
  // Create list...  
        return types;   
    }   
    ...   



} 

Here we've defined a static method getBirdTypes( ), which returns an array of strings 
containing bird names. We can use getBirdTypes( ) from within an instance of Bird, just like 
an instance method. However, we can also call it from other classes, using the Bird class name 
as a reference: 

String [] names = Bird.getBirdTypes( ); 

Perhaps a special version of the Bird class constructor accepts the name of a bird type. We 
could use this list to decide what kind of bird to create.  

5.2.4 Initializing Local Variables 

In the flyToNest( ) example, we made a point of initializing the local variables xPos and 
yPos. Unlike instance variables, local variables must be initialized before they can be used. It's a 
compile-time error to try to access a local variable without first assigning it a value: 

void myMethod( ) {   
    int foo = 42;   
    int bar;   
   
    // bar += 1;  Would cause compile-time error, bar uninitialized 
   
    bar = 99;   
    bar += 1;     // OK here  
} 

Notice that this doesn't imply local variables have to be initialized when declared, just that the first 
time they are referenced must be in an assignment. More subtle possibilities arise when making 
assignments inside of conditionals: 

void myMethod {   
  int foo;   
  if ( someCondition ) {   
    foo = 42;   
    ...   
  }   
  foo += 1;   // Compile-time error, foo may not be initialized 
} 

In this example, foo is initialized only if someCondition is true. The compiler doesn't let you 
make this wager, so it flags the use of foo as an error. We could correct this situation in several 
ways. We could initialize the variable to a default value in advance or move the usage inside of 
the conditional. We could also make sure the path of execution doesn't reach the uninitialized 
variable through some other means, depending on what makes sense for our particular 
application. For example, we could return from the method abruptly: 

int foo;   
...   
if ( someCondition ) {   
    foo = 42;   
    ...   



} else   
    return;     
   
foo += 1; 

In this case, there's no chance of reaching foo in an uninitialized state, so the compiler allows 
the use of foo after the conditional. 

Why is Java so picky about local variables? One of the most common (and insidious) sources of 
error in C or C++ is forgetting to initialize local variables, so Java tries to help us out. If it didn't, 
Java would suffer the same potential irregularities as C or C++.[2]  

[2] As with malloc'ed storage in C or C++, Java objects and their instance variables are allocated on a 
heap, which allows them default values once, when they are created. Local variables, however, are 
allocated on the Java virtual machine stack. As with the stack in C and C++, failing to initialize these could 
mean successive method calls could receive garbage values, and program execution might be inconsistent 
or implementation-dependent. 

5.2.5 Argument Passing and References 

Let's consider what happens when you pass arguments to a method. All primitive data types 
(e.g., int, char, float) are passed by value. Now you're probably used to the idea that 
reference types (i.e., any kind of object, including arrays and strings) are used through 
references. An important distinction is that the references themselves (the pointers to these 
objects) are actually primitive types and are passed by value too. 

Consider the following piece of code: 

...   
    int i = 0;   
    SomeKindOfObject obj = new SomeKindOfObject( );   
    myMethod( i, obj );   
    ...   
void myMethod(int j, SomeKindOfObject o) {   
    ...   
} 

The first chunk of code calls myMethod( ), passing it two arguments. The first argument, i, is 
passed by value; when the method is called, the value of i is copied into the method's parameter, 
j. If myMethod( ) changes the value of i, it's changing only its copy of the local variable. 

In the same way, a copy of the reference to obj is placed into the reference variable o of 
myMethod( ). Both references refer to the same object, so any changes made through either 
reference affect the actual (single) object instance. If we change the value of, say, o.size, the 
change is visible either as o.size (inside myMethod( )) or as obj.size (in the calling 
method). However, if myMethod( ) changes the reference o itself—to point to another object—
it's affecting only its copy. It doesn't affect the variable obj, which still refers to the original object. 
In this sense, passing the reference is like passing a pointer in C and unlike passing by reference 
in C++. 

What if myMethod( ) needs to modify the calling method's notion of the obj reference as well 
(i.e., make obj point to a different object)? The easy way to do that is to wrap obj inside some 
kind of object. One example would be to wrap the object up as the lone element in an array: 



SomeKindOfObject [] wrapper = new SomeKindOfObject [] { obj }; 

All parties could then refer to the object as wrapper[0] and would have the ability to change the 
reference. This is not aesthetically pleasing, but it does illustrate that what is needed is the level 
of indirection. 

Another possibility is to use this to pass a reference to the calling object. In that case, the 
calling object serves as the wrapper for the reference. Let's look at a piece of code that could be 
from an implementation of a linked list: 

class Element {   
    public Element nextElement;   
   
    void addToList( List list ) {   
        list.addToList( this );   
    }   
}   
   
class List {   
    void addToList( Element element ) {   
        ...   
        element.nextElement = getNextElement( );   
    }   
} 

Every element in a linked list contains a pointer to the next element in the list. In this code, the 
Element class represents one element; it includes a method for adding itself to the list. The 
List class itself contains a method for adding an arbitrary Element to the list. The method 
addToList() calls addToList( ) with the argument this (which is, of course, an Element). 
addToList( ) can use the this reference to modify the Element's nextElement instance 
variable. The same technique can be used in conjunction with interfaces to implement callbacks 
for arbitrary method invocations. 

5.2.6 Method Overloading 

Method overloading is the ability to define multiple methods with the same name in a class; when 
the method is invoked, the compiler picks the correct one based on the arguments passed to the 
method. This implies that overloaded methods must have different numbers or types of 
arguments. (In Chapter 6, we'll look at method overriding, which occurs when we declare 
methods with identical signatures in different classes.) 

Method overloading (also called ad-hoc polymorphism) is a powerful and useful feature. The idea 
is to create methods that act in the same way on different types of arguments. This creates the 
illusion that a single method can operate on any of the types. The print( ) method in the 
standard PrintStream class is a good example of method overloading in action. As you've 
probably deduced by now, you can print a string representation of just about anything using this 
expression: 

System.out.print( argument )  

The variable out is a reference to an object (a PrintStream) that defines nine different 
versions of the print( ) method. The versions take arguments of the following types: Object, 
String, char[], char, int, long, float, double, and boolean. 



class PrintStream {   
    void print( Object arg ) { ... }   
    void print( String arg ) { ... }   
    void print( char [] arg ) { ... }   
    ...   
} 

You can invoke the print( ) method with any of these types as an argument, and it's printed in 
an appropriate way. In a language without method overloading, this would require something 
more cumbersome, such as a uniquely named method for printing each type of object. Then it 
would be your responsibility to remember what method to use for each data type. In the previous 
example, print( ) has been overloaded to support two reference types: Object and String. 

What if we try to call print( ) with some other reference type? Say, perhaps, a Date object? 
When there's not an exact type match, the compiler searches for an acceptable, assignable 
match. Since Date, like all classes, is a subclass of Object, a Date object can be assigned to a 
variable of type Object. It's therefore an acceptable match, and the Object method is selected. 

What if there's more than one possible match? Say, for example, we tried to print a subclass of 
String called MyString. (The String class is final, so it can't be subclassed, but allow me 
this brief transgression for purposes of explanation.) MyString is assignable to either String or 
to Object. Here the compiler makes a determination as to which match is "better" and selects 
that method. In this case, it's the String method. 

The intuitive explanation is that the String class is closer to MyString in the inheritance 
hierarchy. It is a more specific match. A more rigorous way of specifying it would be to say that a 
given method is more specific than another method if the argument types of the first method are 
all assignable to the argument types of the second method. In this case, the String method is 
more specific to a subclass of String than the Object method because type String is 
assignable to type Object. The reverse is not true. 

If you're paying close attention, you may have noticed we said that the compiler resolves 
overloaded methods. Method overloading is not something that happens at runtime; this is an 
important distinction. It means that the selected method is chosen once, when the code is 
compiled. Once the overloaded method is selected, the choice is fixed until the code is 
recompiled, even if the class containing the called method is later revised and an even more 
specific overloaded method is added. This is in contrast to overridden (virtual) methods, which 
are located at runtime and can be found even if they didn't exist when the calling class was 
compiled. We'll talk about method overriding later in the chapter. 

One last note about overloading. In earlier chapters, we've pointed out that Java doesn't support 
programmer-defined overloaded operators, and that + is the only system-defined overloaded 
operator. If you've been wondering what an overloaded operator is, I can finally clear up that 
mystery. In a language like C++, you can customize operators such as + and * to work with 
objects that you create. For example, you could create a class Complex that implements 
complex numbers, and then overload methods corresponding to + and * to add and multiply 
Complex objects. Some people argue that operator overloading makes for elegant and readable 
programs, while others say it's just "syntactic sugar" that makes for obfuscated code. The Java 
designers clearly espoused the latter opinion when they chose not to support programmer-
defined overloaded operators. 

5.3 Object Creation 



Objects in Java are allocated from a system heap space, much like malloc'ed storage in C or 
C++. Unlike in C or C++, however, we needn't manage that memory ourselves. Java takes care 
of memory allocation and deallocation for you. Java explicitly allocates storage for an object when 
you create it with the new operator. More importantly, objects are removed by garbage collection 
when they're no longer referenced. 

5.3.1 Constructors 

Objects are allocated by specifying the new operator with an object constructor. A constructor is a 
special method with the same name as its class and no return type. It's called when a new class 
instance is created, which gives the class an opportunity to set up the object for use. 
Constructors, like other methods, can accept arguments and can be overloaded (they are not, 
however, inherited like other methods; we'll discuss inheritance in Chapter 6). 

class Date {   
    long time;   
   
    Date( ) {   
        time = currentTime( );   
    }   
   
    Date( String date ) {   
        time = parseDate( date );   
    }   
    ...   
} 

In this example, the class Date has two constructors. The first takes no arguments; it's known as 
the default constructor. Default constructors play a special role: if we don't define any 
constructors for a class, an empty default constructor is supplied for us. The default constructor is 
what gets called whenever you create an object by calling its constructor with no arguments. Here 
we have implemented the default constructor so that it sets the instance variable time by calling a 
hypothetical method, currentTime( ), which resembles the functionality of the real 
java.util.Date class. The second constructor takes a String argument. Presumably, this 
String contains a string representation of the time that can be parsed to set the time variable. 
Given the constructors in the previous example, we create a Date object in the following ways: 

Date now = new Date( );   
Date christmas = new Date("Dec 25, 1999"); 

In each case, Java chooses the appropriate constructor at compile time based on the rules for 
overloaded method selection. 

If we later remove all references to an allocated object, it'll be garbage-collected, as we'll discuss 
shortly: 

christmas = null;          // fair game for the garbage collector 

Setting this reference to null means it's no longer pointing to the "Dec 25, 1999" object. (So 
would setting christmas to any other value.) Unless that object is referenced by another 
variable, it's now inaccessible and can be garbage-collected.  



A few more notes: constructors can't be abstract, synchronized, or final. Constructors 
can, however, be declared with the visibility modifiers public, private, or protected, to 
control their accessibility. We'll talk in detail about visibility modifiers later in the chapter. 

5.3.2 Working with Overloaded Constructors 

A constructor can refer to another constructor in the same class or the immediate superclass 
using special forms of the this and super references. We'll discuss the first case here, and 
return to that of the superclass constructor after we have talked more about subclassing and 
inheritance. A constructor can invoke another, overloaded constructor in its class using the 
reference this( ) with appropriate arguments to select the desired constructor. If a constructor 
calls another constructor, it must do so as its first statement: 

class Car {   
    String model;   
    int doors;   
   
    Car( String m, int d ) {   
        model = m;   
        doors = d;   
        // other, complicated setup   
        ...   
    }   
   
    Car( String m ) {   
        this( m, 4 );   
    }   
    ...   
} 

In this example, the class Car has two constructors. The first, more explicit one, accepts 
arguments specifying the car's model and its number of doors. The second constructor takes just 
the model as an argument and, in turn, calls the first constructor with a default value of four 
doors. The advantage of this approach is that you can have a single constructor do all the 
complicated setup work; other auxiliary constructors simply feed the appropriate arguments to 
that constructor. 

The call to this( )must appear as the first statement in our second constructor. The syntax is 
restricted in this way because there's a need to identify a clear chain of command in the calling of 
constructors. At one end of the chain, Java invokes the constructor of the superclass (if we don't 
do it explicitly) to ensure that inherited members are initialized properly before we proceed. 

There's also a point in the chain, just after the constructor of the superclass is invoked, where the 
initializers of the current class's instance variables are evaluated. Before that point, we can't even 
reference the instance variables of our class. We'll explain this situation again in complete detail 
after we have talked about inheritance. 

For now, all you need to know is that you can invoke a second constructor only as the first 
statement of another constructor. For example, the following code is illegal and causes a compile-
time error: 

Car( String m ) {   
    int doors = determineDoors( );   
    this( m, doors );   // Error: constructor call 



                        // must be first statement 
} 

The simple model name constructor can't do any additional setup before calling the more explicit 
constructor. It can't even refer to an instance member for a constant value: 

class Car {    
    ...   
    final int default_doors = 4;   
    ...   
   
    Car( String m ) {   
        this( m, default_doors ); // Error: referencing   
                                  // uninitialized variable 
    }   
    ...   
} 

The instance variable defaultDoors is not initialized until a later point in the chain of 
constructor calls, so the compiler doesn't let us access it yet. Fortunately, we can solve this 
particular problem by using a static variable instead of an instance variable: 

class Car {   
    ...   
    static final int DEFAULT_DOORS = 4;   
    ...   
   
    Car( String m ) {   
        this( m, DEFAULT_DOORS );  // Okay now   
    }   
    ...   
} 

The static members of a class are initialized when the class is first loaded, so it's safe to access 
them in a constructor. 

5.3.3 Static and Nonstatic Code Blocks 

It's possible to declare a code block (some statements within curly braces) directly within the 
scope of a class. This code block doesn't belong to any method; instead, it's executed once, at 
the time the object is constructed, or, in the case of a code block marked static, at the time the 
class is loaded. 

Nonstatic code blocks can be thought of as extensions of instance variable initialization. They're 
called at the time the instance variable's initializers are evaluated (after superclass construction), 
in the order that they appear in the Java source: 

class MyClass {  
    Properties myProps = new Properties( );  
    // set up myProps  
    {  
        myProps.put("foo", "bar");  
        myProps.put("boo", "gee");  
    }  



    int a = 5;  
... 

You can use static code blocks to initialize static class members. So the static members of a 
class can have complex initialization just like objects: 

class ColorWheel {   
    static Hashtable colors = new Hashtable( );   
   
    // set up colors  
    static {   
        colors.put("Red", Color.red );   
        colors.put("Green", Color.green );   
        colors.put("Blue", Color.blue );   
        ...   
    }   
    ...   
} 

The class ColorWheel provides a variable colors that maps the names of colors to Color 
objects in a Hashtable. The first time the class ColorWheel is referenced and loaded, the 
static components of ColorWheel are evaluated, in the order they appear in the source. In this 
case, the static code block simply adds elements to the colors Hashtable. 

5.4 Object Destruction 

Now that we've seen how to create objects, it's time to talk about their destruction. If you're 
accustomed to programming in C or C++, you've probably spent time hunting down memory 
leaks in your code. Java takes care of object destruction for you; you don't have to worry about 
memory leaks, and you can concentrate on more important programming tasks. 

5.4.1 Garbage Collection 

Java uses a technique known as garbage collection to remove objects that are no longer needed. 
The garbage collector is Java's grim reaper. It lingers, usually in a low-priority thread, stalking 
objects and awaiting their demise. It finds them, watches them, and periodically counts 
references to them to see when their time has come. When all references to an object are gone, 
so it's no longer accessible, the garbage-collection mechanism reclaims it and returns the space 
to the available pool of resources. 

There are many different algorithms for garbage collection; the Java virtual machine architecture 
doesn't specify a particular scheme. It's worth noting, though, that current implementations of 
Java use a conservative mark-and-sweep system. Under this scheme, Java first walks through 
the tree of all accessible object references and marks them as alive. Then Java scans the heap 
looking for identifiable objects that aren't so marked. Java finds objects on the heap because they 
are stored in a characteristic way and have a particular signature of bits in their handles unlikely 
to be reproduced naturally. This kind of algorithm doesn't suffer from the problem of cyclic 
references, where detached objects can mutually reference each other and appear alive. 

By default, the Java virtual machine is configured to run the garbage collector in a low-priority 
thread, so that the garbage collector runs periodically to collect stray objects. With the SDK's 
java interpreter, you can turn off garbage collection by using the -noasyncgc command-line 
option. If you do this, the garbage collector will be run only if it's requested explicitly or if the Java 



virtual machine runs out of memory. In newer runtime implementations like HotSpot, garbage 
collections effectively runs continuously in a very efficient way and should never cause a 
significant delay in execution. 

You can prompt the garbage collector to make a sweep explicitly by invoking the System.gc( ) 
method. An extremely time-sensitive Java application might use this to its advantage by 
deactivating asynchronous garbage collection and scheduling its own cleanup periods. But this is 
probably not a good idea. This issue is necessarily implementation-dependent, because on 
different platforms, garbage collection may be implemented in different ways. On some systems it 
may even be running in hardware. 

5.4.2 Finalization 

Before an object is removed by garbage collection, its finalize( ) method is invoked to give it 
a last opportunity to clean up its act and free other kinds of resources it may be holding. While the 
garbage collector can reclaim memory resources, it may not take care of things like closing files 
and terminating network connections gracefully or efficiently. That's what the finalize( ) 
method is for. An object's finalize( ) method is called once and only once before the object 
is garbage-collected. However, there's no guarantee when that will happen. Garbage collection 
may never run on a system that is not short of memory. It is also interesting to note that 
finalization and collection occur in two distinct phases of the garbage-collection process. First 
items are finalized; then they are collected. It is therefore possible that finalization could 
(intentionally or unintentionally) create a lingering reference to the object in question, postponing 
its garbage collection. The object could, of course, be subject to collection later, if the reference 
goes away, but its finalize( ) method would not be called again. 

The finalize( ) methods of superclasses are not invoked automatically for you. If you need to 
invoke the finalization routine of your parent classes, you should invoke the finalize( ) 
method of your superclass, using super.finalize( ). We discuss inheritance and overridden 
methods in Chapter 6. 



Chapter 6. Relationships Among Classes 

So far, we know how to create a Java class and to create objects, which are instances of a class. 
But an object by itself isn't very interesting—no more interesting than, say, a table knife. You can 
marvel at a table knife's perfection, but you can't really do anything with it until you have some 
other pieces of cutlery and food to use the cutlery on. The same is true of objects and classes in 
Java: they're interesting by themselves, but what's really important comes from relationships that 
you establish among them. 

That's what we'll cover in this chapter. In particular, we'll be looking at several kinds of 
relationships: 

Inheritance relationships  

How a class inherits methods and variables from its parent class 

Interfaces  

How to declare that a class supports certain behavior and define a type to refer to that 
behavior 

Packaging  

How to organize objects into logical groups 

Inner classes  

A generalization of classes that lets you nest a class definition inside of another class 
definition 

6.1 Subclassing and Inheritance 

Classes in Java exist in a class hierarchy. A class in Java can be declared as a subclass of 
another class using the extends keyword. A subclass inherits variables and methods from its 
superclass and uses them as if they were declared within the subclass itself: 

class Animal {   
    float weight;   
    ...   
    void eat( ) {   
        ...   
    }   
    ...   
}   
   
class Mammal extends Animal {   
    int heartRate;   
    // inherits weight   
    ...   
    void breathe( ) {   
        ...   
    }   



    // inherits eat( )   
} 

In this example, an object of type Mammal has both the instance variable weight and the method 
eat( ). They are inherited from Animal. 

A class can extend only one other class. To use the proper terminology, Java allows single 
inheritance of class implementation. Later in this chapter we'll talk about interfaces, which take 
the place of multiple inheritance as it's primarily used in C++. 

A subclass can be further subclassed. Normally, subclassing specializes or refines a class by 
adding variables and methods: 

class Cat extends Mammal {   
    boolean longHair;   
    // inherits weight and heartRate   
    ...   
    void purr( ) {   
        ...   
    }   
    // inherits eat() and breathe( )   
} 

The Cat class is a type of Mammal that is ultimately a type of Animal. Cat objects inherit all the 
characteristics of Mammal objects and, in turn, Animal objects. Cat also provides additional 
behavior in the form of the purr( ) method and the longHair variable. We can denote the 
class relationship in a diagram, as shown in Figure 6.1. 

Figure 6.1. A class hierarchy 

 

A subclass inherits all members of its superclass not designated as private. As we'll discuss 
shortly, other levels of visibility affect what inherited members of the class can be seen from 
outside of the class and its subclasses, but at a minimum, a subclass always has the same set of 
visible members as its parent. For this reason, the type of a subclass can be considered a 
subtype of its parent, and instances of the subtype can be used anywhere instances of the 
supertype are allowed. Consider the following example: 

Cat simon = new Cat( );   
Animal creature = simon; 

The Cat simon in this example can be assigned to the Animal type variable creature 
because Cat is a subtype of Animal. 



6.1.1 Shadowed Variables 

In the section on methods in Chapter 5, we saw that a local variable of the same name as an 
instance variable shadows (hides) the instance variable. Similarly, an instance variable in a 
subclass can shadow an instance variable of the same name in its parent class, as shown in 
Figure 6.2. 

Figure 6.2. The scope of shadowed variables 

 

In Figure 6.2, the variable weight is declared in three places: as a local variable in the method 
foodConsumption( ) of the class Mammal, as an instance variable of the class Mammal, and 
as an instance variable of the class Animal. The actual variable selected depends on the scope 
in which we are working. 

In the previous example, all variables were of the same type. About the only reason for declaring 
a variable with the same type in a subclass is to provide an alternate initializer. 

A more important use of shadowed variables involves changing their types. We could, for 
example, shadow an int variable with a double variable in a subclass that needs decimal 
values instead of integer values. We do this without changing the existing code because, as its 
name suggests, when we shadow variables, we don't replace them but instead mask them. Both 
variables still exist; methods of the superclass see the original variable, and methods of the 
subclass see the new version. The determination of what variables the various methods see 
occurs at compile time. 

Here's a simple example: 

class IntegerCalculator {   
    int sum;   
    ...   
}   
   
class DecimalCalculator extends IntegerCalculator {   
    double sum;   
    ...   
} 

In this example, we shadow the instance variable sum to change its type from int to double.[1] 
Methods defined in the class IntegerCalculator see the integer variable sum, while methods 



defined in DecimalCalculator see the floating-point variable sum. However, both variables 
actually exist for a given instance of DecimalCalculator, and they can have independent 
values. In fact, any methods that DecimalCalculator inherits from IntegerCalculator 
actually see the integer variable sum. 

[1] Note that a better way to design our calculators would be to have an abstract Calculator class with two 
subclasses: IntegerCalculator and DecimalCalculator. 

Since both variables exist in DecimalCalculator, we need to reference the variable inherited 
from IntegerCalculator. We do that using the super reference:  

int s = super.sum; 

Inside of DecimalCalculator, the super keyword used in this manner refers to the sum 
variable defined in the superclass. We'll explain the use of super more fully in a bit. 

Another important point about shadowed variables has to do with how they work when we refer to 
an object by way of a less derived type. For example, we can refer to a DecimalCalculator 
object as an IntegerCalculator. If we do so and then access the variable sum, we get the 
integer variable, not the decimal one: 

DecimalCalculator dc = new DecimalCalculator( );   
IntegerCalculator ic = dc;   
   
int s = ic.sum;       // accesses IntegerCalculator sum 

After this detailed explanation, you may still be wondering what shadowed variables are good for. 
Well, to be honest, the usefulness of shadowed variables is limited, but it's important to 
understand the concepts before we talk about doing the same thing with methods. We'll see a 
different and more dynamic type of behavior with method shadowing, or more correctly, method 
overriding. 

6.1.2 Overriding Methods 

In Chapter 5, we saw we could declare overloaded methods (i.e., methods with the same name 
but a different number or type of arguments) within a class. Overloaded method selection works 
in the way we described on all methods available to a class, including inherited ones. This means 
that a subclass can define some overloaded methods that augment the overloaded methods 
provided by a superclass. 

But a subclass does more than that; it can define a method that has exactly the same method 
signature (arguments and return type) as a method in its superclass. In that case, the method in 
the subclass overrides the method in the superclass and effectively replaces its implementation, 
as shown in Figure 6.3. Overriding methods to change the behavior of objects is called sub-type 
polymorphism . It's the kind that most people think of when they talk about the power of object-
oriented languages. 

Figure 6.3. Method overriding 



 

In Figure 6.3, Mammal overrides the reproduce( ) method of Animal, perhaps to specialize 
the method for the peculiar behavior of mammals' giving live birth.[2] The Cat object's sleeping 
behavior is overridden to be different from that of a general Animal, perhaps to accommodate 
cat naps. The Cat class also adds the more unique behaviors of purring and hunting mice. 

[2] We'll ignore the platypus, which is an obscure nonovoviviparous mammal. 

From what you've seen so far, overridden methods probably look like they shadow methods in 
superclasses, just as variables do. But overridden methods are actually more powerful than that. 
An overridden method in Java acts like a virtual method in C++. When there are multiple 
implementations of a method in the inheritance hierarchy of an object, the one in the "most 
derived" class (the lowest one in the hierarchy) always overrides the others, even if we refer to 
the object by way of a less derived type. For example, if we have a Cat instance assigned to a 
variable of the more general type Animal and we call its sleep( ) method, we get the sleep( 
) method implemented in the Cat class, not the one in Animal: 

Cat simon = new Cat( );   
Animal creature = simon;   
  ... 
creature.sleep();       // accesses Cat sleep( ); 

In other respects, the variable creature looks like an Animal. For example, access to a 
shadowed variable would find the implementation in the Animal class, not the Cat class. 
However, because methods are virtual, the appropriate method in the Cat class can be located, 
even though we are dealing with an Animal object. This means we can deal with specialized 
objects as if they were more general types of objects and still take advantage of their specialized 
implementations of behavior. 

A common programming error in Java is to miss and accidentally overload a method when trying 
to override it. Any difference in the number or type of arguments produces two overloaded 
methods instead of a single, overridden method. Make it a habit to look twice when overriding 
methods. 

6.1.2.1 Overridden methods and dynamic binding 

In a previous section, we mentioned that overloaded methods are selected by the compiler at 
compile time. Overridden methods, on the other hand, are selected dynamically at runtime. Even 
if we create an instance of a subclass, our code has never seen before (perhaps a new object 



type loaded from the network), any overriding methods that it contains will be located and invoked 
at runtime to replace those that existed when we last compiled our code. 

In contrast, if we load a new class that implements an additional, more specific overloaded 
method, our code will continue to use the implementation it discovered at compile time. Another 
effect of this is that casting (i.e., explicitly telling the compiler to treat an object as one of its 
assignable types) affects the selection of overloaded methods, but not overridden methods. 

6.1.2.2 Static method binding 

static methods do not belong to any object instance; they are accessed directly through a class 
name, so they are not dynamically selected at runtime like instance methods. That is why 
static methods are called "static"—they are always bound at compile time. 

A static method in a superclass can be shadowed by another static method in a subclass, 
as long as the original method was not declared final. However, you can't override a static 
method with a nonstatic method. In other words, you can't change a static method in a 
superclass into an instance method in a subclass. 

6.1.2.3 Dynamic method selection and performance 

When Java has to search dynamically for overridden methods in subclasses, there's a small 
performance penalty. In languages like C++, the default is for methods to act like shadowed 
variables, so you have to declare explicitly the methods you want to be dynamic (or, as C++ 
terms them, virtual). 

In Java, instance methods are, by default, dynamic. But you can use the final modifier to 
declare that an instance method can't be overridden, so it won't be subject to dynamic binding 
and its performance won't suffer. We have seen final used with variables to effectively make 
them constants. When applied to a method, final means that its implementation is constant; no 
overriding allowed. final can also be applied to an entire class, which means the class can't be 
subclassed. 

Newer runtime systems like Sun's HotSpot should, however, eliminate the need for this kind of 
specificity. A profiling runtime should be able to determine which methods are not being 
overridden and "optimistically inline" them. 

6.1.2.4 Compiler optimizations 

When javac, the Java compiler, is run with the -O switch, it performs certain optimizations. It 
can inline final methods to improve performance (while slightly increasing the size of the 
resulting class file). private methods, which are effectively final, can also be inlined, and 
final classes may also benefit from more powerful optimizations. 

Another kind of optimization allows you to include debugging code in your Java source without 
penalty. Java doesn't have a preprocessor to explicitly control what source is included, but you 
can get some of the same effects by making a block of code conditional on a constant (i.e., 
static and final) variable. The Java compiler is smart enough to remove this code when it 
determines that it won't be called. For example: 

static final boolean DEBUG = false;  
...  



final void debug (String message) {   
    if (DEBUG) {  
        System.err.println(message);   
        // do other stuff  
        ...  
    }  
} 

If we compile this code using the -O switch, the compiler can recognize that the condition on the 
DEBUG variable is always false, and the body of the debug( ) method will be optimized away. 
But that's not all—since debug( ) itself is also final, it can be inlined, and an empty inlined 
method generates no code at all. So when we compile with DEBUG set to false, calls to the 
debug( ) method generate no residual code at all. 

 

The -O compiler switch is something that may eventually go away in favor 
of smarter runtime systems, like Sun's HotSpot, which can inline arbitrary 
chunks of code dynamically. In some recent versions of Java, the -O 
switch is documented not to work at all! We document it here mainly for 
completeness. 

 
 

6.1.2.5 Method selection revisited 

By now you should have a good, intuitive idea as to how methods are selected from the pool of 
potentially overloaded and overridden method names of a class. If, however, you are dying for a 
dry definition, we'll provide one now. If you are satisfied with your understanding, you may wish to 
skip this little exercise in logic. 

In a previous section, we offered an inductive rule for overloaded method resolution. It said that a 
method is considered more specific than another if its arguments are assignable to the arguments 
of the second method. We can now expand this rule to include the resolution of overridden 
methods by adding the following condition: to be more specific than another method, the type of 
the class containing the method must also be assignable to the type of the class holding the 
second method. 

What does that mean? Well, the only classes whose types are assignable are classes in the 
same inheritance hierarchy. So, what we're talking about now is the set of all methods of the 
same name in a class or any of its parent or child classes. Since subclass types are assignable to 
superclass types, but not vice versa, the resolution is pushed, in the way that we expect, down 
the chain, toward the subclasses. This effectively adds a second dimension to the search, in 
which resolution is pushed down the inheritance tree towards more refined classes and, 
simultaneously, toward the most specific overloaded method within a given class. 

6.1.2.6 Exceptions and overridden methods 

When we talked about exception handling in Chapter 4, we didn't mention an important 
restriction that applies when you override a method. When you override a method, the new 
method (the overriding method) must adhere to the throws clause of the method it overrides. In 
other words, if an overridden method declares that it can throw an exception, the overriding 
method must also specify that it can throw the same kind of exception, or a subtype of that 
exception. By allowing the exception to be a subtype of the one specified by the parent, the 



overriding method can refine the type of exception thrown, to go along with its new behavior. For 
example: 

class MeatInedibleException extends InedibleException { 
  ... 
}  
          
class Animal {  
    void eat( Food f ) throws InedibleException { 
        ...  
    } 
}  
class Herbivore extends Animal {  
    void eat( Food f ) throws InedibleException {   
        if ( f instanceof Meat )  
            throw new MeatInedibleException( );  
        ... 
    }  
} 

In this code, Animal specifies that it can throw an InedibleException from its eat( ) 
method. Herbivore is a subclass of Animal, so its eat( ) method must also be able to throw 
an InedibleException. However, Herbivore's eat( ) method actually throws a more 
specific exception: MeatInedibleException. It can do this because 
MeatInedibleException is a subtype of InedibleException (remember that exceptions 
are classes, too). Our calling code's catch clause can therefore be more specific: 

Animal creature = ...  
try {  
    creature.eat( food );  
} catch ( MeatInedibleException ) {  
    // creature can't eat this food because it's meat  
} catch ( InedibleException ) {  
    // creature can't eat this food  
} 

However, if we don't care why the food is inedible, we're free to catch InedibleException 
alone, because a MeatInedibleException is also an InedibleException. 

 

The eat( ) method in the Herbivore class could have declared that it 
throws a MeatInedibleException, not a plain old 
InedibleException. But it should do so only if eating meat is the only 
cause of herbivore indigestion. 

 
 

6.1.3 Special References: this and super 

The special references this and super allow you to refer to the members of the current object 
instance or to members of the superclass, respectively. We have seen this used elsewhere to 
pass a reference to the current object and to refer to shadowed instance variables. The reference 
super does the same for the parents of a class. You can use it to refer to members of a 
superclass that have been shadowed or overridden. A common arrangement is for an overridding 



method in a subclass to do some preliminary work and then defer to the overridden method of the 
superclass to finish the job: 

class Animal {   
    void eat( Food f ) throws InedibleException {   
        // consume food  
    }  
}   
   
class Herbivore extends Animal {   
    void eat( Food f ) throws MeatInedibleException {   
        // check if edible  
        ...  
        super.eat( f );   
    }   
} 

In this example, our Herbivore class overrides the Animal eat( ) method to first do some 
checking on the food object. After doing its job, it uses super.eat( ) to call the (otherwise 
overridden) implementation of eat( ) in its superclass. 

super prompts a search for the method or variable to begin in the scope of the immediate 
superclass rather than the current class. The inherited method or variable found may reside in the 
immediate superclass, or in a more distant one. The usage of the super reference when applied 
to overridden methods of a superclass is special; it tells the method resolution system to stop the 
dynamic method search at the superclass, instead of at the most derived class (as it otherwise 
does). Without super, there would be no way to access overridden methods. 

6.1.4 Casting 

As in C++, a cast explicitly tells the compiler to change the apparent type of an object reference. 
Unlike in C++, casts in Java are checked both at compile time and at runtime to make sure they 
are legal. Attempting to cast an object to an incompatible type at runtime results in a 
ClassCastException. Only casts between objects in the same inheritance hierarchy (and as 
we'll see later, to appropriate interfaces) are legal in Java and pass the scrutiny of the compiler 
and the runtime system. 

Casts in Java affect only the treatment of references; they never change the form of the actual 
object. This is an important rule to keep in mind. You never change the object pointed to by a 
reference by casting it; you change only the compiler's (or runtime system's) notion of it. 

A cast can be used to narrow the type of a reference—to make it more specific. Often, we'll do 
this when we have to retrieve an object from a more general type of collection or when it has 
been previously used as a less derived type. (The prototypical example is using an object in a 
Vector or Hashtable, as you'll see in Chapter 9.) Continuing with our Cat example: 

Animal creature = ...  
Cat simon = ...  
   
creature = simon;        // OK  
// simon = creature;     // Compile time error, incompatible type   
simon = (Cat)creature;   // OK 



We can't reassign the reference in creature to the variable simon even though we know it 
holds an instance of a Cat (Simon). We have to perform the indicated cast. This is also called 
downcasting the reference. 

Note that an implicit cast was performed when we went the other way to widen the reference 
simon to type Animal during the first assignment. In this case, an explicit cast would have been 
legal, but superfluous. 

If casting seems complicated, here's a simple way to think about it. Basically, you can't lie about 
what an object is. If you have a Cat object, you can cast it to a less derived type (i.e., a type 
above it in the class hierarchy) such as Animal or even Object, since all Java classes are a 
subclass of Object. If you have an Object you know is a Cat, you can downcast the Object 
to be an Animal or a Cat. However, if you aren't sure if the Object is a Cat or a Dog at 
runtime, you should check it with instanceof before you perform the cast. If you get the cast 
wrong, the runtime system throws a ClassCastException. 

As we mentioned earlier, casting can affect the selection of compile-time items such as variables 
and overloaded methods, but not the selection of overridden methods. Figure 6.4 shows the 
difference. As shown in the top half of the diagram, casting the reference simon to type Animal 
(widening it) affects the selection of the shadowed variable weight within it. However, as the 
lower half of the diagram indicates, the cast doesn't affect the selection of the overridden method 
sleep( ). 

Figure 6.4. Casting and selection of methods and variables 

 

6.1.5 Using Superclass Constructors 

When we talked earlier about constructors, we discussed how the special statement this( ) 
invokes an overloaded constructor upon entry to another constructor. Similarly, the statement 
super( ) explicitly invokes the constructor of a superclass. Of course, we also talked about how 
Java makes a chain of constructor calls that includes the superclass's constructor, so why use 
super( ) explicitly? When Java makes an implicit call to the superclass constructor, it calls the 



default constructor. So, if we want to invoke a superclass constructor that takes arguments, we 
have to do so explicitly using super( ). 

If we are going to call a superclass constructor with super( ), it must be the first statement of 
our constructor, just as this( ) must be the first call we make in an overloaded constructor. 
Here's a simple example: 

class Person {   
    Person ( String name ) {   
        //  setup based on name   
        ...   
    }   
    ...   
}   
   
class Doctor extends Person {   
    Doctor ( String name, String specialty ) {   
        super( name );   
        // setup based on specialty   
        ...   
    }   
    ...   
} 

In this example, we use super( ) to take advantage of the implementation of the superclass 
constructor and avoid duplicating the code to set up the object based on its name. In fact, 
because the class Person doesn't define a default (no arguments) constructor, we have no 
choice but to call super( ) explicitly. Otherwise, the compiler would complain that it couldn't find 
an appropriate default constructor to call. In other words, if you subclass a class whose 
constructors all take arguments, you have to invoke one of the superclass's constructors explicitly 
from your subclass constructor. 

Instance variables of the class are initialized upon return from the superclass constructor, 
whether that's due to an explicit call to super( ) or an implicit call to the default superclass 
constructor. 

6.1.6 Full Disclosure: Constructors and Initialization 

We can now give the full story of how constructors are chained together and when instance 
variable initialization occurs. The rule has three parts and is applied repeatedly for each 
successive constructor invoked. 

• If the first statement of a constructor is an ordinary statement—i.e., not a call to this() 
or super( )—Java inserts an implicit call to super( ) to invoke the default constructor 
of the superclass. Upon returning from that call, Java initializes the instance variables of 
the current class and proceeds to execute the statements of the current constructor. 

• If the first statement of a constructor is a call to a superclass constructor via super( ), 
Java invokes the selected superclass constructor. Upon its return, Java initializes the 
current class's instance variables and proceeds with the statements of the current 
constructor. 

• If the first statement of a constructor is a call to an overloaded constructor via this( ), 
Java invokes the selected constructor and upon its return simply proceeds with the 
statements of the current constructor. The call to the superclass's constructor has 



happened within the overloaded constructor, either explicitly or implicitly, so the 
initialization of instance variables has already occurred. 

6.1.7 Abstract Methods and Classes 

A method in Java can be declared with the abstract modifier to indicate that it's just a 
prototype. An abstract method has no body; it's simply a signature declaration followed by a 
semicolon. You can't directly use a class that contains an abstract method; you must instead 
create a subclass that implements the abstract method's body. 

abstract void vaporMethod( String name ); 

In Java, a class that contains one or more abstract methods must be explicitly declared as an 
abstract class, also using the abstract modifier: 

abstract class vaporClass {   
    ...   
    abstract void vaporMethod( String name );   
    ...   
} 

An abstract class can contain other, nonabstract methods and ordinary variable declarations; 
however, it can't be instantiated. To be used, it must be subclassed and its abstract methods 
must be overridden with methods that implement a body. Not all abstract methods have to be 
implemented in a single subclass, but a subclass that doesn't override all its superclass's abstract 
methods with actual, concrete implementations must also be declared abstract. 

Abstract classes provide a framework for classes that are to be "filled in" by the implementor. The 
java.io.InputStream class, for example, has a single abstract method called read( ). 
Various subclasses of InputStream implement read( ) in their own ways to read from their 
own sources. The rest of the InputStream class, however, provides extended functionality built 
on the simple read( ) method. A subclass of InputStream inherits these nonabstract 
methods that provide functionality based on the simple read( ) method that the subclass 
implements. 

6.2 Interfaces 

Java expands on the abstract method concept with its interfaces scheme. It's often desirable to 
specify the prototypes for a set of methods and provide no implementation. In Java, this is called 
an interface. An interface defines a set of methods that a class must implement (i.e., some or all 
of the class's behavior). A class in Java can declare that it implements an interface and then go 
about implementing the required methods. A class that implements an interface doesn't have to 
inherit from any particular part of the inheritance hierarchy or use a particular implementation. 

Interfaces are kind of like Boy Scout or Girl Scout merit badges. A scout who has learned to build 
a birdhouse can walk around wearing a little sleeve patch with a picture of one. This says to the 
world, "I know how to build a birdhouse." Similarly, an interface is a list of methods that define 
some set of behavior for an object. Any class that implements each of the methods listed in the 
interface can declare that it implements the interface and wear, as its merit badge, an extra 
type—the interface's type. 

Interface types act like class types. You can declare variables to be of an interface type, you can 
declare arguments of methods to accept interface types, and you can even specify that the return 



type of a method is an interface type. In each of these cases, what is meant is that any object that 
implements the interface (i.e., wears the right merit badge) can fill that spot. In this sense, 
interfaces are orthogonal to the class hierarchy. They cut across the boundaries of what kind of 
object an item is and deal with it only in terms of what it can do. A class can implement as many 
interfaces as it desires. In this way, interfaces in Java replace the need for C++'s multiple 
inheritance (and all of its messy side effects). 

An interface looks like a purely abstract class (i.e., a class with only abstract methods). You 
define an interface with the interface keyword and list its methods with no bodies, just 
prototypes: 

interface Driveable {   
    boolean startEngine( );   
    void stopEngine( );   
    float accelerate( float acc );   
    boolean turn( Direction dir );   
} 

The previous example defines an interface called Driveable with four methods. It's acceptable, 
but not necessary, to declare the methods in an interface with the abstract modifier; we haven't 
done that here. More importantly, the methods of an interface are always considered public, and 
you can optionally declare them as so. Why public? Well, the user of the interface wouldn't 
necessarily be able to see them otherwise. 

Interfaces define capabilities, so it's common to name interfaces after their capabilities. 
Driveable, Runnable, and Updateable are good interface names. Any class that implements 
all the methods can then declare it implements the interface by using a special implements 
clause in its class definition. For example: 

class Automobile implements Driveable {   
    ...   
    public boolean startEngine( ) {   
        if ( notTooCold )   
            engineRunning = true;   
        ...   
    }   
   
    public void stopEngine( ) {   
        engineRunning = false;   
    }   
   
    public float accelerate( float acc ) {   
        ...   
    }   
   
    public boolean turn( Direction dir ) {   
        ...   
    }   
    ...   
} 

Here, the class Automobile implements the methods of the Driveable interface and declares 
itself Driveable using an implements clause. 



As shown in Figure 6.5, another class, such as Lawnmower, can also implement the 
Driveable interface. The figure illustrates the Driveable interface being implemented by two 
different classes. While it's possible that both Automobile and Lawnmower could derive from 
some primitive kind of vehicle, they don't have to in this scenario. This is a significant advantage 
of interfaces over standard multiple inheritance, as implemented in C++. 

Figure 6.5. Implementing the Driveable interface 

 

After declaring the interface, we have a new type, Driveable. We can declare variables of type 
Driveable and assign them any instance of a Driveable object: 

Automobile auto = new Automobile( );   
Lawnmower mower = new Lawnmower( );   
Driveable vehicle;   
   
vehicle = auto;   
vehicle.startEngine( );   
vehicle.stopEngine( );   
 
vehicle = mower;   
vehicle.startEngine( );   
vehicle.stopEngine( ); 

Both Automobile and Lawnmower implement Driveable, so they can be considered of that 
type. 

6.2.1 Interfaces as Callbacks 

Interfaces can be used to implement callbacks in Java. An object can, in effect, pass one of its 
methods to another object. The callback occurs when the other object subsequently invokes the 
method. In C or C++, this is prime territory for function pointers; Java uses interfaces instead. 

Consider two classes: a TickerTape class that displays data and a TextSource class that 
provides an information feed. We'd like our TextSource to send any new text data. We could 
have TextSource store a reference to a TickerTape object, but then we could never use our 



TextSource to send data to any other kind of object. Instead, we'd have to proliferate 
subclasses of TextSource that dealt with different types. A more elegant solution is to have 
TextSource store a reference to an interface type, TextUpdateable: 

interface TextUpdateable {   
    void doTextUpdate( String text );   
}   
 
class TickerTape implements TextUpdateable {   
    public void doTextUpdate( String text ) {   
        System.out.println("TICKER:\n" + text + "\n"); 
    }   
}   
   
class TextSource {   
    TextUpdateable receiver;   
   
    TextSource( TextUpdateable r ) {   
        receiver = r;   
    }   
   
    public void sendText( String s ) {   
        receiver.doTextUpdate( s );   
    } 
} 

The only thing the TextSource really cares about is finding the right method to invoke in order to 
output some text. Using an interface establishes a "well-known" name, doTextUpdate, for that 
method. 

When the TextSource is constructed, a reference to the TickerTape (which implements the 
interface) is stored in an instance variable. This "registers" the TickerTape as the 
TextSource's "output device." Whenever it needs to output data, the TextSource calls the 
output device's doTextUpdate( ) method. 

6.2.2 Interface Variables 

Although interfaces mostly allow us to specify behavior without implementation, there's one 
exception. An interface can contain constants (static final variables), which appear in any 
class that implements the interface. This feature enables predefined parameters for use with the 
methods: 

interface Scaleable {   
    static final int BIG = 0, MEDIUM = 1, SMALL = 2;   
    void setScale( int size );   
} 

The Scaleable interface defines three integers: BIG, MEDIUM, and SMALL. All variables defined 
in interfaces are implicitly final and static; we don't have to use the modifiers, but for clarity, 
we recommend you do. A class that implements Scaleable sees these variables: 

class Box implements Scaleable {   
   
    void setScale( int size ) {   



        switch( size ) {   
            case BIG:   
                ...   
            case MEDIUM:   
                ...   
            case SMALL:   
                ...   
        }   
    }   
    ...   
}  

6.2.2.1 Empty interfaces 

Sometimes, interfaces are created just to hold constants; anyone who implements the interfaces 
can see the constant names, as if they were included by a C/C++ include file. This is a somewhat 
degenerate, but acceptable, use of interfaces. 

Sometimes completely empty interfaces serve as a marker that a class has a special property. 
The java.io.Serializeable interface is a good example. Classes that implement 
Serializable don't add any methods or variables. Their additional type simply identifies them 
to Java as classes that want to be able to be serialized. 

6.2.3 Subinterfaces 

An interface can extend another interface, just as a class can extend another class. Such an 
interface is called a subinterface. For example: 

interface DynamicallyScaleable extends Scaleable {   
    void changeScale( int size );   
} 

The interface DynamicallyScaleable extends our previous Scaleable interface and adds 
an additional method. A class that implements DynamicallyScaleable must implement all the 
methods of both interfaces. 

Note here that we are using the term "extends" and not "implements" to subclass the interface. 
Interfaces can't implement anything! But an interface is allowed to extend as many interfaces as it 
wants. If you want to extend two or more interfaces, list them after the extends keyword, 
separated by commas: 

interface DynamicallyScaleable extends Scaleable, SomethingElseable { 
    ... 
} 

Keep in mind that although Java supports multiple inheritance of interfaces, each class can 
extend only a single parent class. 

6.3 Packages and Compilation Units 

A package is a name for a group of related classes and interfaces. In Chapter 3, we discussed 
how Java uses package names to locate classes during compilation and at runtime. In this sense, 
packages are somewhat like libraries; they organize and manage sets of classes. Packages 



provide more than just source-code-level organization though. They also create an additional 
level of scope for their classes and the variables and methods within them. We'll talk about the 
visibility of classes later in this section. In the next section, we'll discuss the effect that packages 
have on access to variables and methods among classes. 

6.3.1 Compilation Units 

The source code for a Java class is organized into compilation units. A simple compilation unit 
contains a single class definition and is named for that class. The definition of a class named 
MyClass, for instance, would appear in a file named MyClass.java. For most of us, a compilation 
unit is just a file with a .java extension, but in an integrated development environment, it could be 
an arbitrary entity. For brevity here, we'll refer to a compilation unit simply as a file. 

The division of classes into their own compilation units is important because the Java compiler 
assumes much of the responsibility of a make utility. The compiler relies on the names of source 
files to find and compile dependent classes. It's possible (and common) to put more than one 
class definition into a single file, but there are some restrictions we'll discuss shortly. 

A class is declared to belong to a particular package with the package statement. The package 
statement must appear as the first statement in a compilation unit. There can be only one 
package statement, and it applies to the entire file: 

package mytools.text;   
   
class TextComponent {   
     ...   
} 

In this example, the class TextComponent is placed in the package mytools.text. 

6.3.2 Package Names 

Package names are constructed in a hierarchical way, using a dot-separated naming convention. 
Package-name components construct a unique path for the compiler and runtime systems to 
locate files; however, they don't affect the contents directly in any other way. There is no such 
thing as a subpackage; the package namespace is really flat, not hierarchical. Packages under a 
particular part of a package hierarchy are related only by informal association. For example, if we 
create another package called mytools.text.poetry (presumably for text classes specialized 
in some way to work with poetry), those classes won't be part of the mytools.text package; 
they won't have the access privileges of package members. In this sense, the package-naming 
convention can be misleading. 

6.3.3 Class Visibility 

By default, a class is accessible only to other classes within its package. This means that the 
class TextComponent is available only to other classes in the mytools.text package. To be 
visible elsewhere, a class must be declared as public: 

package mytools.text;   
   
public class TextEditor {   
     ...   
} 



The class TextEditor can now be referenced anywhere. There can be only a single public 
class defined in a compilation unit; the file must be named for that class. 

By hiding unimportant or extraneous classes, a package builds a subsystem that has a well-
defined interface to the rest of the world. Public classes provide a facade for the operation of the 
system. The details of its inner workings can remain hidden, as shown in Figure 6.6. In this 
sense, packages hide classes in the way classes hide private members. 

Figure 6.6. Packages and class visibility 

 

Figure 6.6 shows part of the hypothetical mytools.text package. The classes TextArea and 
TextEditor are declared public, so they can be used elsewhere in an application. The class 
TextComponent is part of the implementation of TextArea and is not accessible from outside 
of the package. 

6.3.4 Importing Classes 

Classes within a package can refer to each other by their simple names. However, to locate a 
class in another package, we have to supply a qualifier. Continuing with the previous example, an 
application refers directly to our editor class by its fully qualified name of 
mytools.text.TextEditor. But we'd quickly grow tired of typing such long class names, so 
Java gives us the import statement. One or more import statements can appear at the top of a 
compilation unit, beneath the package statement. The import statements list the fully qualified 
names of classes to be used within the file. 

Like a package statement, an import statement applies to the entire compilation unit. Here's 
how you might use an import statement: 

package somewhere.else;   
import mytools.text.TextEditor;   
   
class MyClass {   
    TextEditor editBoy;   
    ...   
} 

As shown in this example, once a class is imported, it can be referenced by its simple name 
throughout the code. 

It is also possible to import all of the classes in a package using the * wildcard notation: 

import mytools.text.*; 



Now we can refer to all public classes in the mytools.text package by their simple names. 

Obviously, there can be a problem with importing classes that have conflicting names. If two 
different packages contain classes that use the same name, you just have to fall back to using 
fully qualified names to refer to those classes. Other than the potential for naming conflicts, 
there's no penalty for importing classes. Java doesn't carry extra baggage into the compiled class 
files. In other words, Java class files don't contain other class definitions—they only reference 
them. 

6.3.5 The Unnamed Package 

A class that is defined in a compilation unit that doesn't specify a package falls into the large, 
amorphous, unnamed package. Classes in this nameless package can refer to each other by 
their simple names. Their path at compile time and runtime is considered to be the current 
directory, so package-less classes are useful for experimentation and testing, and for brevity in 
examples in books about Java. 

6.4 Visibility of Variables and Methods 

One of the most important aspects of object-oriented design is data hiding, or encapsulation. By 
treating an object in some respects as a "black box" and ignoring the details of its 
implementation, we can write stronger, simpler code with components that can be easily reused. 

6.4.1 Basic Access Modifiers 

By default, the variables and methods of a class are accessible to members of the class itself and 
to other classes in the same package. To borrow from C++ terminology, classes in the same 
package are friendly. We'll call this the default level of visibility. As you'll see as we go on, the 
default visibility lies in the middle of the range of restrictiveness that can be specified. 

The modifiers public and private, on the other hand, define the extremes. As we mentioned 
earlier, methods and variables declared as private are accessible only within their class. At the 
other end of the spectrum, members declared as public are accessible from any class in any 
package, provided the class itself can be seen. (The class that contains the methods must be 
public to be seen outside of its package, as we discussed previously.) The public members 
of a class should define its most general functionality—what the black box is supposed to do. 

Figure 6.7 illustrates the four simplest levels of visibility, continuing the example from the 
previous section. Public members in TextArea are accessible from anywhere. Private members 
are not visible from outside the class. The default visibility allows access by other classes in the 
package. 

Figure 6.7. Private, default, protected, and public visibility 



 

The protected modifier allows special access permissions for subclasses. Contrary to how it 
might sound, protected is slightly less restrictive than the default level of accessibility. In 
addition to the default access afforded classes in the same package, protected members are 
visible to subclasses of the class, even if they are defined in a different package. If you are a C++ 
programmer and so are used to more restrictive meanings, this may rub you the wrong way. [3]  

[3] Early on, the Java language allowed for certain combinations of modifiers, one of which was 
privateprotected. The meaning of private protected was to limit visibility strictly to subclasses (and 
remove package access). This was later deemed confusing and overly complex. It is no longer supported. 

Table 6.1 summarizes the levels of visibility available in Java; it runs generally from most 
restrictive to least. Methods and variables are always visible within a class, so the table doesn't 
address those. 

Table 6.1. Visibility Modifiers  
Modifier Visibility 

private None 

none (default) Classes in the package 
protected Classes in package and subclasses inside or outside the package 

public All classes 

6.4.2 Subclasses and Visibility 

Subclasses add two important (but unrelated) complications to the topic of visibility. First, when 
you override methods in a subclass, the overriding method must be at least as visible as the 
overridden method. While it is possible to take a private method and override it with a public 
method in a subclass, the reverse is not possible; you can't override a public method with a 
private method. This restriction makes sense if you realize that subtypes have to be usable as 
instances of their supertype (e.g., a Mammal is a subclass of Animal and therefore must be 
usable as an Animal). If we could override a method with a less visible method, we would have a 
problem: our Mammal might not be able to do all the things an Animal can. However, we can 



reduce the visibility of a variable. In this case, the variable acts like any other shadowed variable; 
the two variables are distinct and can have separate visibilities in different classes. 

The next complication is a bit harder to follow: the protected variables of a class are visible to 
its subclasses, but only through objects of the subclass's type or its subtypes. In other words, a 
subclass can see a protected variable of its superclass as an inherited variable, but it can't 
access that same variable in a separate instance of the superclass itself. This can be confusing, 
because we often forget that visibility modifiers don't restrict access between instances of the 
same class in the same way that they restrict access between instances of different classes. Two 
instances of the same type of object can normally access all of each other's members, including 
private ones. Said another way: two instances of Cat can access all of each other's variables and 
methods (including private ones), but a Cat can't access a protected member in an instance of 
Animal unless the compiler can prove that the Animal is a Cat. If you found this hard to follow, 
don't worry too much. You shouldn't run into these issues very often. 

6.4.3 Interfaces and Visibility 

Interfaces behave like classes within packages. An interface can be declared public to make it 
visible outside of its package. Under the default visibility, an interface is visible only inside of its 
package. There can be only one public interface declared in a compilation unit. 

6.5 Arrays and the Class Hierarchy 

At the end of , we mentioned that arrays have a place in the Java class hierarchy, but we didn't 
give you any details. Now that we've discussed the object-oriented aspects of Java, we can give 
you the whole story. 

Array classes live in a parallel Java class hierarchy under the Object class. If a class is a direct 
subclass of Object, then an array class for that base type also exists as a direct subclass of 
Object. Arrays of more derived classes are subclasses of the corresponding array classes. For 
example, consider the following class types: 

class Animal { ... }   
class Bird extends Animal { ... }   
class Penguin extends Bird { ... } 

Figure 6.8 illustrates the class hierarchy for arrays of these classes. Arrays of the same 
dimension are related to one another in the same manner as their base type classes. In our 
example, Bird is a subclass of Animal, which means that the Bird[] type is a subtype of 
Animal[]. In the same way a Bird object can be used in place of an Animal object, a Bird[] 
array can be assigned to a variable of type Animal[]: 

Animal [][] animals;   
Bird [][] birds = new Bird [10][10];   
birds[0][0] = new Bird( );   
   
// make animals and birds reference the same array object   
animals = birds;     
Observe( animals[0][0] );               // processes Bird object 

Figure 6.8. Arrays in the Java class hierarchy 



 

Because arrays are part of the class hierarchy, we can use instanceof to check the type of an 
array: 

if ( birds instanceof Animal[][] )      // true 

An array is a subtype of Object and can therefore be assigned to Object type variables: 

Object something;   
something = animals; 

Since Java knows the actual type of all objects, you can also cast back if appropriate: 

animals = (Animal [][])something; 

Under unusual circumstances, Java may not be able to check the types of objects you place into 
arrays at compile time. In those cases, it's possible to receive an ArrayStoreException if you 
try to assign the wrong type of object to an array element. Consider the following: 

class Dog { ... }   
class Poodle extends Dog { ... }   
class Chihuahua extends Dog { ... }   
   
Dog [] dogs;   
Poodle [] poodles = new Poodle [10];   
   
dogs = poodles;    
dogs[3] = new Chihuahua( );  // runtime error, ArrayStoreException 

Both Poodle and Chihuahua are subclasses of Dog, so an array of Poodle objects can 
therefore be assigned to an array of Dog objects. The problem is that an object assignable to an 
element of an array of type Dog[] may not be assignable to an element of an array of type 
Poodle[]. A Chihuahua object, for instance, can be assigned to a Dog element because it's a 
subtype of Dog, but not to a Poodle element.[4]  

[4] In some sense, this could be considered a hole in the Java type system. It doesn't occur elsewhere in 
Java—only with arrays. This is because array objects exhibit covariance in overriding their assignment and 
extraction methods. Covariance allows array subclasses to override methods with arguments or return 
values that are subtypes of the overridden methods, where the methods would normally be overloaded or 
prohibited. This allows array subclasses to operate on their base types with type safety, but also means that 
subclasses have different capabilities than their parents, leading to the problem shown earlier. 



6.6 Inner Classes 

Java 1.1 added to the language a large heap of syntactic sugar called inner classes. Simply put, 
classes in Java can be declared at any level of scope. That is, you can declare a class within any 
set of curly braces (i.e., almost anywhere that you could put any other Java statement), and its 
visibility is limited to that scope in the same way that the name of a variable or method would be. 
Inner classes are a powerful and aesthetically pleasing facility for structuring code. Their even 
sweeter cousins, anonymous inner classes, are another powerful shorthand that make it seem as 
if you can create classes dynamically within Java's statically typed environment. 

However, if you delve into the inner workings of Java, inner classes are not quite as aesthetically 
pleasing or dynamic. We said that they are syntactic sugar; this means that they let you leverage 
the compiler by writing a few lines of code that trigger a lot of behind-the-scenes work somewhere 
between the compiler's front end and the byte-code. Inner classes rely on code generation; they 
are a feature of the Java language, but not of the Java virtual machine. As a programmer you 
may never need be aware of this; you can simply rely on inner classes like any other language 
construct. However, you should know a little about how inner classes work, to better understand 
the results and a few potential side effects. 

To this point, all of our classes have been top-level classes. We have declared them, 
freestanding, at the package level. Inner classes are essentially nested classes, like this: 

Class Animal {  
    Class Brain {   
        ...  
    }  
} 

Here the class Brain is an inner class: it is a class declared inside the scope of class Animal. 
Although the details of what that means require a fair bit of explanation, we'll start by saying that 
the Java language tries to make the meaning, as much as possible, the same as for the other 
Java entities (methods and variables) living at that level of scope. For example, let's add a 
method to the Animal class: 

Class Animal {  
    Class Brain {   
        ...  
    }  
    void performBehavior( ) { ... }  
} 

Both the inner class Brain and the method performBehavior( ) are within the scope of 
Animal. Therefore, anywhere within Animal we can refer to Brain and performBehavior( 
) directly, by name. Within Animal we can call the constructor for Brain (new Brain( )) to get 
a Brain object, or invoke performBehavior( ) to carry out that method's function. But neither 
Brain nor performBehavior( ) are accessible outside of the class Animal without some 
additional qualification. 

Within the body of the Brain class and the body of the performBehavior( ) method, we 
have direct access to all of the other methods and variables of the Animal class. So, just as the 
performBehavior( ) method could work with the Brain class and create instances of 
Brain, code within the Brain class can invoke the performBehavior( ) method of Animal 
as well as work with any other methods and variables declared in Animal. 



That last bit has important consequences. From within Brain we can invoke the method 
performBehavior( ); that is, from within an instance of Brain we can invoke the 
performBehavior( ) method of an instance of Animal. Well, which instance of Animal? If 
we have several Animal objects around (say, a few Cats and Dogs), we need to know whose 
performBehavior( ) method we are calling. What does it mean for a class definition to be 
"inside" another class definition? The answer is that a Brain object always lives within a single 
instance of Animal: the one that it was told about when it was created. We'll call the object that 
contains any instance of Brain its enclosing instance. 

A Brain object cannot live outside of an enclosing instance of an Animal object. Anywhere you 
see an instance of Brain, it will be tethered to an instance of Animal. Although it is possible to 
construct a Brain object from elsewhere (i.e., another class), Brain always requires an 
enclosing instance of Animal to "hold" it. We'll also say now that if Brain is to be referred to 
from outside of Animal, it acts something like an Animal.Brain class. And just as with the 
performBehavior( ) method, modifiers can be applied to restrict its visibility. There is even 
an interpretation of the static modifier, which we'll talk about a bit later. However, the details 
are somewhat boring and not immediately useful. For more information, consult a full language 
reference, such as Java Language Reference, Second Edition, by Mark Grand (O'Reilly & 
Associates). Before we get too far afield, let's turn to a more compelling example. 

A particularly important use of inner classes is to make adapter classes. An adapter class is a 
"helper" class that ties one class to another in a very specific way. Using adapter classes, you 
can write your classes more naturally, without having to anticipate every conceivable user's 
needs in advance. Instead, you provide adapter classes that marry your class to a particular 
interface. As an example, let's say that we have an EmployeeList object: 

public class EmployeeList {  
    private Employee [] employees = ... ;  
    ...  
} 

EmployeeList holds information about a set of employees. Let's say that we would like to have 
EmployeeList provide its elements via an iterator. An iterator is a simple interface to a list of 
objects. The java.util.Iterator interface has several methods: 

public interface Iterator {  
    boolean hasMore ( );  
    Object next( ); 
 void remove( );  
} 

It lets us step through its elements, asking for the next one and testing to see if more remain. The 
iterator is a good candidate for an adapter class because it is an interface that our 
EmployeeList can't readily implement itself. Why can't the list implement the iterator directly? 
Because an iterator is a "one-way," disposable view of our data. It isn't intended to be reset and 
used again. It may also be necessary for there to be multiple iterators walking through the list at 
different points. We must therefore keep the iterator implementation separate from the 
EmployeeList itself. This is crying out for a simple class to provide the iterator capability. But 
what should that class look like? 

Well, before we knew about inner classes, our only recourse would have been to make a new 
"top-level" class. We would probably feel obliged to call it EmployeeListIterator: 



class EmployeeListIterator implements Iterator {  
    // lots of knowledge about EmployeeList  
    ...  
} 

Here we have a comment representing the machinery that the EmployeeListIterator 
requires. Think for just a second about what you'd have to do to implement that machinery. The 
resulting class would be completely coupled to the EmployeeList and unusable in other 
situations. Worse, to function it must have access to the inner workings of EmployeeList. We 
would have to allow EmployeeListIterator access to the private array in EmployeeList, 
exposing this data more widely than it should be. This is less than ideal. 

This sounds like a job for inner classes. We already said that EmployeeListIterator was 
useless without an EmployeeList; this sounds a lot like the "lives inside" relationship we 
described earlier. Furthermore, an inner class lets us avoid the encapsulation problem, because it 
can access all the members of its enclosing instance. Therefore, if we use an inner class to 
implement the iterator, the array employees can remain private, invisible outside the 
EmployeeList. So let's just shove that helper class inside the scope of our EmployeeList: 

public class EmployeeList {  
    private Employee [] employees = ... ;  
    ...  
 
    class Iterator implements java.util.Iterator {  
        int element = 0;  
 
        boolean hasMore( ) {  
            return  element < employees.length ;  
        }  
 
        Object next( ) {  
            if ( hasMoreElements( ) )  
                return employees[ element++ ];  
            else   
                throw new NoSuchElementException( );  
        }  
 
        void remove( ) { 
             throw new UnsupportedOperationException( ); 
        } 
    }  
} 

Now EmployeeList can provide an accessor method like the following to let other classes work 
with the list: 

Iterator getIterator( ) {  
        return new Iterator( );  
    } 

One effect of the move is that we are free to be a little more familiar in the naming of our iterator 
class. Since it is no longer a top-level class, we can give it a name that is appropriate only within 
the EmployeeList. In this case, we've named it Iterator to emphasize what it does—but we 
don't need a name like EmployeeIterator that shows the relationship to the EmployeeList 



class because that's implicit. We've also filled in the guts of the Iterator class. As you can see, 
now that it is inside the scope of EmployeeList, Iterator has direct access to its private 
members, so it can directly access the employees array. This greatly simplifies the code and 
maintains compile-time safety. 

Before we move on, we should note that inner classes can have constructors, even though we 
didn't need one in this example. They are in all respects real classes. 

6.6.1 Inner Classes Within Methods 

Inner classes may also be declared within the body of a method. Returning to the Animal class, 
we could put Brain inside the performBehavior( ) method if we decided that the class was 
useful only inside of that method: 

Class Animal {  
    void performBehavior( ) {   
        Class Brain {   
            ...  
        }  
    }  
} 

In this situation, the rules governing what Brain can see are the same as in our earlier example. 
The body of Brain can see anything in the scope of performBehavior( ) and above it (in the 
body of Animal). This includes local variables of performBehavior( ) and its arguments. But 
there are a few limitations and additional restrictions, as described in the following sections. 

6.6.1.1 Limitations on inner classes 

performBehavior( ) is a method, and methods have limited lifetimes. When they exit, their 
local variables normally disappear into the stacky abyss. But an instance of Brain (like any 
object) lives on as long as it is referenced. So Java must make sure that any local variables used 
by instances of Brain created within an invocation of performBehavior( ) also live on. 
Furthermore, all of the instances of Brain that we make within a single invocation of 
performBehavior( ) must see the same local variables. To accomplish this, the compiler 
must be allowed to make copies of local variables. Thus, their values cannot change once an 
inner class has seen them. This means that any of the method's local variables that are 
referenced by the inner class must be declared final. The final modifier means that they are 
constant once assigned. This is a little confusing and easy to forget, but the compiler will 
graciously remind you. 

6.6.1.2 Static inner classes 

We mentioned earlier that the inner class Brain of the class Animal could in some ways be 
considered an Animal.Brain class. That is, it is possible to work with a Brain from outside the 
Animal class, using just such a qualified name: Animal.Brain. But given that our 
Animal.Brain class always requires an instance of an Animal as its enclosing instance, some 
explicit setup is needed.[5]  

[5] Specifically, we would have to follow a design pattern and pass a reference to the enclosing instance of 
Animal into the Animal.Brain constructor. See a Java language reference for more information. We 
don't expect you to run into this situation very often. 



But there is another situation in which we might use inner classes by name. An inner class that 
lives within the body of a top-level class (not within a method or another inner class) can be 
declared static. For example: 

class Animal  {  
    static class MigrationPattern {   
        ...  
    }  
    ...  
} 

A static inner class such as this acts just like a new top-level class called 
Animal.MigrationPattern. We can use it just like any other class, without regard to any 
enclosing instances. Although this seems strange, it is not inconsistent, since a static member 
never has an object instance associated with it. The requirement that the inner class be defined 
directly inside a top-level class ensures that an enclosing instance won't be needed. If we have 
permission, we can create an instance of the class using the qualified name: 

Animal.MigrationPattern stlToSanFrancisco = 
    new Animal.MigrationPattern( ); 

As you see, the effect is that Animal acts something like a mini-package, holding the 
MigrationPattern class. Here we have used the fully qualified name, but we could also import 
it like any other class: 

Import Animal.MigrationPattern; 

This enables us to refer to it simply as MigrationPattern. We can use all of the standard 
visibility modifiers on inner classes, so a static inner class could be private, protected, default, or 
publicly visible. 

Another example: the Java 2D API uses static inner classes to implement specialized shape 
classes. For example, the java.awt.geom.Rectangle2D class has two inner classes, Float 
and Double, that implement two different precisions. These are actually trivial subclasses; it 
would have been sad to have to multiply the number of top-level classes by three to 
accommodate them. 

6.6.1.3 Anonymous inner classes 

Now we get to the best part. As a general rule, the more deeply encapsulated and limited in 
scope our classes are, the more freedom we have in naming them. We saw this in our previous 
iterator example. This is not just a purely aesthetic issue. Naming is an important part of writing 
readable and maintainable code. We generally want to give things the most concise and 
meaningful names possible. A corollary to this is that we prefer to avoid doling out names for 
purely ephemeral objects that are going to be used only once. 

Anonymous inner classes are an extension of the syntax of the new operation. When you create 
an anonymous inner class, you combine the class's declaration with the allocation of an instance 
of that class. After the new operator, you specify either the name of a class or an interface, 
followed by a class body. The class body becomes an inner class, which either extends the 
specified class or, in the case of an interface, is expected to implement the specified interface. A 
single instance of the class is created and returned as the value. 



For example, we could do away with the declaration of the Iterator class in the 
EmployeeList example by using an anonymous inner class in the getIterator( ) method: 

Iterator getIterator( ) {  
    return new Iterator( ) {  
        int element = 0;  
        boolean hasMore( ) {  
            return  element < employees.length ;  
        }  
        Object next( ) {  
            if ( hasMoreElements( ) )  
                return employees[ element++ ];  
            else   
                throw new NoSuchElementException( );  
        }  
        void remove( ) { 
             throw new UnsupportedOperationException( ); 
        } 
    };  
} 

Here we have simply moved the guts of Iterator into the body of an anonymous inner class. 
The call to new implies a class that implements the Iterator interface and returns an instance 
of the class as its result. Note the extent of the curly braces and the semicolon at the end. The 
getIteratgor( ) method contains a single return statement. 

But the previous code certainly does not improve readability. Inner classes are best used when 
you want to implement a few lines of code, when the verbiage and conspicuousness of declaring 
a separate class detracts from the task at hand. 

Here's a better example. Suppose that we want to start a new thread to execute the 
performBehavior( ) method of our Animal: 

new Thread( ) {  
    public void run() {  performBehavior( );  }  
}.start( ); 

Here we have gone over to the terse side. We've allocated and started a new Thread, using an 
anonymous inner class that extends the Thread class and invokes our performBehavior( ) 
method in its run( ) method. The effect is similar to using a method pointer in some other 
language. However, the inner class allows the compiler to check type consistency, which would 
be more difficult (or impossible) with a true method pointer. At the same time, our anonymous 
adapter class with its three lines of code is much more efficient and readable than creating a new, 
top-level adapter class named AnimalBehaviorThreadAdapter. 

While we're getting a bit ahead of the story, anonymous adapter classes are a perfect fit for event 
handling (which we'll cover fully in Chapter 13). Skipping a lot of explanation, let's say you want 
the method handleClicks( ) to be called whenever the user clicks the mouse. You would 
write code like this: 

addMouseListener(new MouseInputAdapter( ) {  
    public void mouseClicked(MouseEvent e) { handleClicks(e); }  
}); 



In this case, the anonymous class extends the MouseInputAdapter class by overriding its 
mouseClicked( ) method to call our method. A lot is going on in a very small space, but the 
result is clean, readable code. You get to assign method names that are meaningful to you, while 
allowing Java to do its job of type checking. 

6.6.1.4 Scoping of the "this" reference 

Sometimes an inner class may want to get a handle on its "parent" enclosing instance. It might 
want to pass a reference to its parent, or to refer to one of the parent's variables or methods that 
has been hidden by one of its own. For example: 

class Animal {  
    int size;  
    class Brain {  
        int size;  
    }  
} 

Here, as far as Brain is concerned, the variable size in Animal is hidden by its own version. 

Normally an object refers to itself using the special this reference (implicitly or explicitly). But 
what is the meaning of this for an object with one or more enclosing instances? The answer is 
that an inner class has multiple this references. You can specify which this you want by 
prepending the name of the class. So, for instance (no pun intended), we can get a reference to 
our Animal from within Brain like so: 

class Brain {  
    Animal ourAnimal = Animal.this;  
    ... 
} 

Similarly, we could refer to the size variable in Animal: 

class Brain {  
    int animalSize = Animal.this.size;  
    ... 
} 

6.6.1.5 How do inner classes really work? 

Finally, we'll get our hands dirty and take a look at what's really going on when we use an inner 
class. We've said that the compiler is doing all of the things that we had hoped to forget about. 
Let's see what's actually happening. Try compiling this trivial example: 

class Animal {  
    class Brain {  
    }  
} 

What you'll find is that the compiler generates two .class files: Animal.class and 
Animal$Brain.class. 



The second file is the class file for our inner class. Yes, as we feared, inner classes are really just 
compiler magic. The compiler has created the inner class for us as a normal, top-level class and 
named it by combining the class names with a dollar sign. The dollar sign is a valid character in 
class names, but is intended for use only by automated tools. (Please don't start naming your 
classes with dollar signs.) Had our class been more deeply nested, the intervening inner-class 
names would have been attached in the same way to generate a unique top-level name. 

Now take a look at it with the SDK's javap utility (don't quote the argument on a Windows 
system): 

% javap 'Animal$Brain'  
class Animal$Brain extends java.lang.Object {  
    Animal$Brain(Animal);  
} 

You'll see that the compiler has given our inner class a constructor that takes a reference to an 
Animal as an argument. This is how the real inner class gets the handle on its enclosing 
instance. 

The worst thing about these additional class files is that you need to know they are there. Utilities 
like jar don't automatically find them; when you're invoking a utility like jar, you need to specify 
these files explicitly or use a wildcard that finds them. 

6.6.1.6 Security implications 

Given what we just saw—that the inner class really does exist as an automatically generated top-
level class—how does it get access to private variables? The answer, unfortunately, is that the 
compiler is forced to break the encapsulation of your object and insert accessor methods so that 
the inner class can reach them. The accessor methods will be given package-level access, so 
your object is still safe within its package walls, but it is conceivable that this difference could be 
meaningful if people were allowed to create new classes within your package. 

The visibility modifiers on inner classes also have some problems. Current implementations of the 
virtual machine do not implement the notion of a private or protected class within a package, 
so giving your inner class anything other than public or default visibility is only a compile-time 
guarantee. It is difficult to conceive of how these security issues could be abused, but it is 
interesting to note that Java is straining a bit to stay within its original design. 



Chapter 7. Working with Objects and Classes 

In the previous two chapters, we came to know Java objects and then their interrelationships. We 
have now climbed the scaffolding of the Java class hierarchy and reached the top. In this chapter, 
we'll talk about the Object class itself, which is the "grandmother" of all classes in Java. We'll 
also describe the even more fundamental Class class (the class named "Class") that represents 
Java classes in the Java virtual machine. We'll discuss what you can do with these objects in 
their own right. Finally, this will lead us to a more general topic: the reflection interface, which lets 
a Java program inspect and interact with (possibly unknown) objects on the fly. 

Each DeepSheep now has its own hashtable. You can see now why objects are not cloneable by 
default. It would make no sense to assume that all objects can be sensibly duplicated with a 
shallow copy. Likewise, it makes no sense to assume that a deep copy is necessary, or even 
correct. In this case, we probably don't need a deep copy; the flock contains the same members 
no matter which sheep you're looking at, so there's no need to copy the Hashtable. But the 
decision depends on the object itself and its requirements. 

7.1 The Object Class 

java.lang.Object is the ancestor of all objects; it's the primordial class from which all other 
classes are ultimately derived. Methods defined in Object are therefore very important because 
they appear in every instance of any class, throughout all of Java. At last count, there were nine 
public methods in Object. Five of these are versions of wait( ) and notify( ) that are 
used to synchronize threads on object instances, as we'll discuss in Chapter 8. The remaining 
four methods are used for basic comparison, conversion, and administration. 

Every object has a toString( ) method that is called implicitly when it's to be represented as a 
text value. PrintStream objects use toString( ) to print data, as discussed in Chapter 10. 
toString( ) is also used when an object is referenced in a string concatenation. Here are 
some examples: 

MyObj myObject = new MyObj( );   
Answer theAnswer = new Answer( );   
   
System.out.println( myObject );   
String s = "The answer is: " + theAnswer ; 

To be friendly, a new kind of object should override toString( ) and implement its own version 
that provides appropriate printing functionality. Two other methods, equals( ) and hashCode( 
), may also require specialization when you create a new class. 

7.1.1 Equality and Equivalence 

equals( ) determines whether two objects are equivalent. Precisely what that means for a 
particular class is something that you'll have to decide for yourself. Two String objects, for 
example, are considered equivalent if they hold precisely the same characters in the same 
sequence: 

String userName = "Joe";   
...   
if ( userName.equals( suspectName ) )  



    arrest( userName ); 

Using equals( ) is not the same as: 

if ( userName == suspectName )      // Wrong! 

This code tests whether the two reference variables, userName and suspectName, refer to the 
same object; which is sufficient but not necessary for them to be equivalent objects. 

A class should override the equals( ) method if it needs to implement its own notion of 
equality. If you have no need to compare objects of a particular class, you don't need to override 
equals( ). 

Watch out for accidentally overloading equals( ) when you mean to override it. With 
overloading, the method signatures differ; with overriding, they must be the same. The equals() 
method signature specifies an Object argument and a boolean return value. You'll probably 
want to check only objects of the same type for equivalence. But in order to override (not 
overload) equals(), the method must specify its argument to be an Object. 

Here's an example of correctly overriding an equals() method in class Shoes with an 
equals() method in subclass Sneakers. Using its own method, a Sneakers object can 
compare itself with any other object. 

class Sneakers extends Shoes {   
    public boolean equals( Object arg ) {   
        if ( (arg != null) && (arg instanceof Sneakers) ) {   
            // compare arg with this object to check equivalence   
            // If comparison is okay...   
            return true;   
        }   
        return false;   
    }   
    ...   
} 

If we specified public boolean equals(Sneakers arg) ... in the Sneakers class, we'd 
overload the equals() method instead of overriding it. If the other object happens to be 
assigned to a non-Sneakers variable, the method signature won't match. The result: superclass 
Shoes's implementation of equals() will be called, possibly causing an error. 

7.1.2 Hashcodes 

The hashCode( ) method returns an integer that is a hashcode for the object. A hashcode is 
like a signature or checksum for an object; it's a random-looking identifying number that is usually 
generated from the contents of the object. The hashcode should always be different for instances 
of the class that contain different data, but should normally be the same for instances that 
compare "equal" with the equals( ) method. Hashcodes are used in the process of storing 
objects in a Hashtable, or a similar kind of collection. The hashcode helps the Hashtable 
optimize its storage of objects by serving as an identifier for distributing them into storage evenly, 
and locating them quickly later. 



The default implementation of hashCode( ) in Object assigns each object instance a unique 
number. If you don't override this method when you create a subclass, each instance of your 
class will have a unique hashcode. This is sufficient for some objects. However, if your classes 
have a notion of equivalent objects (if you have overriden equals( )) and you want equal 
objects to serve as equivalent keys in a Hashtable, then you should override hashCode( ) so 
that your equivalent objects generate the same hashcode value. 

7.1.3 Cloning Objects 

Objects can use the clone( ) method of the Object class to make copies of themselves. A 
copied object will be a new object instance, separate from the original. It may or may not contain 
exactly the same state (the same instance variable values) as the original—that's controlled by 
the object being copied. Just as important, the decision as to whether the object allows itself to be 
cloned at all is up to the object. 

The Java Object class provides the mechanism to make a simple copy of an object including all 
of its state—a bitwise copy. But by default this capability is turned off. (We'll hit upon why in a 
moment.) To make itself cloneable, an object must implement the java.lang.Cloneable 
interface. This is a flag interface indicating to Java that the object wants to cooperate in being 
cloned (the interface does not actually contain any methods). If the object isn't cloneable, the 
clone( ) method throws a CloneNotSupportedException.  

clone( ) is a protected method, so by default it can be called only by an object on itself, an 
object in the same package, or another object of the same type or a subtype. If we want to make 
an object cloneable by everyone, we have to override its clone( ) method and make it public. 

Here is a simple, cloneable class—Sheep: 

import java.util.Hashtable;  
  
public class Sheep implements Cloneable {  
    Hashtable flock = new Hashtable( );  
  
    public Object clone( ) {  
        try {  
            return super.clone( );  
        } catch (CloneNotSupportedException e ) {   
            throw new Error("This should never happen!");  
        }  
    }  
} 

Sheep has one instance variable, a Hashtable called flock (which the sheep uses to keep 
track of its fellow sheep). Our class implements the Cloneable interface, indicating that it is 
okay to copy Sheep and it has overridden the clone( ) method to make it public. Our clone( 
) simply returns the object created by the superclass's clone( ) method—a copy of our Sheep. 
Unfortunately, the compiler is not smart enough to figure out that the object we're cloning will 
never throw the CloneNotSupportedException, so we have to guard against it anyway. Our 
sheep is now cloneable. We can make copies like so: 

Sheep one = new Sheep( );  
Sheep anotherOne = (Sheep)one.clone( ); 



The cast is necessary here because the return type of clone( ) is Object.[1]  

[1] You might think that we could override the clone() method in our objects to refine the return type of the 
clone( ) method. However this is currently not possible in Java. You can't override methods and change 
their return types. Technically this would be called covariant return typing. It's something that may find its 
way into the language eventually. 

We now have two sheep instead of one. The equals( ) method would tell us that the sheep are 
equivalent, but == tells us that they aren't equal—that is, they are two distinct objects. Java has 
made a "shallow" copy of our Sheep. What's so shallow about it? Java has simply copied the bits 
of our variables. That means that the flock instance variable in each of our Sheep still holds the 
same information—that is, both sheep have a reference to the same Hashtable. The situation 
looks like that shown in Figure 7.1. 

Figure 7.1. Shallow copy of an object 

 

This may or may not be what you intended. If we instead want our Sheep to have separate 
copies of all of its variables (or something in between), we can take control ourselves. In the 
following example, DeepSheep, we implement a "deep" copy, duplicating our own flock 
variable: 

public class DeepSheep implements Cloneable {  
    Hashtable flock = new Hashtable( );  
  
    public Object clone( ) {  
        try {  
            DeepSheep copy = (DeepSheep)super.clone( );  
            copy.flock = (Hashtable)flock.clone( );  
            return copy;  
        } catch (CloneNotSupportedException e ) {   
            throw new Error("This should never happen!");  
        }  
    }  
} 

Our clone( ) method now clones the Hashtable as well. Now, when a DeepSheep is cloned, 
the situation looks more like that shown in Figure 7.2. 

Figure 7.2. Deep copy of an object 



 

Each DeepSheep now has its own hashtable. You can see now why objects are not cloneable by 
default. It would make no sense to assume that all objects can be sensibly duplicated with a 
shallow copy. Likewise, it makes no sense to assume that a deep copy is necessary, or even 
correct. In this case, we probably don't need a deep copy; the flock contains the same members 
no matter which sheep you're looking at, so there's no need to copy the Hashtable. But the 
decision depends on the object itself and its requirements. 

7.2 The Class Class 

The last method of Object we need to discuss is getClass( ). This method returns a 
reference to the Class object that produced the Object instance. 

A good measure of the complexity of an object-oriented language is the degree of abstraction of 
its class structures. We know that every object in Java is an instance of a class, but what exactly 
is a class? In C++, objects are formulated by and instantiated from classes, but classes are really 
just artifacts of the compiler. Thus, you see classes only mentioned in C++ source code, not at 
runtime. By comparison, classes in Smalltalk are real, runtime entities in the language that are 
themselves described by "metaclasses" and "metaclass classes." Java strikes a happy medium 
between these two languages with what is effectively a two-tiered system that uses Class 
objects. 

Classes in Java source code are represented at runtime by instances of the java.lang.Class 
class. There's a Class object for every class you use; this Class object is responsible for 
producing instances for its class. You don't have to worry about any of this unless you are 
interested in loading new kinds of classes dynamically at runtime. The Class object is also the 
basis for "reflecting" on a class to find out its methods and other properties; we'll discuss this 
feature in the next section. 

We get the Class associated with a particular object with the getClass( ) method: 

String myString = "Foo!"  
Class c = myString.getClass( ); 

We can also get the Class reference for a particular class statically, using the special .class 
notation: 

Class c = String.class; 

The .class reference looks like a static field that exists in every class. However, it is really 
resolved by the compiler. 



One thing we can do with the Class object is ask for the name of the object's class: 

String s = "Boofa!";   
Class mycls= s.getClass( );   
System.out.println( mycls.getName( ) );   // "java.lang.String" 

Another thing that we can do with a Class is to ask it to produce a new instance of its type of 
object. Continuing with the previous example: 

try {   
    String s2 = (String)strClass.newInstance( );   
}   
catch ( InstantiationException e ) { ... }   
catch ( IllegalAccessException e ) { ... } 

newInstance( ) has a return type of Object, so we have to cast it to a reference of the 
appropriate type. (newInstance( ) has to be able to return any kind of constructed object.) A 
couple of problems can occur here. An InstantiationException indicates we're trying to 
instantiate an abstract class or an interface. IllegalAccessException is a more general 
exception that indicates we can't access a constructor for the object. Note that newInstance( ) 
can create only an instance of a class that has an accessible default constructor. It doesn't allow 
us to pass any arguments to a constructor. (But see Section 7.3.4 later in this chapter.) 

All this becomes more meaningful when we add the capability to look up a class by name. 
forName( ) is a static method of Class that returns a Class object given its name as a 
String: 

try {   
    Class sneakersClass = Class.forName("Sneakers");   
}    
catch ( ClassNotFoundException e ) { ... } 

A ClassNotFoundException is thrown if the class can't be located. 

Combining these tools, we have the power to load new kinds of classes dynamically. When 
combined with the power of interfaces, we can use new data types by name in our applications: 

interface Typewriter {   
    void typeLine( String s );   
    ...   
}   
   
class Printer implements Typewriter {   
    ...   
}   
   
class MyApplication {   
    ...   
    String outputDeviceName = "Printer";   
   
    try {   
        Class newClass = Class.forName( outputDeviceName );   
        Typewriter device = (Typewriter)newClass.newInstance( );   



        ...   
        device.typeLine("Hello...");   
    }   
    catch ( Exception e ) { ... } 
} 

Here we have an application loading a class implementation (Printer which implements the 
Typewriter interface) knowing only its name. Imagine the name was entered by the user or 
looked up from a configuration file. 

7.3 Reflection 

In this section, we'll take a look at the Java reflection API, supported by the classes in the 
java.lang.reflect package. As its name suggests, reflection is the ability for a class or 
object to examine itself. Reflection lets Java code look at an object (more precisely, the class of 
the object) and determine its structure. Within the limits imposed by the security manager, you 
can find out what constructors, methods, and fields a class has, as well as their attributes. You 
can even change the value of fields, dynamically invoke methods, and construct new objects, 
much as if Java had primitive pointers to variables and methods. And you can do all of this on 
objects that your code has never even seen before. 

We don't have room here to fully cover the reflection API. As you might expect, the reflect 
package is complex and rich in details. But reflection has been designed so that you can do a lot 
with relatively little effort; 20 percent of the effort will give you 80 percent of the fun. 

The reflection API is used by JavaBeans to determine the capabilities of objects at runtime. It's 
also used at a lower level by object serialization to tear apart and build objects for transport over 
streams or into persistent storage. Obviously, the power to pick apart objects and see their 
internals must be zealously guarded by the security manager. Your code is not allowed to do 
anything with the reflection API that it couldn't do with static (ordinary, compiled) Java code. In 
short, reflection is a powerful tool, but it isn't a loophole. An object can't use it to find out about 
data fields that it wouldn't normally be able to access (for example, another object's private 
fields), and you can't use it to modify any data inappropriately. 

The three primary features of a class are its fields (variables), methods, and constructors. For 
purposes of describing or accessing an object, these three features are represented by separate 
classes in the reflection API: java.lang.reflect.Field, java.lang.reflect.Method, 
and java.lang.reflect.Constructor. We can create these objects using the Class 
object. 

The Class class provides two pairs of methods for getting at each type of feature. One pair 
allows access to a class's public features (including those inherited from its superclasses), while 
the other pair allows access to any public or nonpublic item declared within the class (but not 
features that are inherited), subject to security considerations. Some examples: 

• getFields( ) returns an array of Field objects representing all of a class's public 
variables, including those it inherits. 

• getDeclaredFields( ) returns an array representing all the variables declared in the 
class, regardless of their access modifiers (not including variables the security manager 
won't let you see), but not including inherited variables. 

• For constructors, the distinction between "all constructors" and "declared constructors" is 
meaningful, so getConstructors( ) and getDeclared-Constructors( ) differ 



only in that the former returns public constructors, while the latter returns all the class's 
constructors. 

Each pair of methods includes a method for listing all of the items at once (for example, 
getFields( )) and a method for looking up a particular item by name and—for methods and 
constructors—by signature (for example, getField( ), which takes the field name as an 
argument). 

The following listing shows the methods in the Class class: 

Field []  
getFields 
( );  

Get all public variables, including inherited ones.  

Field    
getField 
(String   name);    

Get the specified public variable, which may be inherited. 

Field []  
getDeclaredFields 
( );  

Get all public and nonpublic variables declared in this class (not including those inherited 
from superclasses). 

Field    
getDeclaredField 
(String   name);    

Get the specified variable, public or nonpublic, declared in this class (inherited variables 
not considered). 

Method []  
getMethods 
( );  

Get all public methods, including inherited ones.  

Method    
getMethod 
(String   name, Class []   argumentTypes);    

Get the specified public method whose arguments match the types listed in 
argumentTypes. The method may be inherited. 

Method []  
getDeclaredMethods 
( );  



Get all public and nonpublic methods declared in this class (not including those inherited 
from superclasses). 

Method    
getDeclaredMethod 
(String   name, Class []   argumentTypes);    

Get the specified method, public or nonpublic, whose arguments match the types listed in 
argumentTypes, and which is declared in this class (inherited methods not considered). 

Constructor []  
getConstructors 
( );  

Get all public constructors of this class. 

Constructor    
getConstructor 
(Class []   argumentTypes);    

Get the specified public constructor of this class whose arguments match the types listed 
in argumentTypes. 

Constructor []  
getDeclaredConstructors 
( );  

Get all public and nonpublic constructors of this class. 

Constructor    
getDeclaredConstructor 
(Class []   argumentTypes);    

Get the specified constructor, public or nonpublic, whose arguments match the types 
listed in argumentTypes. 

As a quick example, we'll show how easy it is to list all of the public methods of the 
java.util.Calendar class: 

Method [] methods = Calendar.class.getMethods( );  
for (int i=0; i < methods.length; i++)  
    System.out.println( methods[i] ); 

Here we have used the .class notation to get a reference to the Class of Calendar. 
Remember the discussion of the Class class—the reflection methods don't belong to a particular 
instance of Calendar itself; they belong to the java.lang.Class object that describes the 
Calendar class. If we wanted to start from an instance of Calendar (or, say, an unknown 
object), we could have used the getClass( ) method of the object instead: 

Method [] methods = myUnknownObject.getClass().getMethods( ); 

7.3.1 Security 



Access to the reflection API is governed by a security manager. A fully trusted application has 
access to all of the previously discussed functionality—it can gain access to members of classes 
at the level of restriction normally granted code within its scope. There is currently no "special" 
access granted by the reflection API. It is possible that in the future, the full power of the reflection 
API will be available to completely trusted code; currently, user code can see only what it could 
have seen at compile time. Untrusted code (for example, an unsigned applet) has the normal 
level of access to classes loaded from its own origin (classes sharing its class loader), but can 
rely only on the ability to access the public members of public classes that originate elsewhere. 

7.3.2 Accessing Fields 

The class java.lang.reflect.Field is used to represent static variables and instance 
variables. Field has a full set of accessor methods for all of the base types (for example, 
getInt( ) and setInt( ), getBoolean( ) and setBoolean( )) and get( ) and set( 
) methods for accessing members that are object references. For example, consider this class: 

class BankAccount {  
    public int balance;  
} 

With the reflection API, we can read and modify the value of the public integer field balance: 

BankAccount myBankAccount = ...;  
...  
try {  
    Field balanceField = BankAccount.class.getField("balance");  
    // read it  
    int mybalance = balanceField.getInt( myBankAccount );     
    // change it 
    balanceField.setInt( myBankAccount, 42 ); 
} catch ( NoSuchFieldException e ) {   
    ... // there is no "balance" field in this class 
} catch ( IllegalAccessException e2) {  
    ... // we don't have permission to access the field 
} 

In this example, we are assuming that we already know the structure of a BankAccount object. 
However the real power of reflection is in examining objects that we've never seen before. 

The various methods of Field take a reference to the particular object instance that we want to 
access. In the code shown earlier, the getField( ) method returns a Field object that 
represents the balance of the BankAccount class; this object doesn't refer to any specific 
BankAccount. Therefore, to read or modify any specific BankAccount, we call getInt( ) and 
setInt( ) with a reference to myBankAccount, which is the particular account we want to 
work with. An exception occurs if we try to access to a field that doesn't exist, or if we don't have 
the proper permission to read or write to the field. If we make balance a private field, we can 
still look up the Field object that describes it, but we won't be able to read or write its value. 

Therefore, we aren't doing anything that we couldn't have done with static code at compile time; 
as long as balance is a public member of a class that we can access, we can write code to 
read and modify its value. What's important is that we're accessing balance at runtime, and 
could use this technique to examine the balance field in a class that was dynamically loaded. 



7.3.3 Accessing Methods 

The class java.lang.reflect.Method represents a static or instance method. Subject to the 
normal security rules, a Method object's invoke( ) method can be used to call the underlying 
object's method with specified arguments. Yes, Java has something like a method pointer! 

As an example, we'll write a Java application called Invoke that takes as command-line 
arguments the name of a Java class and the name of a method to invoke. For simplicity, we'll 
assume that the method is static and takes no arguments: 

//file: Invoke.java 
import java.lang.reflect.*;  
 
class Invoke {  
  public static void main( String [] args ) {  
    try {  
      Class c = Class.forName( args[0] );  
      Method m = c.getMethod( args[1], new Class [] { } );  
      Object ret =  m.invoke( null, null );  
      System.out.println( 
          "Invoked static method: " + args[1] 
          + " of class: " + args[0] 
          + " with no args\nResults: " + ret ); 
    } catch ( ClassNotFoundException e ) {  
      // Class.forName( ) can't find the class 
    } catch ( NoSuchMethodException e2 ) {  
      // that method doesn't exist  
    } catch ( IllegalAccessException e3 ) {  
      // we don't have permission to invoke that method  
    } catch ( InvocationTargetException e4 ) {  
      // an exception occurred while invoking that method  
      System.out.println( 
          "Method threw an: " + e4.getTargetException( ) ); 
    }  
  }  
} 

We can run invoke to fetch the value of the system clock: 

% java Invoke java.lang.System currentTimeMillis 
Invoked static method: currentTimeMillis of class: 
java.lang.System with no args   
Results: 861129235818 

Our first task is to look up the specified Class by name. To do so, we call the forName( ) 
method with the name of the desired class (the first command-line argument). We then ask for 
the specified method by its name. getMethod( ) has two arguments: the first is the method 
name (the second command-line argument), and the second is an array of Class objects that 
specifies the method's signature. (Remember that any method may be overloaded; you must 
specify the signature to make it clear which version you want.) Since our simple program calls 
only methods with no arguments, we create an anonymous empty array of Class objects. Had 
we wanted to invoke a method that takes arguments, we would have passed an array of the 
classes of their respective types, in the proper order. For primitive types we would have used the 



necessary wrappers. The classes of primitive types are represented by the static TYPE fields of 
their respective wrappers; for example, use Integer.TYPE for the class of an int. 

Once we have the Method object, we call its invoke( ) method. This calls our target method 
and returns the result as an Object. To do anything nontrivial with this object, you have to cast it 
to something more specific. Presumably, since you're calling the method, you know what kind of 
object to expect. If the returned value is a primitive type like int or boolean, it will be wrapped 
in the standard wrapper class for its type. (Wrappers for primitive types are discussed in Chapter 
9.) If the method returns void, invoke( ) returns a Void object. This is the wrapper class that 
represents void return values. 

The first argument to invoke( ) is the object on which we would like to invoke the method. If 
the method is static, there is no object, so we set the first argument to null. That's the case in 
our example. The second argument is an array of objects to be passed as arguments to the 
method. The types of these should match the types specified in the call to getMethod( ). 
Because we're calling a method with no arguments, we can pass null for the second argument 
to invoke( ). As with the return value, you must use wrapper classes for primitive argument 
types. 

The exceptions shown in the previous code occur if we can't find or don't have permission to 
access the method. Additionally, an InvocationTargetException occurs if the method being 
invoked throws some kind of exception itself. You can find out what it threw by calling the 
getTargetException( ) method of InvocationTargetException. 

7.3.4 Accessing Constructors 

The java.lang.reflect.Constructor class represents an object constructor that accepts 
arguments. You can use it, subject to the security manager, to create a new instance of an object. 
(Recall that you can create instances of a class with Class.newInstance( ), but you cannot 
specify arguments with that method.) 

Here we'll create an instance of java.util.Date, passing a string argument to the constructor: 

try {  
    Constructor c = 
        Date.class.getConstructor(new Class [] { String.class } ); 
    Object o = c.newInstance( new Object [] { "Jan 1, 2000" } );  
    Date d = (Date)o;  
    System.out.println(d);  
} catch ( NoSuchMethodException e ) {  
    // getConstructor( ) couldn't find the constructor we described  
} catch ( InstantiationException e2 ) {  
    // the class is abstract   
} catch ( IllegalAccessException e3 ) {  
    // we don't have permission to create an instance  
} catch ( InvocationTargetException e4 ) {  
    // the construct threw an exception  
} 

The story is much the same as with a method invocation; after all, a constructor is really no more 
than a method with some strange properties. We look up the appropriate constructor for our Date 
class—the one that takes a single String as its argument—by passing getConstructor( ) 
an array containing the String class as its only element. (If the constructor required more 



arguments, we would put additional objects in the array, representing the class of each 
argument.) We can then invoke newInstance( ), passing it a corresponding array of argument 
objects. Again, to pass primitive types, we would wrap them in their wrapper types first. Finally, 
we cast the resulting object to a Date and print it. 

The exceptions from the previous example apply here, too, along with 
IllegalArgumentException and InstantiationException. The latter is thrown if the 
class is abstract, and so can't be instantiated. 

7.3.5 What About Arrays? 

The reflection API allows you to create and inspect arrays of base types using the 
java.lang.reflect.Array class. The process is very much the same as with the other 
classes, so we won't cover it here. For more information, look in your favorite Java language 
reference. 

7.3.6 Dynamic Interface Adapters 

Ideally, Java reflection would allow us to do everything at runtime that we can do at compile time 
(without forcing us to generate and compile source into byte-code). But prior to SDK 1.3, there 
was an important piece missing from the puzzle. Although we could dynamically load and create 
instances of objects at runtime using the Class.forName( ), there was no way to create new 
types or implementations of objects—for which no class files pre-exist—on the fly. 

In SDK 1.3, the java.lang.reflect.Proxy class takes a step towards solving this problem, 
by allowing the creation of adapter objects that implement arbitrary interfaces. The Proxy class is 
a factory that can generate an adapter class implementing any interface you want. When 
methods are invoked on the adapter class, they are delegated to a designated 
InvocationHandler object. You can use this to create implementations of any kind of interface 
at runtime and handle the method calls anywhere you want. This is particularly important for tools 
that work with JavaBeans, which must dynamically register event listeners. (We'll mention this 
again in Chapter 19.) 

In the following snippet, we take an interface name and construct a proxy implementing the 
interface. It will output a message whenever any of the interface's methods is invoked. 

import java.lang.reflect.*; 
 
InvocationHandler handler = 
  new InvocationHandler( ) { 
    public Object 
    invoke( Object proxy, Method method, Object[] args ) { 
        System.out.println( "Method: "+ method.getName() +"( )" 
                            +" of interface: "+ interfaceName 
                            + " invoked on proxy." ); 
        return null; 
    } 
  }; 
 
Class clas = Class.forName( interfaceName ); 
 
Object interfaceProxy = 
    Proxy.newProxyInstance( clas.getClassLoader( ),  
                            new Class[] { clas }, handler ); 



The resulting object, interfaceProxy, can be cast to the type of the interface we specified in 
interfaceName. It will call our handler whenever any of its methods is called. 

First we make an implementation of InvocationHandler. This is an object with an invoke( ) 
method that takes as its argument the Method being called and an array of objects representing 
the arguments to the method call. Then we fetch the class of the interface that we're going to 
implement using Class.forName( ). Finally we ask the proxy to create an adapter for us, 
specifying the types of interfaces (you can specify more than one) that we want implemented and 
the handler to use. invoke( ) is expected to return an object of the correct type for the method 
call. If it returns the wrong type, a special runtime exception is thrown. Any primitive types in the 
arguments or in the return value should be wrapped in the appropriate wrapper class. (The 
runtime system unwraps the return value, if necessary.) 

7.3.7 What Is Reflection Good for? 

In Chapter 19, we'll learn how reflection is used to dynamically discover capabilities and 
features of Java Bean objects. But these are somewhat behind-the-scenes applications. What 
can reflection do for us in everyday situations? 

Well, we could use reflection to go about acting as if Java had dynamic method invocation and 
other useful capabilities; in Chapter 19, we'll also develop a dynamic adapter class using 
reflection. But as a general coding practice, dynamic method invocation is a bad idea. One of the 
primary features of Java is its strong typing and safety. You abandon much of that when you take 
a dip in the reflecting pool. 

More appropriately, you can use reflection in situations where you need to work with objects that 
you can't know about in advance. Reflection puts Java on a higher plane of programming 
languages, opening up possibilities for new kinds of applications. As we hinted earlier, one of the 
most important uses for reflection will be in integrating Java with scripting languages. With 
reflection, one could write a source code interpreter in Java that could access the full Java APIs, 
create objects, invoke methods, modify variables and do all of the other things that a Java 
program can do at compile time, while it is running. In fact someone has done this—one of the 
authors of this book! 

7.3.7.1 The BeanShell application 

Pat here . . . I can't resist inserting a plug here for BeanShell—my free, open source, light-weight 
Java scripting language. BeanShell is just what I alluded to in the previous section—a Java 
application that uses the reflection API to execute Java statements and expressions dynamically. 
You can use BeanShell interactively to quickly try out some of the examples in this book 
(although you can't create classes per se). BeanShell exercises the Java reflection API to its 
fullest and serves as a demonstration of how dynamic the Java runtime environment really is. 

You can find a copy of BeanShell on the CD-ROM that accompanies this book, on the book's web 
page, http://www.oreilly.com/catalog/learnjava, or at http://www.beanshell.org. See 
Appendix B, for more information on getting started. I hope you find it both interesting and 
useful! 



Chapter 8. Threads 

Threads have been around for some time, but few programmers have actually worked with them. 
There is even some debate over whether the average programmer can use threads effectively. In 
Java, working with threads can be easy and productive (at least for the most common cases). In 
fact, threads provide the only reasonable way to handle certain kinds of tasks. So it's important 
that you become familiar with threads early in your exploration of Java. 

Threads are integral to the way Java works. For example, an applet's paint( ) method isn't 
called by the applet itself, but rather by another thread within the Java runtime system. At any 
given time, there may be many such background threads, performing activities in parallel with 
your application. In fact, it's easy to get half a dozen or more threads running in an applet without 
even trying, simply by requesting images, updating the screen, playing audio, and so on. But 
these things happen behind the scenes; you don't normally have to worry about them. In this 
chapter, we'll talk about writing applications that create and use their own threads explicitly. 

8.1 Introducing Threads 

Conceptually, a thread is a flow of control within a program. A thread is similar to the more 
familiar notion of a process, except that multiple threads within the same application share much 
of the same state—in particular, they run in the same address space. It's not unlike a golf course, 
which many golfers use at the same time. Sharing the same address space means that threads 
share instance variables but not local variables, just like players share the golf course but not 
personal things like clubs and balls. 

Multiple threads in an application have the same problems as the golfers—in a word, 
synchronization. Just as you can't have two sets of players blindly playing the same green at the 
same time, you can't have several threads trying to access the same variables without some kind 
of coordination. Someone is bound to get hurt. A thread can reserve the right to use an object 
until it's finished with its task, just as a golf party gets exclusive rights to the green until it's done. 
And a thread that is more important can raise its priority, asserting its right to play through. 

The devil is in the details, of course, and those details have historically made threads difficult to 
use. Java makes creating, controlling, and coordinating threads much simpler. When creating a 
new thread is the best way to accomplish some task, it should be as easy as adding a new 
component to your application. 

It is common to stumble over threads when you first look at them, because creating a thread 
exercises many of your new Java skills all at once. You can avoid confusion by remembering 
there are always two players involved in running a thread: a Java language object that represents 
the thread itself and an arbitrary target object that contains the method that the thread is to 
execute. Later, you will see that it is possible to play some sleight of hand and combine these two 
roles, but that special case just changes the packaging, not the relationship. 

8.1.1 The Thread Class and the Runnable Interface 

A new thread is born when we create an instance of the java.lang.Thread class. The 
Thread object represents a real thread in the Java interpreter and serves as a handle for 
controlling and synchronizing its execution. With it, we can start the thread, stop the thread, or 
suspend it temporarily. The constructor for the Thread class accepts information about where 
the thread should begin its execution. Conceptually, we would like to simply tell it what method to 
run, but since there are no pointers to methods in Java, we can't specify one directly. Instead, we 



have to take a short detour and use the java.lang.Runnable interface to create an object that 
contains a "runnable" method. Runnable defines a single, general-purpose method: 

public interface Runnable {   
    abstract public void run( );   
} 

Every thread begins its life by executing the run( ) method in the Runnable object (the "target 
object") that was passed to the thread. The run( ) method can contain any code, but it must be 
public, take no arguments, have no return value, and throw no exceptions. 

Any class that contains an appropriate run( ) method can declare that it implements the 
Runnable interface. An instance of this class is then a runnable object that can serve as the 
target of a new Thread. If you don't want to put the run( ) method directly in your object (and 
very often you don't), you can always make an adapter class that serves as the Runnable for 
you. The adapter's run( ) method can call any method it wants to after the thread is started. 

8.1.1.1 Creating and starting threads 

A newly born Thread remains idle until we give it a figurative slap on the bottom by calling its 
start( ) method. The thread then wakes up and proceeds to execute the run() method of its 
target object. start( ) can be called only once in the lifetime of a Thread. Once a thread 
starts, it continues running until the target object's run() method returns. The start( ) method 
has a sort of evil twin method called stop( ), which kills the thread permanently. However, this 
method is deprecated and should no longer be used. We'll explain why and give some examples 
of a better way to stop your threads later in this chapter. We will also look at some other methods 
you can use to control a thread's progress while it is running. 

Now let's look at an example. The following class, Animation, implements a run( ) method to 
drive its drawing loop: 

class Animation implements Runnable {   
   ...   
   public void run( ) {   
       while ( true ) {   
           // draw Frames   
           ...  
       }   
   }   
} 

To use it, we create a Thread object, passing it an instance of Animation as its target object, 
and invoke its start( ) method. We can perform these steps explicitly: 

Animation happy = new Animation("Mr. Happy");   
Thread myThread = new Thread( happy );   
myThread.start( ); 

Here we have created an instance of our Animation class and passed it as the argument to the 
constructor for myThread. When we call the start( ) method, myThread begins to execute 
Animation's run( ) method. Let the show begin! 



This situation is not terribly object-oriented. More often, we want an object to handle its own 
threads, as shown in Figure 8.1, which depicts a Runnable object that creates and starts its 
own Thread. We'll show our Animation class performing these actions in its constructor, 
although in practice it might be better to place them in a more explicit controller method (e.g., 
startAnimation( )): 

Figure 8.1. Interaction between Animation and its thread 

 
class Animation implements Runnable {   
    Thread myThread;   
    Animation (String name) {   
        myThread = new Thread( this );   
        myThread.start( );   
    }    
    ...  
} 

In this case, the argument we pass to the Thread constructor is this, the current object (which 
is a Runnable). We keep the Thread reference in the instance variable myThread, in case we 
want to interrupt the show or exercise some other kind of control later. 

The Runnable interface lets us make an arbitrary object the target of a thread, as we did earlier. 
This is the most important general usage of the Thread class. In most situations in which you 
need to use threads, you'll create a class (possibly a simple adapter class) that implements the 
Runnable interface. 

8.1.1.2 A natural-born thread 

We'd be remiss not to show you the other technique for creating a thread. Another design option 
is to make our target class a subclass of a type that is already runnable. As it turns out, the 
Thread class itself conveniently implements the Runnable interface; it has its own run( ) 
method, which we can override directly to do our bidding: 

class Animation extends Thread {   
    ...   
    public void run( ) {   
        while (true ) {   
            // draw Frames   
            ...  
        }   
    }   
} 

The skeleton of our Animation class looks much the same as before, except that our class is 
now a subclass of Thread. To go along with this scheme, the default constructor of the Thread 



class makes itself the default target. That is, by default, the Thread executes its own run() 
method when we call the start( ) method, as shown in Figure 8.2. So now our subclass can 
just override the run( ) method in the Thread class. (Thread itself defines an empty run( ) 
method.) 

Figure 8.2. Animation as a subclass of Thread 

 

Now we create an instance of Animation and call its start( ) method (which it also inherited 
from Thread): 

Animation bouncy = new Animation("Bouncy");   
bouncy.start( ); 

Alternatively, we can have the Animation object start its thread when it is created, as before: 

class Animation extends Thread {   
    ...   
    Animation (String name) {   
        start( );   
    }   
    ...  
} 

Here our Animation object just calls its own start( ) method when an instance is created. 
(Again, it's probably better form to start and stop our objects explicitly after they're created, rather 
than starting threads as a hidden side effect of object creation.) 

Subclassing Thread seems like a convenient way to bundle a Thread and its target run( ) 
method. However, this approach often isn't the best design. If you subclass Thread to implement 
a thread, you are saying you need a new type of object that is a kind of Thread. While there is 
something unnaturally satisfying about taking an object that's primarily concerned with performing 
a task and making it a Thread, the actual situations where you'll want to create a subclass of 
Thread should not be very common. In most cases, it will be more natural to let the requirements 
of your program dictate the class structure. If you find you're subclassing Thread left and right, 
you may want to examine whether you are falling into the design trap of making objects that are 
simply glorified functions. 

8.1.1.3 Using an adapter 

Finally, as we have suggested, we can build an adapter class to give us more control over how to 
structure the code. It is particularly convenient to create an anonymous inner class that 
implements Runnable and invokes an arbitrary method in our object. This almost gives the feel 



of starting a thread and specifying an arbitrary method to run, as if we had method pointers. For 
example, suppose that our Animation class provides a method called startAnimating( ), 
which performs setup (loads the images, etc.) and then starts a thread to perform the animation. 
We'll say that the actual guts of the animation loop are in a private method called 
drawFrames(). We could use an adapter to run drawFrames( ) for us: 

class Animation {   
   
    public void startAnimating( ) {   
        // do setup, load images, etc.  
        ...  
  
        // start a drawing thread  
        myThread = new Thread ( new Runnable( ) {   
            public void run() { drawFrames( ); }   
        } );  
        myThread.start( );  
    }  
  
    private void drawFrames( ) {  
        // do animation ...  
    }  
} 

In this code, the anonymous inner class implementing Runnable is generated for us by the 
compiler. We create a Thread with this anonymous object as its target and have its run() 
method call our drawFrames( ) method. We have avoided implementing a generic run( ) 
method in our application code, but at the expense of generating an extra class. 

Note that we could be a bit more terse in the previous example by simply having our anonymous 
inner class extend Thread rather than implement Runnable: 

myThread = new Thread( ) {   
  public void run() { drawFrames( ); }   
};  
myThread.start( );  

8.1.2 Controlling Threads 

We have seen the start( ) method used to bring a newly created Thread to life. Several other 
instance methods let us explicitly control a Thread's execution: 

• The sleep( ) method causes the current thread to wait for a designated period of time, 
without consuming much (if any) CPU time. 

• The interrupt( ) method wakes up a thread that is sleeping or is otherwise blocked 
on a long I/O operation.[1]  

[1] interrupt( ) does not work in versions of Java prior to 1.1. 

• The methods wait() and join( ) coordinate the execution of two or more threads. 
We'll discuss them in detail when we talk about thread synchronization later in this 
chapter. 



8.1.2.1 Deprecated methods 

We should also mention that there are three deprecated thread control methods: stop(), 
suspend(), and resume(). The stop() method complements start( ); it destroys the 
thread. start(), and the deprecated stop( ) method can be called only once in the life cycle 
of a Thread. By contrast, the deprecated suspend( ) and resume( ) methods were used to 
arbitrarily pause and then restart the execution of a Thread. 

Although these deprecated methods still exist in the latest version of Java, they shouldn't be used 
in new code development. The problem with both stop( ) and suspend( ) is that they seize 
control of a thread's execution in an uncoordinated and harsh way. This make programming 
difficult—it's not always easy for an application to anticipate and properly recover from being 
interrupted at an arbitrary point in its execution. Moreover, when a thread is seized using one of 
these methods, the Java runtime system must release all of its internal locks used for thread 
synchronization. This can cause unexpected behavior and, in the case of suspend( ), can lead 
to deadlock situations. 

A better way to affect the execution of a thread—which requires just a bit more work on your 
part—is by creating some simple logic in your thread's code using monitor variables ( flags), 
possibly in conjunction with the interrupt( ) method, which allows you to wake up a sleeping 
thread. In other words, you should cause your thread to stop or resume what it is doing by asking 
it to nicely, rather than by pulling the rug out from under it unexpectedly. The thread examples in 
this book will use this technique in one way or another. 

8.1.2.2 The sleep( ) method 

We often need to tell a thread to sit idle, or "sleep," for a fixed period of time. While a thread is 
asleep, or otherwise blocked on input of some kind, it shouldn't consume CPU time or compete 
with other threads for processing. For this, we can either call the thread's sleep( ) instance 
method or use the static convenience method Thread.sleep( ). Either way, the call causes 
the currently executing thread to delay for a specified number of milliseconds: 

try {   
 // static convenience method 
    Thread.sleep( 1000 );   
    // instance method 
    sleep( 500 ); 
}    
catch ( InterruptedException e ) {   
    // someone woke us up prematurely  
} 

In either case, sleep( ) throws an InterruptedException if it is interrupted by another 
Thread via its interrupt( ) method. As you see in the previous code, the thread can catch 
this exception and take the opportunity to perform some action—such as checking a variable to 
determine whether or not it should exit—or perhaps just perform some housekeeping and then go 
back to sleep. 

8.1.2.3 The join( ) method 

Finally, if you need to coordinate your activities with another thread by waiting for the other thread 
to complete its task, you can use the join( ) method. Calling a thread's join( ) method 
causes the caller to block until the target thread dies. Alternatively, you can poll the thread by 



calling join( ) with a number of milliseconds to wait. This is a very coarse form of thread 
synchronization. Later in this chapter, we'll look at a much more general and powerful mechanism 
for coordinating the activities of threads: wait() and notify( ). 

8.1.3 A Thread's Life 

A thread continues to execute until one of the following things happens: 

• It explicitly returns from its target run( ) method. 
• It encounters an uncaught runtime exception. 
• The evil and nasty deprecated stop( ) method is called. 

So what happens if none of these things occurs and the run( ) method for a thread never 
terminates? The answer is that the thread can live on, even after what is ostensibly the part of the 
application that created it has finished. This means we have to be aware of how our threads 
eventually terminate, or an application can end up leaving orphaned threads that unnecessarily 
consume resources. 

In many cases, we really want to create background threads that do simple, periodic tasks in an 
application. The setDaemon( ) method can be used to mark a Thread as a daemon thread that 
should be killed and discarded when no other application threads remain. Normally, the Java 
interpreter continues to run until all threads have completed. But when daemon threads are the 
only threads still alive, the interpreter will exit. 

Here's a devilish example using daemon threads: 

class Devil extends Thread {   
    Devil( ) {   
        setDaemon( true );   
        start( );   
    }   
           
    public void run( ) {   
        // perform evil tasks   
    }   
} 

In this example, the Devil thread sets its daemon status when it is created. If any Devil 
threads remain when our application is otherwise complete, the runtime system kills them for us. 
We don't have to worry about cleaning them up. 

Daemon threads are primarily useful in standalone Java applications and in the implementation of 
the Java runtime system itself, but not in applets. Since an applet runs inside of another Java 
application, any daemon threads it creates could continue to live until the controlling application 
exits—probably not the desired effect. A browser or any other application can use 
ThreadGroups to contain all of the threads created by subsystems of an application and then 
clean them up if necessary. 

8.2 Threads in Applets 

Applets are embeddable Java applications that are expected to be able to start and stop 
themselves on command. Applets may be asked to start and stop themselves any number of 



times. A Java-enabled web browser normally starts an applet when the applet is displayed and 
stops it when the user moves to another page or (in theory) when the user scrolls the applet out 
of view. To conform to the semantics of the API, we would like an applet to cease its nonessential 
activity when it is stopped and resume it when started again. (If you're not familiar with applets, 
you may want to take a look at Chapter 20, at this point.) 

In this section, we will build UpdateApplet, a simple base class for an applet that maintains a 
thread to automatically update its display at regular intervals. Although we're building an applet 
here, the general technique is important for all threaded applications. 

UpdateApplet handles the basic starting and stopping behavior for us: 

//file: UpdateApplet.java 
public class UpdateApplet extends java.applet.Applet   
    implements Runnable {   
      
    private Thread updateThread;   
    int updateInterval = 1000;   
 
    public void run( ) {   
        while ( updateThread != null ) {   
            try {     
                Thread.sleep( updateInterval );    
            } 
            catch (InterruptedException e ) {  
                return; 
            }   
            repaint( );   
        }   
    }   
   
    public void start( ) {   
        if ( updateThread == null ) {   
            updateThread = new Thread(this);   
            updateThread.start( );   
        }   
    }   
 
    public void stop( ) {   
        if ( updateThread != null ) {   
            Thread runner = updateThread; 
            updateThread = null;  // flag to quit 
            runner.interrupt( );   // wake up if asleep 
        }   
    }   
} 

UpdateApplet is a Runnable object that alternately sleeps and calls its repaint( ) method. 
(There's nothing to paint, though, so running this applet is kind of boring. Later in this section, 
we'll subclass it to implement a digital clock.) It has two other public methods: start() and 
stop( ). These are methods of the Applet class we are overriding; don't confuse them with 
the similarly named methods of the Thread class. These start() and stop( ) methods are 
called by the Java runtime system, to tell the applet when it should and should not be running. 



UpdateApplet illustrates an environmentally friendly way to deal with threads in a simple 
applet. UpdateApplet effectively kills its thread each time the applet is stopped and recreates it 
if the applet is restarted. When UpdateApplet's start( ) method is called, we first check to 
make sure there is no currently executing updateThread. We then create one to begin our 
execution. When our applet is subsequently asked to stop, we set a flag indicating that it should 
stop and then make sure it is awake by invoking its interrupt() method. In our stop( ) 
method, we set updateThread to null, which serves three purposes: it allows the garbage 
collector to clean up the dead Thread object; it indicates to UpdateApplet's start( ) method 
that the thread is gone, so that another one can be started when necessary; and we use it as the 
flag to indicate to the running thread that it is time to quit. If you feel that we have overburdened 
this variable, you might consider using a separate boolean variable for the flag condition. 

One thing about Applets: in truth, an Applet's start() and stop( ) methods are 
guaranteed to be called in sequence. As a result, we shouldn't have to check for the existence of 
updateThread in start( ). (It should always be null.) However, it's good programming 
practice to perform the test. If we didn't, and for some reason stop( ) were to fail at its job, we 
might inadvertently start a lot of threads. 

With UpdateApplet doing all of the work for us, we can now create the world's simplest clock 
applet with just a few lines of code. Figure 8.3 shows our Clock. (This might be a good one to 
run on your Java wristwatch.) 

//file: Clock.java 
public class Clock extends UpdateApplet {   
    public void paint( java.awt.Graphics g ) {   
        g.drawString( new java.util.Date().toString( ), 10, 25 ); 
    }   
} 

Figure 8.3. The Clock applet 

 

The java.util.Date().toString( ) method creates a string that contains the current time. 

Our Clock applet provides a good example of a simple thread; we don't mind throwing it away 
and subsequently rebuilding it if the user should happen to wander on and off of our web page a 
few times. But what if the task that our thread handles isn't so simple? What if, for instance, we 
have to open a socket and establish a connection with another system? One solution is to use 
Thread's suspend( ) and resume( ) methods, as we'll show you in a moment. 

Now if you're concerned about being so cavalier in creating and discarding Thread objects, you 
might rightly ask if we couldn't simply do a little more logic and save our thread. Perhaps we 
could teach the start( ) method to have the existing thread begin again., rather than having to 
create a new thread. It should be apparent how to go about this using the wait() and notify( 
) methods after you read the next section on thread synchronization. 

However, an issue with applets is that we have no control over how a user navigates web pages. 
For example, say a user scrolls our applet out of view, and we pause our thread. Now we have no 



way of ensuring that the user will bring the applet back into view before moving on to another 
page. And actually, the same situation would occur if the user simply moves on to another page 
and never comes back. That's not a problem in this simple example, but there may be cases in 
which we need to do some application cleanup before we die. For this situation the Applet API 
gives us the destroy( ) method. destroy( ) is called by the Java runtime system when the 
applet is going to be removed (often from a cache). It provides a place at which we can free up 
any resources the applet is holding. 

8.3 Synchronization 

Every thread has a life of its own. Normally, a thread goes about its business without any regard 
for what other threads in the application are doing. Threads may be time-sliced, which means 
they can run in arbitrary spurts and bursts as directed by the operating system. On a 
multiprocessor system, it is even possible for many different threads to be running simultaneously 
on different CPUs. This section is about coordinating the activities of two or more threads, so they 
can work together and not collide in their use of the same address space. 

Java provides a few simple structures for synchronizing the activities of threads. They are all 
based on the concept of monitors, a widely used synchronization scheme developed by C.A.R. 
Hoare. You don't have to know the details about how monitors work to be able to use them, but it 
may help you to have a picture in mind. 

A monitor is essentially a lock. The lock is attached to a resource that many threads may need to 
access, but that should be accessed by only one thread at a time. It's not unlike a restroom with a 
door that locks. If the resource is not being used, the thread can acquire the lock and access the 
resource. By the same token, if the restroom is unlocked, you can enter and lock the door. When 
the thread is done, it relinquishes the lock, just as you unlock the door and leave it open for the 
next person. However, if another thread already has the lock for the resource, all other threads 
have to wait until the current thread finishes and releases the lock. This is just like when the 
restroom is locked when you arrive: you have to wait until the current occupant is done and 
unlocks the door. 

Fortunately, Java makes the process of synchronizing access to resources quite easy. The 
language handles setting up and acquiring locks; all you have to do is specify which resources 
require locks. 

8.3.1 Serializing Access to Methods 

The most common need for synchronization among threads in Java is to serialize their access to 
some resource (an object)—in other words, to make sure that only one thread at a time can 
manipulate an object or variable.[2] In Java, every object has a lock associated with it. To be more 
specific, every class and every instance of a class has its own lock. The synchronized keyword 
marks places where a thread must acquire the lock before proceeding. 

[2] Don't confuse the term "serialize" in this context with Java object serialization, which is a mechanism for 
making objects persistent. But the underlying meaning (to place one thing after another) does apply to both. 
In the case of object serialization, it is the object's data which is laid out, byte for byte, in a certain order. 

For example, say we implemented a SpeechSynthesizer class that contains a say( ) 
method. We don't want multiple threads calling say( ) at the same time or we wouldn't be able 
to understand anything being said. So we mark the say( ) method as synchronized, which 
means that a thread has to acquire the lock on the SpeechSynthesizer object before it can 
speak: 



class SpeechSynthesizer {   
    synchronized void say( String words ) {   
        // speak   
    }   
} 

Because say( ) is an instance method, a thread has to acquire the lock on the particular 
SpeechSynthesizer instance it is using before it can invoke the say( ) method. When say( 
) has completed, it gives up the lock, which allows the next waiting thread to acquire the lock and 
run the method. Note that it doesn't matter whether the thread is owned by the 
SpeechSynthesizer itself or some other object; every thread has to acquire the same lock, 
that of the SpeechSynthesizer instance. If say( ) were a class (static) method instead of an 
instance method, we could still mark it as synchronized. But in this case as there is no instance 
object involved, the lock would be on the class object itself. 

Often, you want to synchronize multiple methods of the same class, so that only one of the 
methods modifies or examines parts of the class at a time. All static synchronized methods in a 
class use the same class object lock. By the same token, all instance methods in a class use the 
same instance object lock. In this way, Java can guarantee that only one of a set of synchronized 
methods is running at a time. For example, a SpreadSheet class might contain a number of 
instance variables that represent cell values, as well as some methods that manipulate the cells 
in a row: 

class SpreadSheet {   
 
    int cellA1, cellA2, cellA3;   
   
    synchronized int sumRow( ) {   
        return cellA1 + cellA2 + cellA3;   
    }   
   
    synchronized void setRow( int a1, int a2, int a3 ) {   
        cellA1 = a1;   
        cellA2 = a2;   
        cellA3 = a3;   
    }   
    ... 
} 

In this example, both methods setRow() and sumRow( ) access the cell values. You can see 
that problems might arise if one thread were changing the values of the variables in setRow( ) 
at the same moment another thread were reading the values in sumRow( ). To prevent this, we 
have marked both methods as synchronized. When threads are synchronized, only one will be 
run at a time. If a thread is in the middle of executing setRow() when another thread calls 
sumRow( ), the second thread waits until the first one is done executing setRow( ) before it 
gets to run sumRow( ). This synchronization allows us to preserve the consistency of the 
SpreadSheet. And the best part is that all of this locking and waiting is handled by Java; it's 
transparent to the programmer. 

In addition to synchronizing entire methods, the synchronized keyword can be used in a 
special construct to guard arbitrary blocks of code. In this form it also takes an explicit argument 
that specifies the object for which it is to acquire a lock: 

synchronized ( myObject ) {   



    // Functionality that needs to be synced   
} 

This code block can appear in any method. When it is reached, the thread has to acquire the lock 
on myObject before proceeding. In this way, we can synchronize methods (or parts of methods) 
in different classes in the same way as methods in the same class. 

A synchronized instance method is, therefore, equivalent to a method with its statements 
synchronized on the current object. Thus: 

synchronized void myMethod ( ) {   
    ...   
} 

is equivalent to: 

void myMethod ( ) {   
    synchronized ( this ) {   
        ...   
    }   
}  

8.3.1.1 Accessing instance variables 

In the SpreadSheet example, we guarded access to a set of instance variables with a 
synchronized method, which we did mainly so that we wouldn't change one of the variables while 
someone was reading the rest of them. We wanted to keep them coordinated. But what about 
individual variable types? Do they need to be synchronized? Normally the answer is no. Almost 
all operations on primitives and object reference types in Java happen "atomically": they are 
handled by the virtual machine in one step, with no opportunity for two threads to collide. You 
can't be in the middle of changing a reference and be only "part way" done when another thread 
looks at the reference. 

But watch out—we did say "almost." If you read the Java virtual machine specification carefully, 
you will see that the double and long primitive types are not guaranteed to be handled atomically. 
Both of these types represent 64-bit values. The problem has to do with how the Java Virtual 
Machine's stack handles them. It is possible that this specification will be beefed up in the future. 
But for now, if you have any fears, synchronize access to your double and long instance 
variables through accessor methods. 

8.3.2 The wait() and notify( ) Methods 

With the synchronized keyword, we can serialize the execution of complete methods and 
blocks of code. The wait() and notify( ) methods of the Object class extend this 
capability. Every object in Java is a subclass of Object, so every object inherits these methods. 
By using wait() and notify( ), a thread can effectively give up its hold on a lock at an 
arbitrary point and then wait for another thread to give it back before continuing.[3] All of the 
coordinated activity still happens inside of synchronized blocks, and still only one thread is 
executing at a given time. 

[3] In actuality, they don't really pass the lock around; the lock becomes available and, as we'll describe, a 
thread that is scheduled to run acquires it. 



By executing wait( ) from a synchronized block, a thread gives up its hold on the lock and 
goes to sleep. A thread might do this if it needs to wait for something to happen in another part of 
the application, as we'll see shortly. Later, when the necessary event happens, the thread that is 
running it calls notify( ) from a block synchronized on the same object. Now the first thread 
wakes up and begins trying to acquire the lock again. 

When the first thread manages to reacquire the lock, it continues from the point it left off. 
However, the thread that waited may not get the lock immediately (or perhaps ever). It depends 
on when the second thread eventually releases the lock and which thread manages to snag it 
next. Note also that the first thread won't wake up from the wait() unless another thread calls 
notify( ). There is an overloaded version of wait( ), however, that allows us to specify a 
timeout period. If another thread doesn't call notify( ) in the specified period, the waiting 
thread automatically wakes up. 

Let's look at a simple scenario to see what's going on. In the following example, we'll assume 
there are three threads—one waiting to execute each of the three synchronized methods of the 
MyThing class. We'll call them the waiter, notifier, and related threads. Here's a code fragment to 
illustrate: 

class MyThing {   
    synchronized void waiterMethod( ) {   
        // do some stuff   
        wait( );      // now wait for notifier to do something 
        // continue where we left off   
    }   
   
    synchronized void notifierMethod( ) {   
        // do some stuff    
        notify( );    // notify waiter that we've done it   
        // do more things   
    }   
   
    synchronized void relatedMethod( ) {   
        // do some related stuff   
    } 
    ... 
} 

Let's assume waiter gets through the gate first and begins executing waiter-Method( ). The 
two other threads are initially blocked, trying to acquire the lock for the MyThing object. When 
waiter executes the wait( ) method, it relinquishes its hold on the lock and goes to sleep. Now 
there are now two viable threads waiting for the lock. Which thread gets it depends on several 
factors, including chance and the priorities of the threads. (We'll discuss thread scheduling in the 
next section.) 

Let's say that notifier is the next thread to acquire the lock, so it begins to run 
notifierMethod( ). waiter continues to sleep and related languishes, waiting for its turn. 
When notifier executes the call to notify( ), the runtime system prods the waiter thread, 
effectively telling it something has changed. waiter then wakes up and rejoins related in vying for 
the MyThing lock. Note that it doesn't receive the lock automatically; it just changes from saying 
"leave me alone" to "I want the lock." 

At this point, notifier still owns the lock and continues to hold it until the synchronized 
notifierMethod( ) returns—or perhaps executes a wait( ) itself. At that point, the other 



two methods get to fight over the lock. waiter would like to continue executing waiterMethod( 
) from the point it left off, while related, which has been patient, would like to get started. We'll let 
you choose your own ending for the story. 

For each call to notify( ), the runtime system wakes up just one method that is asleep in a 
wait( ) call. If there are multiple threads waiting, Java picks a thread on an arbitrary basis, 
which may be implementation-dependent. The Object class also provides a notifyAll( ) 
call to wake up all waiting threads. In most cases, you'll probably want to use notifyAll() 
rather than notify(). Keep in mind that notify( ) really means "Hey, something related to 
this object has changed. The condition you are waiting for may have changed, so check it again." 
In general, there is no reason to assume only one thread at a time is interested in the change or 
able to act upon it. Different threads might look upon whatever has changed in different ways. 

Often, our waiter thread is waiting for a particular condition to change and we will want to sit in a 
loop like the following: 

while ( condition != true )   
    wait( ); 

Other synchronized threads call notify() or notifyAll( ) when they have modified the 
environment so that waiter can check the condition again. Using "wait conditions" like this is the 
civilized alternative to polling and sleeping, as you'll see in the following section. 

8.3.3 Passing Messages 

Now we'll illustrate a classic interaction between two threads: a Producer and a Consumer. A 
producer thread creates messages and places them into a queue, while a consumer reads them 
out and displays them. To be realistic, we'll give the queue a maximum depth. And to make things 
really interesting, we'll have our consumer thread be lazy and run much more slowly than the 
producer. This means that Producer occasionally has to stop and wait for Consumer to catch 
up. Here are the Producer and Consumer classes: 

//file: Consumer.java 
import java.util.Vector;   
   
class Producer extends Thread {   
    static final int MAXQUEUE = 5;   
    private Vector messages = new Vector( );   
    
    public void run( ) {   
        try {   
            while ( true ) {   
                putMessage( );   
                sleep( 1000 );   
            }   
        }    
        catch( InterruptedException e ) { }   
    }   
   
    private synchronized void putMessage( ) 
      throws InterruptedException { 
          
        while ( messages.size( ) == MAXQUEUE )   
            wait( );   



        messages.addElement( new java.util.Date().toString( ) );   
        notify( );   
    }   
   
    // called by Consumer   
    public synchronized String getMessage( ) 
      throws InterruptedException {   
        notify( );   
        while ( messages.size( ) == 0 )   
            wait( );   
        String message = (String)messages.firstElement( );   
        messages.removeElement( message );   
        return message;   
    }   
}  // end of class Producer 
   
public class Consumer extends Thread {   
    Producer producer;   
       
    Consumer(Producer p) {   
        producer = p;   
    }   
    
    public void run( ) {   
        try {   
            while ( true ) {   
                String message = producer.getMessage( );   
                System.out.println("Got message: " + message);   
                sleep( 2000 );   
            }   
        }    
        catch( InterruptedException e ) { }   
    }   
  
    public static void main(String args[]) {   
        Producer producer = new Producer( );   
         
        producer.start( );   
        new Consumer( producer ).start( );   
    }   
} 

For convenience, we have included a main( ) method in the Consumer class that runs the 
complete example. It creates a Consumer that is tied to a Producer and starts the two classes. 
You can run the example as follows: 

% java Consumer 

The output is the timestamp messages created by the Producer: 

Got message: Sun Dec 19 03:35:55 CST 1999 
Got message: Sun Dec 19 03:35:56 CST 1999   
Got message: Sun Dec 19 03:35:57 CST 1999   
... 



The timestamps initially show a spacing of one second, although they appear every two seconds. 
Our Producer runs faster than our Consumer. Producer would like to generate a new 
message every second, while Consumer gets around to reading and displaying a message only 
every two seconds. Can you see how long it will take the message queue to fill up? What will 
happen when it does? 

Let's look at the code. We are using a few new tools here. Producer and Consumer are 
subclasses of Thread. It would have been a better design decision to have Producer and 
Consumer implement the Runnable interface, but we took the slightly easier path and 
subclassed Thread. You should find it fairly simple to use the other technique; you might try it as 
an exercise. 

The Producer and Consumer classes pass messages through an instance of a 
java.util.Vector object. We haven't discussed the Vector class yet. Think of this one as a 
queue: we add and remove elements in first-in, first-out order. 

The important activity is in the synchronized methods: putMessage( ) and getMessage( ). 
Although one of the methods is used by the Producer thread and the other by the Consumer 
thread, they both live in the Producer class so that we can coordinate them simply by declaring 
them synchronized. Here they both implicitly use the Producer object's lock. If the queue is 
empty, the Consumer blocks in a call in the Producer, waiting for another message. 

Another design option would implement the getMessage( ) method in the Consumer class and 
use a synchronized code block to synchronize explicitly on the Producer object. In either 
case, synchronizing on the Producer enables us to have multiple Consumer objects that feed 
on the same Producer. We'll do that later in this section. 

putMessage( )'s job is to add a new message to the queue. It can't do this if the queue is 
already full, so it first checks the number of elements in messages. If there is room, it stuffs in 
another timestamp message. If the queue is at its limit, however, putMessage( ) has to wait 
until there's space. In this situation, putMessage() executes a wait() and relies on the 
consumer to call notify( ) to wake it up after a message has been read. Here we have 
putMessage( ) testing the condition in a loop. In this simple example, the test probably isn't 
necessary; we could assume that when putMessage( ) wakes up, there is a free spot. 
However, this test is another example of good programming practice. Before it finishes, 
putMessage( ) calls notify( ) itself to prod any Consumer that might be waiting on an 
empty queue. 

getMessage( ) retrieves a message for the Consumer. It enters a loop like that of 
putMessage( ), waiting for the queue to have at least one element before proceeding. If the 
queue is empty, it executes a wait( ) and expects the Producer to call notify() when more 
items are available. Notice that getMessage( ) makes its own unconditional call to notify( 
). This is a somewhat lazy way of keeping the Producer on its toes, so that the queue should 
generally be full. Alternatively, getMessage( ) might test to see if the queue had fallen below a 
low-water mark before waking up the producer. 

Now let's add another consumer to the scenario, just to make things really interesting. Most of the 
necessary changes are in the Consumer class; here's the code for the modified class, now called 
NamedConsumer: 

//file: NamedConsumer.java 
public class NamedConsumer extends Thread {   



    Producer producer;   
    String name;   
   
    NamedConsumer(String name, Producer producer) {   
        this.producer = producer;   
        this.name = name;   
    }   
    
    public void run( ) {   
        try {   
            while ( true ) {   
              String message = producer.getMessage( );   
              System.out.println(name + " got message: " + message); 
              sleep( 2000 );   
            }  
        }    
        catch( InterruptedException e ) { }   
    }   
    
    public static void main(String args[]) {   
        Producer producer = new Producer( );   
        producer.start( );   
  
        // start two this time   
        new NamedConsumer( "One", producer ).start( );   
        new NamedConsumer( "Two", producer ).start( );   
    }   
} 

The NamedConsumer constructor takes a string name, to identify each consumer. The run() 
method uses this name in the call to println( ) to identify which consumer received the 
message. 

The only required modification to the Producer code is to change the notify( ) calls to 
notifyAll() calls in putMessage() and getMessage( ). (We could have used 
notifyAll( ) in the first place.) Now, instead of the consumer and producer playing tag with 
the queue, we can have many players waiting on the condition of the queue to change. We might 
have a number of consumers waiting for a message, or we might have the producer waiting for a 
consumer to take a message. Whenever the condition of the queue changes, we prod all of the 
waiting methods to reevaluate the situation by calling notifyAll( ). 

Here is some sample output when there are two NamedConsumers running, as in the main( ) 
method shown previously: 

One got message: Sat Mar 20 20:00:01 CST 1999   
Two got message: Sat Mar 20 20:00:02 CST 1999   
One got message: Sat Mar 20 20:00:03 CST 1999   
Two got message: Sat Mar 20 20:00:04 CST 1999   
One got message: Sat Mar 20 20:00:05 CST 1999   
Two got message: Sat Mar 20 20:00:06 CST 1999   
One got message: Sat Mar 20 20:00:07 CST 1999   
Two got message: Sat Mar 20 20:00:08 CST 1999   
... 



We see nice, orderly alternation between the two consumers, as a result of the calls to sleep( 
) in the various methods. Interesting things would happen, however, if we were to remove all of 
the calls to sleep( ) and let things run at full speed. The threads would compete and their 
behavior would depend on whether the system is using time-slicing. On a time-sliced system, 
there should be a fairly random distribution between the two consumers, while on a nontime-
sliced system, a single consumer could monopolize the messages. And since you're probably 
wondering about time-slicing, let's talk about thread priority and scheduling. 

8.4 Scheduling and Priority 

Java makes few guarantees about how it schedules threads. Almost all of Java's thread 
scheduling is left up to the Java implementation and, to some degree, the application. Although it 
might have made sense (and would certainly have made many developers happier) if Java's 
developers had specified a scheduling algorithm, a single scheduling algorithm isn't necessarily 
suitable for all of the roles that Java can play. Instead, Sun decided to put the burden on you to 
write robust code that works whatever the scheduling algorithm, and let the implementation tune 
the algorithm for whatever is best. 

Therefore, the priority rules that we'll describe next are carefully worded in the Java language 
specification to be a general guideline for thread scheduling. You should be able to rely on this 
behavior overall (statistically), but it is not a good idea to write code that relies on very specific 
features of the scheduler to work properly. You should instead use the control and 
synchronization tools that we have described in this chapter to coordinate your threads.[4]  

[4] Java Threads, by Scott Oaks and Henry Wong (O'Reilly & Associates), includes a detailed discussion of 
synchronization, scheduling, and other thread-related issues. 

Every thread has a priority value. If at any time a thread of a higher priority than the current 
thread becomes runnable, it preempts the lower-priority thread and begins executing. By default, 
threads at the same priority are scheduled round-robin, which means once a thread starts to run, 
it continues until it does one of the following: 

• Sleeps, by calling Thread.sleep() or wait( ) 
• Waits for a lock, in order to run a synchronized method 
• Blocks on I/O, for example, in a read() or accept( ) call 
• Explicitly yields control, by calling yield( ) 
• Terminates, by completing its target method or with a stop( ) call (deprecated) 

This situation looks something like Figure 8.4. 

Figure 8.4. Priority preemptive, round-robin scheduling 

 



8.4.1 Time-Slicing 

In addition to prioritization, many systems implement time-slicing of threads.[5] In a time-sliced 
system, thread processing is chopped up, so that each thread runs for a short period of time 
before the context is switched to the next thread, as shown in Figure 8.5. 

[5] As of Java Release 1.0, Sun's Java Interpreter for Windows uses time-slicing, as does the Netscape 
Navigator Java environment. Sun's Java 1.0 for the Solaris Unix platforms doesn't. 

Higher-priority threads still preempt lower-priority threads in this scheme. The addition of time-
slicing mixes up the processing among threads of the same priority; on a multiprocessor machine, 
threads may even be run simultaneously. This can introduce a difference in behavior for 
applications that don't use threads and synchronization properly. 

Figure 8.5. Priority preemptive, time-sliced scheduling 

 

Since Java doesn't guarantee time-slicing, you shouldn't write code that relies on this type of 
scheduling; any software you write needs to function under the default round-robin scheduling. If 
you're wondering what your particular flavor of Java does, try the following experiment: 

//file: Thready.java 
public class Thready {   
    public static void main( String args [] ) {   
        new MyThread("Foo").start( );   
        new MyThread("Bar").start( );   
    }   
} // end of class Thready 
   
class MyThread extends Thread {   
    String message;   
   
    MyThread ( String message ) {   
        this.message = message;   
    }   
   
    public void run( ) {   
        while ( true )    
            System.out.println( message );   
    }   
} 

The Thready class starts up two MyThread objects. Thready is a thread that goes into a hard 
loop (very bad form) and prints its message. Since we don't specify a priority for either thread, 



they both inherit the priority of their creator, so they have the same priority. When you run this 
example, you will see how your Java implementation does its scheduling. Under a round-robin 
scheme, only "Foo" should be printed; "Bar" never appears. In a time-slicing implementation, you 
should occasionally see the "Foo" and "Bar" messages alternate. 

8.4.2 Priorities 

Now let's change the priority of the second thread: 

class Thready {   
    public static void main( String args [] ) {   
        new MyThread("Foo").start( );   
        Thread bar = new MyThread("Bar");   
        bar.setPriority( Thread.NORM_PRIORITY + 1 );   
        bar.start( );   
    }   
} 

As you might expect, this changes how our example behaves. Now you may see a few "Foo" 
messages, but "Bar" should quickly take over and not relinquish control, regardless of the 
scheduling policy. 

Here we have used the setPriority( ) method of the Thread class to adjust our thread's 
priority. The Thread class defines three standard priority values (they're integers): 
MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY. 

If you need to change the priority of a thread, you should use one of these values, possibly with a 
small increment or decrement. Avoid using values near MAX_PRIORITY; if you elevate many 
threads to this priority level, priority will quickly become meaningless. A slight increase in priority 
should be enough for most needs. For example, specifying NORM_PRIORITY + 1 in our example 
is enough to beat out our other thread. 

We should also note that in an applet environment you may not have access to maximum priority 
because you're limited by the maximum priority of the thread group in which you were created 
(see "Thread Groups" later in this chapter). 

8.4.3 User-Controlled Time-Slicing 

There is a rough technique that you can use to get the effect similar to time-slicing in a Java 
application, even if the Java runtime system does not support it directly. The idea is simply to 
create a high (maximum) priority thread that does nothing but repeatedly sleep for a short interval 
and then wake up. Since the higher-priority thread will (in general) interrupt any lower-priority 
threads when it becomes runnable, you will effectively chop up the execution time of your lower-
priority threads, which should then execute in the standard round-robin fashion. We call this 
technique rough because of the weakness of the specification for Java threads with respect to 
their pre-emptiveness. If you use this technique, you should consider it only a potential 
optimization. 

8.4.4 Yielding 

Whenever a thread sleeps, waits, or blocks on I/O, it gives up its time slot, and another thread is 
scheduled. So as long as you don't write methods that use hard loops, all threads should get their 
due. However, a Thread can also signal that it is willing to give up its time voluntarily at any point 



with the yield( ) call. We can change our previous example to include a yield( ) on each 
iteration: 

class MyThread extends Thread {   
    ...   
   
    public void run( ) {   
        while ( true ) {   
            System.out.println( message );   
            yield( );   
        }   
    }   
} 

Now you should see "Foo" and "Bar" messages strictly alternating. If you have threads that 
perform very intensive calculations or otherwise eat a lot of CPU time, you might want to find an 
appropriate place for them to yield control occasionally. Alternatively, you might want to drop the 
priority of your compute-intensive thread, so that more important processing can proceed around 
it. 

Unfortunately the Java language specification is very weak with respect to yield( ). It is 
another one of these things that you should consider an optimization rather than a guarantee. In 
the worst case, the runtime system may simply ignore calls to yield( ). 

8.4.5 Native Threads 

We mentioned the possibility that different threads could run on different processors. This would 
be an ideal Java implementation. Unfortunately, most implementations don't even allow multiple 
threads to run in parallel with other processes running on the same machine. The most common 
implementations of threads today effectively simulate threading for an individual process like the 
Java interpreter. One feature that you might want to look for in choosing a Java implementation is 
called native threads. This means that the Java runtime system is able to use the real (native) 
threading mechanism of the host environment, which should perform better and, ideally, can 
allow multiprocessor operation. 

8.5 Thread Groups 

The ThreadGroup class allows us to deal with threads "wholesale": we can use it to arrange 
threads in groups and deal with the groups as a whole. A ThreadGroup can contain other 
ThreadGroups, in addition to individual threads, so our arrangements can be hierarchical. 
Thread groups are particularly useful when we want to start a task that might create many 
threads of its own. By assigning the task a thread group, we can later identify and control all of 
the task's threads. ThreadGroups are also the subject of restrictions that can be imposed by the 
Java Security Manager. So we can restrict a thread's behavior according to its thread group. For 
example, we can forbid threads in a particular group from interacting with threads in other groups. 
This is one way that web browsers can prevent threads started by Java applets from stopping 
important system threads. 

When we create a Thread, it normally becomes part of the ThreadGroup that the currently 
running thread belongs to. To create a new ThreadGroup of our own, we can call the 
constructor: 

ThreadGroup myTaskGroup = new ThreadGroup("My Task Group"); 



The ThreadGroup constructor takes a name, which a debugger can use to help you identify the 
group. (You can also assign names to the threads themselves.) Once we have a group, we can 
put threads in the group by supplying the ThreadGroup object as an argument to the Thread 
constructor: 

Thread myTask = new Thread( myTaskGroup, taskPerformer ); 

Here, myTaskGroup is the thread group, and taskPerformer is the target object (the 
Runnable object that performs the task). Any additional threads that myTask creates will also 
belong to the myTaskGroup thread group. 

8.5.1 Working with the ThreadGroup Class 

Creating thread groups isn't interesting unless you do things to them. The ThreadGroup class 
exists so that you can control threads in batches. It has methods that parallel the basic Thread 
control methods—even the deprecated stop( ), suspend(), and resume( ). These methods 
in the ThreadGroup operate on all of the threads they contain. You can also mark a 
ThreadGroup as a "daemon"; a daemon thread group is automatically removed when all of its 
children are gone. If a thread group isn't a daemon, you have to call destroy( ) to remove it 
when it is empty.  

We can set the maximum priority for any thread in a ThreadGroup by calling 
setMaximumPriority( ). Thereafter, no threads can be created with a priority higher than the 
maximum; threads that change their priority can't set their new priority higher than the maximum. 

Finally, you can get a list of all of the threads in a group. The method activeCount( ) tells you 
how many threads are in the group; the method enumerate( ) gives you a list of them. The 
argument to enumerate( ) is an array of Threads, which enumerate() fills in with the 
group's threads. (Use activeCount( ) to make an array of the right size.) Both 
activeCount() and enumerate( ) operate recursively on all thread groups that the group 
contains. 

It is also the responsibility of the ThreadGroup to handle uncaught runtime exceptions thrown by 
the run( ) methods of its threads. You can override the uncaughtException( ) method of 
ThreadGroup when making your own ThreadGroups to control this behavior. 



Chapter 9. Basic Utility Classes 

If you've been reading t his book sequentially, you've read all about the core Java language 
constructs, including the object-oriented aspects of the language and the use of threads. Now it's 
time to shift gears and talk about the Java Application Programming Interface (API), the collection 
of classes that comes with every Java implementation. The Java API encompasses all the public 
methods and variables in the classes that make up the core Java packages. Table 9.1 lists the 
most important packages in the API and shows which chapters in this book discuss each of the 
packages. 

Table 9.1. Packages of the Java API  
Package Contents Chapter 

java.lang Basic language classes 4, 5, 6, 7, 8, 9 
java.lang.reflect Reflection 7 
java.io Input and output 10 
java.util Utilities and collections classes 9, 10, 11 
java.text International text classes 9 
java.net Sockets and URLs 11, 12 
java.applet The applet API 20 

javax.swing, java.awt Swing and 2D graphics 13, 14, 15, 16, 17 

javax.swing.event, java.awt.event Event classes 13, 14, 15 
java.awt.image 2D image-processing classes 18 
java.beans JavaBeans API 19 
java.rmi RMI classes 11 

As you can see in Table 9.1, we've already examined some of the classes in java. lang in 
earlier chapters on the core language constructs. Starting with this chapter, we'll throw open the 
Java toolbox and begin examining the rest of the classes in the API. 

We'll begin our exploration with some of the fundamental language classes in java.lang, 
including strings and math utilities. Figure 9.1 shows the class hierarchy of the java.lang 
package. 

Figure 9.1. The java.lang package 



 

We'll cover some of the classes in java.util, such as classes that support date and time 
values, random numbers, vectors, and hashtables. Figure 9.2 shows the class hierarchy of the 
java.util package. 

Figure 9.2. The java.util package 



 

9.1 Strings 

In this section, we take a closer look at the Java String class (or more specifically, 
java.lang.String). Because strings are used so extensively throughout Java (or any 
programming language, for that matter), the Java String class has quite a bit of functionality. 
We'll test-drive most of the important features, but before you go off and write a complex parser 
or regular expression library, you should refer to a Java class reference manual for additional 
details. For example, see Java Fundamental Classes Reference, by Mark Grand and Jonathan 
Knudsen (O'Reilly & Associates). 

Strings are immutable; once you create a String object, you can't change its value. Operations 
that would otherwise change the characters or the length of a string instead return a new String 
object that copies the needed parts of the original. ( Java implementations make an effort to 
consolidate identical strings and string literals in the same class into a shared-string pool.) 

9.1.1 String Constructors 



To create a string, assign a double-quoted constant to a String variable: 

String quote = "To be or not to be"; 

Java automatically converts the string literal into a String object. If you're a C or C++ 
programmer, you may be wondering if quote is null-terminated. This question doesn't make any 
sense with Java strings. The String class actually uses a Java character array internally. It's 
private to the String class, so you can't get at the characters and change them. As always, 
arrays in Java are real objects that know their own length, so String objects in Java don't 
require special terminators (not even internally). If you need to know the length of a String, use 
the length( ) method:  

int length = quote.length( ); 

Strings can take advantage of the only overloaded operator in Java, the + operator, for string 
concatenation. The following code produces equivalent strings: 

String name = "John " + "Smith";   
String name = "John ".concat("Smith"); 

Literal strings can't span lines in Java source files, but we can concatenate lines to produce the 
same effect: 

String poem =   
    "'Twas brillig, and the slithy toves\n" +   
    "   Did gyre and gimble in the wabe:\n" +   
    "All mimsy were the borogoves,\n" +   
    "   And the mome raths outgrabe.\n"; 

Embedding lengthy text in source code should now be a thing of the past, given that we can 
retrieve a String from anywhere on the planet via a URL. In Chapter 12, we'll see how to do 
things like this: 

String poem = (String) new URL( 
    "http://myserver/~dodgson/jabberwocky.txt").getContent( ); 

In addition to making strings from literal expressions, we can construct a String from an array of 
characters: 

char [] data = { 'L', 'e', 'm', 'm', 'i', 'n', 'g' };   
String lemming = new String( data ); 

or from an array of bytes: 

byte [] data = { 97, 98, 99 };   
String abc = new String(data, "8859_5"); 

The second argument to the String constructor for byte arrays is the name of an encoding 
scheme. It's used to convert the given bytes to the string's Unicode characters. Unless you know 
something about Unicode, you can use the form of the constructor that accepts a byte array only; 
the default encoding scheme will be used.[1]  



[1] In Windows, the default encoding is CP1252; in Solaris, it's ISO8859_1. 

9.1.2 Strings from Things 

We can get the string representation of most things with the static String. valueOf( ) 
method. Various overloaded versions of this method give us string values for all of the primitive 
types: 

String one = String.valueOf( 1 );   
String two = String.valueOf( 2.384f );   
String notTrue = String.valueOf( false ); 

All objects in Java have a toString( ) method, inherited from the Object class. For class-
type references, String.valueOf( ) invokes the object's toString( ) method to get its 
string representation. If the reference is null, the result is the literal string "null": 

String date = String.valueOf( new Date( ) );   
System.out.println( date );      // "Sun Dec 19 05:45:34 CST 1999" 
 
date = null; 
System.out.println( date );      // "null" 

9.1.3 Things from Strings 

Producing primitives like numbers from String objects is not a function of the String class. For 
that we need the primitive wrapper classes; they are described in the "Math Utilities" section later 
in this chapter. The wrapper classes provide valueOf( ) methods that produce an object from 
a String, as well as corresponding methods to retrieve the value in various primitive forms. Two 
examples are: 

int i = Integer.valueOf("123").intValue( );   
double d = Double.valueOf("123.0").doubleValue( ); 

In this code, the Integer.valueOf( ) call yields an Integer object that represents the value 
123. An Integer object can provide its primitive value in the form of an int with the 
intValue( ) method. 

Although these techniques may work for simple cases, they will not work internationally. Let's 
pretend for a moment that we are programming Java in the rolling hills of Tuscany. We would 
follow the local customs for representing numbers and write code like the following: 

double d = Double.valueOf("1.234,56").doubleValue( );  // oops! 

Unfortunately, this code throws a NumberFormatException. The java.text package, which 
we'll discuss later, contains the tools we need to generate and parse strings for different countries 
and languages. 

The charAt( ) method of the String class lets us get at the characters of a String in an 
array-like fashion: 

String s = "Newton";   
for ( int i = 0; i < s.length( ); i++ ) 



    System.out.println( s.charAt( i ) ); 

This code prints the characters of the string one at a time. Alternately, we can get the characters 
all at once with toCharArray( ). Here's a way to save typing a bunch of single quotes: 

char [] abcs = "abcdefghijklmnopqrstuvwxyz".toCharArray( ); 

9.1.4 Comparisons 

Just as in C, you can't compare strings for equality with == because as in C, strings are accessed 
by reference. Even the expression "foo" == "foo" will return false, unless your Java compiler 
happens to coalesce multiple instances of the same string literal to a single string-pool item. 
String comparisons with <, >, <=, and >= don't work at all, because Java can't convert references 
to integers. 

Use the equals( ) method to compare strings: 

String one = "Foo";   
char [] c = { 'F', 'o', 'o' };   
String two = new String ( c );   
   
if ( one.equals( two ) )                // true 

An alternative version, equalsIgnoreCase( ), can be used to check the equivalence of strings 
in a case-insensitive way: 

String one = "FOO";   
String two = "foo";   
   
if ( one.equalsIgnoreCase( two ) )      // true 

The compareTo( ) method compares the lexical value of the String against another String. 
It returns an integer that is less than, equal to, or greater than zero, just like the C routine 
string( ): 

String abc = "abc";   
String def = "def";   
String num = "123";   
   
if ( abc.compareTo( def ) < 0 )         // true 
if ( abc.compareTo( abc ) == 0 )        // true 
if ( abc.compareTo( num ) > 0 )         // true 

On some systems, the behavior of lexical comparison is complex, and obscure alternative 
character sets exist. Java avoids this problem by comparing characters strictly by their position in 
the Unicode specification. 

9.1.4.1 The Collator class 

In Java 1.1 and later, the java.text package provides a sophisticated set of classes for 
comparing strings, even in different languages. German, for example, has vowels with umlauts 
over them and a beta-like character that represents a double "s". How should we sort these? 
Although the rules for sorting these characters are precisely defined, you can't assume that the 



lexical comparison we used earlier works correctly for languages other than English. Fortunately, 
the Collator class takes care of these complex sorting problems. 

In the following example, we use a Collator designed to compare German strings. (We'll talk 
about Locales in a later section.) You can obtain a default Collator by calling the 
Collator.getInstance( ) method, with no arguments. Once you have an appropriate 
Collator instance, you can use its compare( ) method, which returns values just like 
String's compareTo( ) method. The following code creates two strings for the German 
translations of "fun" and "later," using Unicode constants for these two special characters. It then 
compares them, using a Collator for the German locale; the result is that "fun" (Spaß) sorts 
before "later" (später). 

String fun = "Spa\u00df";  
String later = "sp\u00e4ter"; 
Collator german = Collator.getInstance(Locale.GERMAN);  
if (german.compare(fun, later) < 0) // true 

Using collators is essential if you're working with languages other than English. In Spanish, for 
example, ll and ch are treated as separate characters and alphabetized separately. A collator 
handles cases like these automatically. 

9.1.5 Searching 

The String class provides several methods for finding substrings within a string. The 
startsWith( ) and endsWith( ) methods compare an argument String with the beginning 
and end of the String, respectively: 

String url = "http://foo.bar.com/";   
if ( url.startsWith("http:") )          // true 

Overloaded versions of indexOf( ) search for the first occurrence of a character or substring: 

String abcs = "abcdefghijklmnopqrstuvwxyz";   
int i = abcs.indexOf( 'p' );            // 15 
int i = abcs.indexOf( "def" );          // 3 

Correspondingly, overloaded versions of lastIndexOf( ) search for the last occurrence of a 
character or substring. 

9.1.6 Editing 

A number of methods operate on the String and return a new String as a result. While this is 
useful, you should be aware that creating lots of strings in this manner can affect performance. If 
you need to modify a string often, you should use the StringBuffer class, as we'll discuss 
shortly. 

trim( ) is a useful method that removes leading and trailing whitespace (i.e., carriage return, 
newline, and tab) from the String: 

String str = "   abc   ";   
str = str.trim( );                       // "abc" 



In this example, we have thrown away the original String (with excess whitespace), so it will be 
garbage-collected. 

The toUpperCase( ) and toLowerCase( ) methods return a new String of the appropriate 
case: 

String down = "FOO".toLowerCase( );      // "foo" 
String up   = down.toUpperCase( );       // "FOO" 

substring( ) returns a specified range of characters. The starting index is inclusive; the 
ending is exclusive: 

String abcs = "abcdefghijklmnopqrstuvwxyz";   
String cde = abcs.substring(2, 5);      // "cde" 

9.1.7 String Method Summary 

Many people complain when they discover that the Java String class is final (i.e., it can't be 
subclassed). There is a lot of functionality in String, and it would be nice to be able to modify its 
behavior directly. Unfortunately, there is also a serious need to optimize and rely on the 
performance of String objects. The Java compiler can optimize final classes by inlining 
methods when appropriate. The implementation of final classes can also be trusted by classes 
that work closely together, allowing for special cooperative optimizations. If you want to make a 
new string class that uses basic String functionality, use a String object in your class and 
provide methods that delegate method calls to the appropriate String methods. 

Table 9.2 summarizes the methods provided by the String class. 

Table 9.2. String Methods  
Method Functionality 

charAt( ) Gets at a particular character in the string 
compareTo( ) Compares the string with another string 
concat( ) Concatenates the string with another string 
copyValueOf( ) Returns a string equivalent to the specified character array 
endsWith( ) Checks whether the string ends with a specified suffix 
equals( ) Compares the string with another string 
equalsIgnore-Case( 
) Compares the string with another string, ignoring case 

getBytes( ) Copies characters from the string into a byte array 
getChars( ) Copies characters from the string into a character array 
hashCode( ) Returns a hashcode for the string 

indexOf( ) Searches for the first occurrence of a character or substring in the 
string 

intern( ) Fetches a unique instance of the string from a global shared string pool 
lastIndexOf( ) Searches for the last occurrence of a character or substring in a string 
length( ) Returns the length of the string 

regionMatches( ) Checks whether a region of the string matches the specified region of 
another string 

replace( ) Replaces all occurrences of a character in the string with another 



character 
startsWith( ) Checks whether the string starts with a specified prefix 
substring( ) Returns a substring from the string 
toCharArray( ) Returns the array of characters from the string 
toLowerCase( ) Converts the string to lowercase 
toString( ) Returns the string value of an object 
toUpperCase( ) Converts the string to uppercase 
trim( ) Removes leading and trailing white space from the string 
valueOf( ) Returns a string representation of a value 

9.1.8 The java.lang.StringBuffer Class 

The java.lang.StringBuffer class is a growable buffer for characters. It's an efficient 
alternative to code like the following: 

String ball = "Hello";   
ball = ball + " there.";   
ball = ball + " How are you?"; 

This example repeatedly produces new String objects. This means that the character array 
must be copied over and over, which can adversely affect performance. A more economical 
alternative is to use a StringBuffer object and its append( ) method:  

StringBuffer ball = new StringBuffer("Hello");   
ball.append(" there.");   
ball.append(" How are you?"); 

The StringBuffer class provides a number of overloaded append( ) methods for appending 
various types of data to the buffer. 

We can get a String from the StringBuffer with its toString( ) method: 

String message = ball.toString( ); 

You can also retrieve part of a StringBuffer, as a String, using one of the substring( ) 
methods. 

StringBuffer also provides a number of overloaded insert( ) methods for inserting various 
types of data at a particular location in the string buffer. Furthermore, you can remove a single 
character or a range of characters with the deleteCharAt( ) and delete( ) methods. 
Finally, you can replace part of the StringBuffer with the contents of a String using the 
replace( ) method. 

The String and StringBuffer classes cooperate, so that even in this last operation, no copy 
has to be made. The string data is shared between the objects, unless and until we try to change 
it in the StringBuffer. 

So, when should you use a StringBuffer instead of a String? If you need to keep adding 
characters to a string, use a StringBuffer; it's designed to efficiently handle such 
modifications. You'll still have to convert the StringBuffer to a String when you need to use 



any of the methods in the String class. But you can print a StringBuffer directly using 
System.out.println( ), because println( ) calls the toString( ) for you.  

Another thing you should know about StringBuffer methods is that they are thread-safe, just 
like all public methods in the Java API. This means that only one thread at a time can change the 
state of a StringBuffer instance. Any time you modify a StringBuffer, you don't have to 
worry about another thread coming along and messing up the string while you are modifying it. 

You might be interested to know that the compiler uses a StringBuffer to implement String 
concatenation. Consider the following expression: 

String foo = "To " + "be " + "or"; 

This is equivalent to: 

String foo = new  
  StringBuffer().append("To ").append("be ").append("or").toString( ); 

This kind of chaining of expressions is one of the things operator overloading hides in other 
languages. 

9.1.9 The java.util.StringTokenizer Class 

A common programming task involves parsing a string of text into words or "tokens" that are 
separated by some set of delimiter characters. The java.util.StringTokenizer class is a 
utility that does just this. The following example reads words from the string text: 

String text = "Now is the time for all good men (and women)..."; 
StringTokenizer st = new StringTokenizer( text );   
 
while ( st.hasMoreTokens( ) )  {   
    String word = st.nextToken( );   
    ...   
} 

First, we create a new StringTokenizer from the String. We invoke the hasMoreTokens( 
) and nextToken( ) methods to loop over the words of the text. By default, we use whitespace 
(i.e., carriage return, newline, and tab) as delimiters. 

The StringTokenizer implements the java.util.Enumeration interface, which means 
that StringTokenizer also implements two more general methods for accessing elements: 
hasMoreElements( ) and nextElement( ). These methods are defined by the 
Enumeration interface; they provide a standard way of returning a sequence of values. The 
advantage of nextToken( ) is that it returns a String, while nextElement( ) returns an 
Object. (We'll see an example in the "Properties" section later in this chapter.) The 
Enumeration interface is implemented by many items that return sequences or collections of 
objects. Those of you who have used the C strtok( ) function should appreciate how useful 
this object-oriented equivalent is.  

You can also specify your own set of delimiter characters in the StringTokenizer constructor, 
using another String argument to the constructor. Any combination of the specified characters 
is treated as the equivalent of whitespace for tokenizing: 



text = "http://foo.bar.com/";   
tok = new StringTokenizer( text, "/:" );   
   
if ( tok.countTokens( ) < 2 )         // bad URL   
   
String protocol = tok.nextToken( );   // "http" 
String host = tok.nextToken( );       // "foo.bar.com" 

This example parses a URL specification to get at the protocol and host components. The 
characters / and : are used as separators. The countTokens( ) method provides a fast way 
to see how many tokens will be returned by nextToken( ), without actually creating the 
String objects. 

An overloaded form of nextToken( ) accepts a string that defines a new delimiter set for that 
and subsequent reads. The StringTokenizer constructor accepts a flag that specifies that 
separator characters are to be returned individually as tokens themselves. By default, the token 
separators are not returned. 

9.2 Math Utilities 

Java supports integer and floating-point arithmetic directly. Higher-level math operations are 
supported through the java.lang.Math class. Java provides wrapper classes for all primitive 
data types, so you can treat them as objects if necessary. Java also provides the 
java.util.Random class for generating random numbers. 

Java handles errors in integer arithmetic by throwing an ArithmeticException: 

int zero = 0;   
   
try {   
    int i = 72 / zero;   
}    
catch ( ArithmeticException e ) { 
    // division by zero 
} 

To generate the error in this example, we created the intermediate variable zero. The compiler is 
somewhat crafty and would have caught us if we had blatantly tried to perform a division by a 
literal zero. 

Floating-point arithmetic expressions, on the other hand, don't throw exceptions. Instead, they 
take on the special out-of-range values shown in Table 9.3. 

Table 9.3. Special Floating-Point Values  
Value Mathematical Representation 

POSITIVE_INFINITY 1.0/0.0 
NEGATIVE_INFINITY -1.0/0.0 
NaN 0.0/0.0 

The following example generates an infinite result: 



double zero = 0.0;   
double d = 1.0/zero;   
   
if ( d == Double.POSITIVE_INFINITY )   
    System.out.println( "Division by zero" ); 

The special value NaN indicates the result is "not a number." The value NaN has the special 
distinction of not being equal to itself (NaN != NaN evaluates to true). Use Float.isNaN( ) 
or Double.isNaN( ) to test for NaN. 

9.2.1 The java.lang.Math Class 

The java.lang.Math class provides Java's math library. All its methods are static and used 
directly; you don't have to (and you can't) instantiate a Math object. We use this kind of 
degenerate class when we really want methods to approximate standard C-like functions. While 
this tactic defies the principles of object-oriented design, it makes sense in this case, as it 
provides a means of grouping some related utility functions in a single class. Table 9.4 
summarizes the methods in java.lang.Math. 

Table 9.4. Methods in java.lang.Math  
Method Argument Type(s) Functionality 

Math.abs(a) int, long, float, 
double Absolute value 

Math.acos(a) double Arc cosine 
Math.asin(a) double Arc sine 
Math.atan(a) double Arc tangent 

Math.atan2(a,b) double Angle part of rectangular-to-polar coordinate 
transform 

Math.ceil(a) double Smallest whole number greater than orequal to a 
Math.cos(a) double Cosine 
Math.exp(a) double Math.E to the power a 

Math.floor(a) double Largest whole number less than or equal to a 

Math.log(a) double Natural logarithm of a 

Math.max(a, b) int, long, float, 
double Maximum 

Math.min(a, b) int, long, float, 
double Minimum 

Math.pow(a, b) double a to the power b 
Math.random( ) None Random-number generator 

Math.rint(a) double Converts double value to integral value in double 
format 

Math.round(a) float, double Rounds to whole number 
Math.sin(a) double Sine 
Math.sqrt(a) double Square root 
Math.tan(a) double Tangent 

log(), pow(), and sqrt() can throw an ArithmeticException. abs(), max( ), and min( 
) are overloaded for all the scalar values, int, long, float, or double, and return the 



corresponding type. Versions of Math.round( ) accept either float or double and return 
int or long, respectively. The rest of the methods operate on and return double values: 

double irrational = Math.sqrt( 2.0 );   
int bigger = Math.max( 3, 4 );   
long one = Math.round( 1.125798 ); 

For convenience, Math also contains the static final double values E and PI: 

double circumference = diameter * Math.PI; 

9.2.2 The java.math Class 

If a long or a double just isn't big enough for you, the java.math package provides two 
classes, BigInteger and BigDecimal, that support arbitrary-precision numbers. These are 
full-featured classes with a bevy of methods for performing arbitrary-precision math. In the 
following example, we use BigDecimal to add two numbers: 

try {  
    BigDecimal twentyone = new BigDecimal("21");  
    BigDecimal seven = new BigDecimal("7");  
    BigDecimal sum = twentyone.add(seven);  
   
    int answer= sum.intValue( );           // 28 
}  
catch (NumberFormatException nfe) { }  
catch (ArithmeticException ae) { } 

If you implement cryptographic algorithms for fun, BigInteger is crucial. But other than that, 
you're not likely to need these classes. 

9.2.3 Wrappers for Primitive Types 

In languages like Smalltalk, numbers and other simple types are objects, which makes for an 
elegant language design, but has trade-offs in efficiency and complexity. By contrast, there is a 
schism in the Java world between class types (i.e., objects) and primitive types (i.e., numbers, 
characters, and boolean values). Java accepts this trade-off simply for efficiency reasons. When 
you're crunching numbers, you want your computations to be lightweight; having to use objects 
for primitive types would seriously affect performance. For the times you want to treat values as 
objects, Java supplies a wrapper class for each of the primitive types, as shown in Table 9.5. 

Table 9.5. Primitive Type Wrappers  
Primitive Wrapper 

void java.lang.Void 
boolean java.lang.Boolean 
char java.lang.Character 
byte java.lang.Byte 
short java.lang.Short 
int java.lang.Integer 
long java.lang.Long 
float java.lang.Float 



double java.lang.Double 

An instance of a wrapper class encapsulates a single value of its corresponding type. It's an 
immutable object that serves as a container to hold the value and let us retrieve it later. You can 
construct a wrapper object from a primitive value or from a String representation of the value. 
The following statements are equivalent: 

Float pi = new Float( 3.14 );   
Float pi = new Float( "3.14" ); 

Wrapper classes throw a NumberFormatException when there is an error in parsing a string: 

try {   
    Double bogus = new Double( "huh?" );   
}   
catch ( NumberFormatException e ) {     // bad number   
} 

You should arrange to catch this exception if you want to deal with it. Otherwise, since it's a 
subclass of RuntimeException, it will propagate up the call stack and cause a runtime error if 
not caught. 

Sometimes you'll use the wrapper classes simply to parse the String representation of a 
number: 

String sheep = getParameter("sheep");   
int n = new Integer( sheep ).intValue( ); 

Here we are retrieving the value of the sheep parameter. This value is returned as a String, so 
we need to convert it to a numeric value before we can use it. Every wrapper class provides 
methods to get primitive values out of the wrapper; we are using intValue( ) to retrieve an 
int out of Integer. Since parsing a String representation of a number is such a common 
thing to do, the Integer and Long classes also provide the static methods 
Integer.parseInt() and Long.parseLong( ) that read a String and return the 
appropriate type. So the second line in the previous example is equivalent to: 

int n = Integer.parseInt( sheep ); 

Likewise, the Float and Double classes provide the static methods Float.parseFloat() 
and Double.parseDouble( ), for parsing strings into floating-point primitives. 

All wrappers provide access to their values in various forms. You can retrieve scalar values with 
the methods doubleValue() , floatValue(), longValue( ), and intValue( ): 

Double size = new Double ( 32.76 );   
   
double d = size.doubleValue( );     // 32.76 
float f = size.floatValue( );       // 32.76 
long l = size.longValue( );         // 32 
int i = size.intValue( );           // 32 

This code is equivalent to casting the primitive double value to the various types. 



You also need a wrapper when you want to use a primitive value in a situation that requires an 
object. As you'll see shortly, a Vector is an extensible array of Objects. We can use wrappers 
to hold numbers in a Vector, along with other objects: 

Vector myNumbers = new Vector( );   
Integer thirtyThree = new Integer( 33 );   
myNumbers.addElement( thirtyThree ); 

Here we have created an Integer wrapper object so that we can insert the number into the 
Vector, using addElement( ). Later, when we are extracting elements from the Vector, we 
can recover the int value as follows: 

Integer theNumber = (Integer)myNumbers.firstElement( );   
int n = theNumber.intValue( );           // 33 

9.2.4 Random Numbers 

You can use the java.util.Random class to generate random values. It's a pseudo-random 
number generator that can be initialized with a 48-bit seed.[2] The default constructor uses the 
current time as a seed, but if you want a repeatable sequence, specify your own seed with: 

[2] The generator uses a linear congruential formula. See The Art of Computer Programming, Volume 2, 
"Semi-numerical Algorithms," by Donald Knuth (Addison-Wesley). 

long seed = mySeed;   
Random rnums = new Random( seed ); 

This code creates a random-number generator. Once you have a generator, you can ask for 
random values of various types using the methods listed in Table 9.6. 

Table 9.6. Random Number Methods  
Method Range 

nextBoolean( ) true or false 
nextInt( ) -2147483648 to 2147483647 
nextInt(int n) 0 to (n - 1) inclusive 
nextLong( ) -9223372036854775808 to 9223372036854775807 
nextFloat( ) -1.0 to 1.0 
nextDouble( ) -1.0 to 1.0 

By default, the values are uniformly distributed. You can use the nextGaussian( ) method to 
create a Gaussian (bell curve) distribution of double values, with a mean of 0.0 and a standard 
deviation of 1.0. 

The static method Math.random( ) retrieves a random double value. This method 
initializes a private random-number generator in the Math class, using the default Random 
constructor. So every call to Math.random( ) corresponds to a call to nextDouble( ) on that 
random-number generator. 

9.3 Dates 



Working with dates and times without the proper tools can be a chore.[3] In SDK 1.1 and later, you 
get three classes that do all the hard work for you. The java.util.Date class encapsulates a 
point in time. The java.util.GregorianCalendar class, which descends from the abstract 
java.util.Calendar, translates between a point in time and calendar fields like month, day, 
and year. Finally, the java.text.DateFormat class knows how to generate and parse string 
representations of dates and times.[4]  

[3] For a wealth of information about time and world time-keeping conventions, see 
http://tycho.usno.navy.mil, the U.S. Navy Directorate of Time. For a fascinating history of the Gregorian 
and Julian calendars, try http://www.magnet.ch/serendipity/hermetic/cal_stud/cal_art.htm. 

[4] In Java 1.0.2, the Date class performed all three functions. In Java 1.1 and later, most of its methods 
have been deprecated, so that the only purpose of the Date class is to represent a point in time. 

The separation of the Date class and the GregorianCalendar class is analogous to having a 
class representing temperature and a class that translates that temperature to Celsius units. 
Conceivably, we could define other subclasses of Calendar, say JulianCalendar or 
LunarCalendar. 

The default GregorianCalendar constructor creates an object that represents the current time, 
as determined by the system clock: 

GregorianCalendar now = new GregorianCalendar( ); 

Other constructors accept values to specify the point in time. In the first statement in the following 
code, we construct an object representing August 9, 1996; the second statement specifies both a 
date and a time, yielding an object that represents 9:01 a.m., April 8, 1997. 

GregorianCalendar daphne =   
    new GregorianCalendar(1996, Calendar.AUGUST, 9);  
GregorianCalendar sometime =   
    new GregorianCalendar(1997, Calendar.APRIL, 8, 9, 1); // 9:01 AM 

We can also create a GregorianCalendar by setting specific fields using the set( ) method. 
The Calendar class contains a torrent of constants representing both calendar fields and field 
values. The first argument to the set( ) method is a field constant; the second argument is the 
new value for the field. 

GregorianCalendar kristen = new GregorianCalendar( );  
kristen.set(Calendar.YEAR, 1972);  
kristen.set(Calendar.MONTH, Calendar.MAY);  
kristen.set(Calendar.DATE, 20); 

A GregorianCalendar is created in the default time zone. Setting the time zone of the 
calendar is as easy as obtaining the desired TimeZone and giving it to the 
GregorianCalendar: 

GregorianCalendar smokey = new GregorianCalendar( );  
smokey.setTimeZone(TimeZone.getTimeZone("MST")); 

To represent a GregorianCalendar's date as a string, first create a Date object: 

Date mydate = smokey.getTime( ); 



To create a string representing a point in time, create a DateFormat object and apply its 
format( ) method to a Date object. Although DateFormat itself is abstract, it has several 
static ("factory") methods that return useful DateFormat subclass instances. To get a default 
DateFormat, simply call getInstance( ):  

DateFormat plain = DateFormat.getInstance( );  
String now = plain.format(new Date( ));         // 4/12/00 6:06 AM 

You can generate a date string or a time string, or both, using the getDateInstance(), 
getTimeInstance(), and getDateTimeInstance( ) factory methods. The argument to 
these methods describes what level of detail you'd like to see. DateFormat defines four 
constants representing detail levels: they are SHORT, MEDIUM, LONG, and FULL. There is also a 
DEFAULT, which is the same as MEDIUM. The following code creates three DateFormat 
instances: one to format a date, one to format a time, and one to format a date and time together. 
Note that getDateTimeInstance( ) requires two arguments: the first specifies how to format 
the date, the second how to format the time: 

// 12-Apr-00 
DateFormat df  = DateFormat.getDateInstance(DateFormat.DEFAULT); 
 
// 9:18:27 AM 
DateFormat tf  = DateFormat.getTimeInstance(DateFormat.DEFAULT); 
 
// Wednesday, April 12, 2000 9:18:27 o'clock AM EDT 
DateFormat dtf = 
  DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.FULL); 

We're showing only how to create the DateFormat objects here; to actually generate a String 
from a date, you'll need to call the format( ) method of these objects. 

Formatting dates and times for other countries is just as easy. Overloaded factory methods 
accept a Locale argument: 

// 12 avr. 00 
DateFormat df = 
  DateFormat.getDateInstance(DateFormat.DEFAULT, Locale.FRANCE);  
 
// 9:27:49 
DateFormat tf = 
  DateFormat.getTimeInstance(DateFormat.DEFAULT, Locale.GERMANY); 
 
// mercoledi 12 aprile 2000 9.27.49 GMT-04:00  
DateFormat dtf =  
    DateFormat.getDateTimeInstance( 
        DateFormat.FULL, DateFormat.FULL, Locale. ITALY); 

To parse a string representing a date, we use the parse( ) method of the DateFormat class. 
The result is a Date object. The parsing algorithms are finicky, so it's safest to parse dates and 
times that are in the same format that is produced by the DateFormat. The parse( ) method 
throws a ParseException if it doesn't understand the string you give it. All of the following calls 
to parse( ) succeed except the last; we don't supply a time zone, but the format for the time is 
LONG. Other exceptions are occasionally thrown from the parse( ) method. To cover all the 
bases, catch NullPointerExceptions and StringIndexOutOfBoundsExceptions, also. 



try {  
  Date d;  
  DateFormat df;  
 
  df = DateFormat.getDateTimeInstance( 
           DateFormat.FULL, DateFormat.FULL); 
  d = df.parse("Wednesday, April 12, 2000 2:22:22 o'clock PM EDT");  
 
  df = DateFormat.getDateTimeInstance( 
           DateFormat.MEDIUM, DateFormat.MEDIUM);  
  d = df.parse("12-Apr-00 2:22:22 PM");  
 
  df = DateFormat.getDateTimeInstance( 
           DateFormat.LONG, DateFormat.LONG);  
  d = df.parse("April 12, 2000 2:22:22 PM EDT");  
 
  // throws a ParseException; detail level mismatch  
  d = df.parse("12-Apr-00 2:22:22 PM"); 
}  
catch (Exception e) { ... } 

9.4 Timers 

The Java 2 SDK 1.3 includes two handy classes for timed code execution. If you write a clock 
application, for example, you want to update the display every second or so. Or you might want to 
play an alarm sound at some predetermined time. You could accomplish these tasks with multiple 
threads and calls to Thread.sleep( ). But it's simpler to use the java.util.Timer and 
java.util.TimerTask classes. 

Instances of Timer watch the clock and execute TimerTasks at appropriate times. You could, 
for example, schedule a task to run at a specific time like this: 

import java.util.*; 
 
public class Y2K { 
  public static void main(String[] args) { 
    Timer timer = new Timer( ); 
     
    TimerTask task = new TimerTask( ) { 
      public void run( ) { 
        System.out.println("Boom!"); 
      } 
    }; 
     
    Calendar c = new GregorianCalendar(2000, Calendar.JANUARY, 1); 
    timer.schedule(task, c.getTime( )); 
  } 
} 

TimerTask implements the Runnable interface. To create a task, you can simply subclass 
TimerTask and supply a run( ) method. Here we've created a simple anonymous subclass of 
TimerTask, which prints a message to System.out. Using the schedule( ) method of 
Timer, we've asked that the task be run on January 1, 2000. (Oops—too late! But you get the 
idea.) 



There are some other varieties of schedule( ); you can run tasks once or at recurring 
intervals. There are two kinds of recurring tasks—fixed delay and fixed rate. Fixed delay means 
that a fixed amount of time elapses between the end of the task's execution and the beginning of 
the next execution. Fixed rate means that the task should begin execution at fixed time intervals. 

You could, for example, update a clock display every second with code like this: 

Timer timer = new Timer( ); 
 
TimerTask task = new TimerTask( ) { 
    public void run( ) { 
        repaint( ); // update the clock display 
    } 
}; 
 
timer.schedule(task, 0, 1000); 

Timer can't really make any guarantees about exactly when things are executed; you'd need a 
real-time operating system for that kind of precision. However, Timer can give you reasonable 
assurance that tasks will be executed at particular times, provided the tasks are not overly 
complex; with a slow-running task, the end of one execution might spill into the start time for the 
next execution. 

9.5 Collections 

Collections are a fundamental idea in programming. Applications frequently need to keep track of 
many related things, like a group of employees or a set of images. To support the concept of 
many at a fundamental level, of course, Java includes the concept of arrays. Since a one-
dimensional array has a fixed length, arrays are awkward for sets of things that grow and shrink 
over the lifetime of an application. Ever since SDK 1.0, the Java platform has had two handy 
classes for keeping track of sets. The java.util.Vector class represents a dynamic list of 
objects, and the java.util.Hashtable class is a set of key/value pairs. The Java 2 platform 
introduces a more comprehensive approach to collections called the Collections Framework. The 
Vector and Hashtable classes still exist, but they are now a part of the framework. 

If you work with dictionaries or associative arrays in other languages, you should understand how 
useful these classes are. If you are someone who has worked in C or another static language, 
you should find collections to be truly magical. They are part of what makes Java powerful and 
dynamic. Being able to work with lists of objects and make associations between them is an 
abstraction from the details of the types. It lets you think about the problems at a higher level and 
saves you from having to reproduce common structures every time you need them. 

The Collections Framework is based around a handful of interfaces in the java.util package. 
These interfaces are divided into two hierarchies. The first hierarchy descends from the 
Collection interface. This interface (and its descendants) represents a box that holds other 
objects. The second hierarchy is based on the Map interface, which represents a group of 
key/value pairs. 

9.5.1 The Collection Interface 

The mother of all collections is an interface appropriately named Collection. It serves as a box 
that holds other objects, its elements. It doesn't specify whether duplicate objects are allowed or 



whether the objects will be ordered in some way. These kinds of details are left to child interfaces. 
Nevertheless, the Collection interface does define some basic operations: 

public boolean    
add 
(Object   o)    

This method adds the supplied object to this collection. If the operation succeeds, this 
method returns true. If the object already exists in this collection and the collection does 
not permit duplicates, false is returned. Furthermore, some collections are read-only. 
These collections will throw an UnsupportedOperationException if this method is 
called. 

public boolean    
remove 
(Object   o)    

This method removes the supplied object from this collection. Like the add( ) method, 
this method returns true if the object is removed from the collection. If the object doesn't 
exist in this collection, false is returned. Read-only collections throw an 
UnsupportedOperationException if this method is called. 

public boolean    
contains 
(Object   o)    

This method returns true if the collection contains the specified object. 

public int  
size 
( )  

Use this method to find the number of elements in this collection. 

public boolean  
isEmpty 
( )  

This method returns true if there are no elements in this collection. 

public Iterator  
iterator 
( )  

Use this method to examine all the elements in this collection. This method returns an 
Iterator, which is an object that you can use to step through the collection's elements. 
We'll talk more about iterators in the next section. 

As a special convenience, the elements of a collection can be placed into an array using the 
following methods: 

public Object[]  



toArray 
( )  
public Object[]  
toArray 
(Object[] a)  

These methods return an array that contains all the elements in this collection. The second 
version of this method returns an array of the same type as the array a. 

Remember, these methods are common to every Collection implementation. Any class that 
implements Collection or one of its child interfaces will have these methods. 

A Collection is a dynamic array; it can grow to accommodate new items. For example, a List 
is a kind of Collection that implements a dynamic array. You can insert and remove elements 
at arbitrary positions within a List. Collections work directly with the type Object, so we can 
use Collections with instances of any class.[5] We can even put different kinds of Objects in 
a Collection together; the Collection doesn't know the difference. 

[5] In C++, where classes don't derive from a single Object class that supplies a base type and common 
methods, the elements of a collection would usually be derived from some common collectable class. This 
forces the use of multiple inheritance and brings its associated problems. 

As you might guess, this is where things get tricky. To do anything useful with an Object after 
we take it back out of a Collection, we have to cast it back (narrow it) to its original type. This 
can be done safely in Java because the cast is checked at runtime. Java throws a 
ClassCastException if we try to cast an object to the wrong type. However, this need for 
casting means that your code must remember types or methodically test them with instanceof. 
That is the price we pay for having a completely dynamic collection class that operates on all 
types. 

You might wonder if you can implement Collection to produce a class that works on just one 
type of element in a type-safe way. Unfortunately, the answer is no. We could implement 
Collection's methods to make a Collection that rejects the wrong type of element at 
runtime, but this does not provide any new compile time, static type safety. In C++, templates 
provide a safe mechanism for parameterizing types by restricting the types of objects used at 
compile time. For a glimpse at Java language work in this area, see 
http://www.math.luc.edu/pizza/gj. 

9.5.2 Iterators 

What does the java.util.Iterator interface do? An Iterator is an object that lets you 
step through another object's data.[6]  

[6] If you're familiar with earlier versions of Java, it will help you to know that Iterator is the successor to 
Enumeration, kind of an Enumeration on steroids. 

public Object  
next 
( )  

This method returns the next element of the associated Collection. 

public boolean  



hasNext 
( )  

This method returns true if you have not yet stepped through all of the Collection's 
elements. In other words, it returns true if you can call next( ) to get the next 
element. 

The following example shows how you could use an Iterator to print out every element of a 
collection: 

public void printElements(Collection c, PrintStream out) { 
    Iterator iterator = c.iterator( ); 
 
    while (iterator.hasNext( )) 
        out.println(iterator.next( )); 
} 

Finally, Iterator offers the ability to remove an element from a collection: 

public void  
remove 
( )  

This method removes the last object returned from next( ) from the associated 
Collection. Not all iterators implement remove( ). It doesn't make sense to be able 
to remove an element from a read-only collection, for example. If element removal is not 
allowed, an UnsupportedOperationException is thrown from this method. If you call 
remove( ) before first calling next( ), or if you call remove( ) twice in a row, you'll 
get an IllegalStateException. 

9.5.3 Collection Flavors 

The Collection interface has two child interfaces: Set represents a collection in which 
duplicate elements are not allowed, and List is a collection whose elements have a specific 
order. 

Set has no methods besides the ones it inherits from Collection. It does, however, enforce 
the rule that duplicate elements are not allowed. If you try to add an element that already exists in 
a Set, the add( ) method will return false. 

SortedSet adds only a few methods to Set. As you call add() and remove( ), the set 
maintains its order. You can retrieve subsets (which are also sorted) using the subSet() , 
headSet(), and tailSet() methods. The first() , last(), and comparator( ) methods 
provide access to the first element, the last element, and the object used to compare elements 
(more on this later). 

The last child interface of Collection is List . The List interface adds the ability to 
manipulate elements at specific positions in the list: 

public void    
add 
(int   index, Object   element)    



This method adds the given object at the supplied list position. If the position is less than 
zero or greater than the list length, an IndexOutOfBoundsException will be thrown. 
The element that was previously at the supplied position and all elements after it will be 
moved up by one index position. 

public void    
remove 
(int   index)    

This method removes the element at the supplied position. All subsequent elements will 
move down by one index position. 

public void    
get 
(int   index)    

This method returns the element at the given position. 

public void    
set 
(int   index, Object   element)    

This method changes the element at the given position to be the supplied object. 

9.5.4 The Map Interface 

The Collections Framework also includes the concept of a Map, which is a collection of key/value 
pairs. Another way of looking at a map is that it is a dictionary, similar to an associative array. 
Maps store and retrieve elements with key values; they are very useful for things like caches and 
minimalist databases. When you store a value in a map, you associate a key object with that 
value. When you need to look up the value, the map retrieves it using the key. 

The java.util.Map interface specifies a map that, like Collection, operates on the type 
Object. A Map stores an element of type Object and associates it with a key, also of type 
Object. In this way, we can index arbitrary types of elements using arbitrary types as keys. As 
with Collection, casting is generally required to narrow objects back to their original type after 
pulling them out of a map. 

The basic operations are straightforward: 

public Object    
put 
(Object   key, Object   value)    

This method adds the specified key/value pair to the map. If the map already contains a 
value for the specified key, the old value is replaced. 

public Object    
get 
(Object   key)    

This method retrieves the value corresponding to key from the map. 



public Object    
remove 
(Object   key)    

This method removes the value corresponding to key from the map. 

public int  
size 
( )  

Use this method to find the number of key/value pairs in this map. 

You can retrieve all the keys or values in the map: 

public Set  
keySet 
( )  

This method returns a Set that contains all of the keys in this map. 

public Collection  
values 
( )  

Use this method to retrieve all of the values in this map. The returned Collection can 
contain duplicate elements. 

Map has one child interface, SortedMap . SortedMap maintains its key/value pairs in sorted 
order according to the key values. It provides subMap() , headMap( ), and tailMap( ) 
methods for retrieving sorted map subsets. Like SortedSet, it also provides a comparator( ) 
method that returns an object that determines how the map keys are sorted. We'll talk more about 
this later. 

9.5.5 Implementations 

Up until this point, we've talked only about interfaces. But you can't instantiate interfaces. The 
Collections Framework includes useful implementations of the collections interfaces. These 
implementations are listed in Table 9.7, according to the interface they implement. 

Table 9.7. Collections Framework Implementation Classes  
Interface Implementation 

Set HashSet 
SortedSet TreeSet 

List ArrayList, LinkedList, Vector 

Map HashMap, Hashtable 
SortedMap TreeMap 

ArrayList offers good performance if you add to the end of the list frequently, while 
LinkedList offers better performance for frequent insertions and deletions. Vector has been 
around since SDK 1.0; it's now retrofitted to implement the List methods. Vector offers the 



advantage (and overhead) of synchronized methods, which is essential for multithreaded 
access. The old Hashtable has been updated so that it now implements the Map interface. It 
also has the advantage and overhead of synchronized operations. As you'll see, there are other, 
more general ways to get synchronized collections. 

9.5.5.1 Hashcodes and key values 

If you've used a hashtable before, you've probably guessed that there's more going on behind the 
scenes with maps than we've let on. An element in a hashtable is not associated with a key 
strictly by the key object's identity, but rather by the key's contents. This allows keys that are 
equivalent to access the same object. By "equivalent," we mean those objects that compare 
true with equals( ). So, if you store an object in a Hashtable using one object as a key, you 
can use any other object that equals( ) tells you is equivalent to retrieve the stored object. 

It's easy to see why equivalence is important if you remember our discussion of strings. You may 
create two String objects that have the same text in them but that come from different sources 
in Java. In this case, the == operator will tell you that the objects are different, but the equals( 
) method of the String class will tell you that they are equivalent. Because they are equivalent, 
if we store an object in a Hashtable using one of the String objects as a key, we can retrieve 
it using the other. 

Since Hashtables have a notion of equivalent keys, what does the hashcode do? The 
hashcode is like a fingerprint of the object's data content. The Hashtable uses the hashcode to 
store the objects so that they can be retrieved efficiently. The hashcode is nothing more than a 
number (an integer) that is a function of the data. The number always turns out the same for 
identical data, but the hashing function is intentionally designed to generate as random a number 
as possible for different combinations of data. That is, a very small change in the data should 
produce a big difference in the number. It is unlikely that two similar data sets will produce the 
same hashcode. 

A Hashtable really just keeps a number of lists of objects, but it puts objects into the lists based 
on their hashcode. So when it wants to find the object again, it can look at the hashcode and 
know immediately how to get to the appropriate list. The Hashtable still might end up with a 
number of objects to examine, but the list should be short. For each object it finds, it does the 
following comparison to see if the key matches: 

if ((keyHashcode == storedKeyHashcode) && key.equals(storedKey)) 
    return object; 

There is no prescribed way to generate hashcodes. The only requirement is that they be 
somewhat randomly distributed and reproducible (based on the data). This means that two 
objects that are not the same could end up with the same hashcode by accident. This is unlikely 
(there are 2^32 possible integer values); moreover, it doesn't cause a problem, because the 
Hashtable ultimately checks the actual keys, as well as the hashcodes, to see if they are equal. 
Therefore, even if two objects have the same hashcode, they can still co-exist in the hashtable. 

Hashcodes are computed by an object's hashCode( ) method, which is inherited from the 
Object class if it isn't overridden. The default hashCode( ) method simply assigns each object 
instance a unique number to be used as a hashcode. If a class does not override this method, 
each instance of the class will have a unique hashcode. This goes along well with the default 
implementation of equals( ) in Object, which only compares objects for identity using ==. 



You must override equals( ) in any classes for which equivalence of different objects is 
meaningful. Likewise, if you want equivalent objects to serve as equivalent keys, you need to 
override the hashCode( ) method, as well, to return identical hashcode values. To do this, you 
need to create some suitably complex and arbitrary function of the contents of your object. The 
only criterion for the function is that it should be almost certain to return different values for 
objects with different data, but the same value for objects with identical data. 

9.5.6 Slam Dunking with Collections 

The java.util.Collections class is full of handy static methods that operate on Sets and 
Maps. (It's not the same as the java.util.Collection interface, which we've already talked 
about.) Since all the static methods in Collections operate on interfaces, they will work 
regardless of the actual implementation classes you're using. This is pretty powerful stuff. 

The Collections class includes these methods: 

public static Collection  
synchronizedCollection 
(Collection c)  
public static Set  
synchronizedSet 
(Set s)  
public static List  
synchronizedList 
(List list)  
public static Map  
synchronizedMap 
(Map m)  
public static SortedSet  
synchronizedSortedSet 
(SortedSet s)  
public static SortedMap  
synchronizedSortedMap 
(SortedMap m)  

These methods create synchronized, thread-safe versions of the supplied collection. This is 
useful if you're planning to access the collection from more than one thread. We'll talk a more 
about this later in this chapter. 

Furthermore, you can use the Collections class to create read-only versions of any collection: 

public static Collection  
unmodifiableCollection 
(Collection c)  
public static Set  
unmodifiableSet 
(Set s)  
public static List  
unmodifiableList 
(List list)  
public static Map  
unmodifiableMap 
(Map m)  
public static SortedSet  



unmodifiableSortedSet 
(SortedSet s)  
public static SortedMap  
unmodifiableSortedMap 
(SortedMap m)  

9.5.7 Sorting for Free 

Collections includes other methods for performing common operations like sorting. Sorting 
comes in two varieties: 

public static void    
sort 
(List   list)    

This method sorts the given list. You can use this method only on lists whose elements 
implement the java.lang.Comparable interface. Luckily, many classes already 
implement this interface, including String, Date, BigInteger, and the wrapper 
classes for the primitive types (Integer, Double, etc.). 

public static void    
sort 
(List   list, Comparator   c)    

Use this method to sort a list whose elements don't implement the Comparable 
interface. The supplied java.util.Comparator does the work of comparing elements. 
You might, for example, write an ImaginaryNumber class and want to sort a list of 
them. You would then create a Comparator implementation that knew how to compare 
two imaginary numbers. 

Collections gives you some other interesting capabilities, too. If you're interested in finding out 
more, check out the min( ), max( ), binarySearch( ), and reverse( ) methods. 

9.5.8 A Thrilling Example 

Collections is a bread-and-butter topic, which means it's hard to make exciting examples about it. 
The example in this section reads a text file, parses all its words, counts the number of 
occurrences, sorts them, and writes the results to another file. It will give you a good feel for how 
to use collections in your own programs. 

//file: WordSort.java 
import java.io.*; 
import java.util.*; 
 
public class WordSort { 
  public static void main(String[] args) throws IOException { 
    // get the command-line arguments 
    if (args.length < 2) { 
      System.out.println("Usage: WordSort inputfile outputfile"); 
      return; 
    } 
    String inputfile = args[0]; 
    String outputfile = args[1]; 



     
 
/* Create the word map. Each key is a word and each value is an 
 * Integer that represents the number of times the word occurs 
 * in the input file. 
 */ 
 
    Map map = new TreeMap( ); 
     
    // read every line of the input file 
    BufferedReader in = 
        new BufferedReader(new FileReader(inputfile)); 
    String line; 
 
    while ((line = in.readLine( )) != null) { 
      // examine each word on the line 
      StringTokenizer st = new StringTokenizer(line); 
      while (st.hasMoreTokens( )) { 
        String word = st.nextToken( ); 
        Object o = map.get(word); 
        // if there's no entry for this word, add one 
        if (o == null) map.put(word, new Integer(1)); 
        // otherwise, increment the count for this word 
        else { 
          Integer count = (Integer)o; 
          map.put(word, new Integer(count.intValue( ) + 1)); 
        } 
      } 
    } 
    in.close( ); 
     
    // get the map's keys and sort them 
    List keys = new ArrayList(map.keySet( )); 
    Collections.sort(keys); 
 
    // write the results to the output file 
    PrintWriter out = new PrintWriter(new FileWriter(outputfile)); 
    Iterator iterator = keys.iterator( ); 
    while (iterator.hasNext( )) { 
      Object key = iterator.next( ); 
      out.println(key + " : " + map.get(key)); 
    } 
    out.close( ); 
  } 
} 

Suppose, for example, that you have an input file named Ian Moore.txt: 

Well it was my love that kept you going 
Kept you strong enough to fall 
And it was my heart you were breaking 
When he hurt your pride 
 
So how does it feel 
How does it feel 
How does it feel 



How does it feel 

You could run the example on this file using the following command line: 

java WordSort "Ian Moore.txt" count.txt 

The output file, count.txt, looks like this: 

And : 1 
How : 3 
Kept : 1 
So : 1 
Well : 1 
When : 1 
breaking : 1 
does : 4 
enough : 1 
fall : 1 
feel : 4 
going : 1 
he : 1 
heart : 1 
how : 1 
hurt : 1 
it : 6 
kept : 1 
love : 1 
my : 2 
pride : 1 
strong : 1 
that : 1 
to : 1 
was : 2 
were : 1 
you : 3 
your : 1 

The results are case-sensitive: "How" is recorded separately from "how". You could modify this 
behavior by converting words to all lowercase after retrieving them from the StringTokenizer: 

String word = st.nextToken().toLowerCase( ); 

9.5.9 Thread Safety and Iterators 

If a collection will be accessed by more than one thread (see Chapter 8), things get a little tricky. 
Operations on the collection should be fast, but on the other hand, you need to make sure that 
different threads don't step on each other's toes with respect to the collection. 

The Collections class provides methods that will create a thread-safe version of any 
Collection. There are methods for each subtype of Collection. The following example 
shows how to create a thread-safe List: 

List list = new ArrayList( ); 
List syncList = Collections.synchronizedList(list); 



Although synchronized collections are thread-safe, the Iterators returned from them are not. 
This is an important point. If you obtain an Iterator from a collection, you should do your own 
synchronization to ensure that the collection does not change as you're iterating through its 
elements. You can do this with the synchronized keyword: 

synchronized(syncList) { 
    Iterator iterator = syncList.iterator( ); 
    // do stuff with the iterator here 
} 

9.5.10 WeakHashMap: An Interesting Variation 

WeakHashMap is an especially interesting collection. In some respects, it looks and behaves like 
a HashMap . What's interesting is that the key values in WeakHashMap are allowed to be 
harvested by the garbage collector. 

WeakHashMap makes use of weak references. As you'll recall, objects in Java are garbage-
collected when there are no longer any references to them. A weak reference is a special kind of 
reference that doesn't prevent the garbage collector from cleaning up the referenced object. 
Weak references and their siblings, soft references and phantom references, are implemented in 
the java.lang.ref package. We won't go into detail here; just the concept of a weak reference 
is important. 

Why is WeakHashMap useful? It means you don't have to remove key/value pairs from a Map 
when you're finished with them. Normally if you removed all references to a key object in the rest 
of your application, the Map would still contain a reference and keep the object "alive." 
WeakHashMap changes this; once you remove references to a key object in the rest of the 
application, the WeakHashMap lets go of it too. 

9.6 Properties 

The java.util.Properties class is a specialized hashtable for strings. Java uses the 
Properties object to replace the environment variables used in other programming 
environments. You can use a Properties object (or "table") to hold arbitrary configuration 
information for an application in an easily accessible format. The Properties object can also 
load and store information using streams (see Chapter 10, for information on streams). 

Any string values can be stored as key/value pairs in a Properties table. However, the 
convention is to use a dot-separated naming hierarchy to group property names into logical 
structures, as is done with X Window System resources on Unix systems.[7] The 
java.lang.System class provides system-environment information in this way, through a 
system Properties table we'll describe shortly. 

[7] Unfortunately, this is just a naming convention right now, so you can't access logical groups of properties 
as you can with X resources. 

Create an empty Properties table and add String key/value pairs just as with any 
Hashtable: 

Properties props = new Properties( );   
props.put("myApp.xsize", "52");   
props.put("myApp.ysize", "79"); 



Thereafter, you can retrieve values with the getProperty( ) method: 

String xsize = props.getProperty( "myApp.xsize" ); 

If the named property doesn't exist, getProperty( ) returns null. You can get an 
Enumeration of the property names with the propertyNames( ) method: 

for ( Enumeration e = props.propertyNames( ); e.hasMoreElements; ) { 
    String name = e.nextElement( );   
    ...   
} 

9.6.1 Default Values 

When you create a Properties table, you can specify a second table for default property 
values: 

Properties defaults;   
...   
Properties props = new Properties( defaults ); 

Now when you call getProperty( ), the method searches the default table if it doesn't find the 
named property in the current table. An alternative version of getProperty( ) also accepts a 
default value; this value instead of null is returned, if the property is not found in the current list 
or in the default list: 

String xsize = props.getProperty( "myApp.xsize", "50" ); 

9.6.2 Loading and Storing 

You can save a Properties table to an OutputStream using the save( ) method. The 
property information is output in flat ASCII format. Continuing with the previous example, output 
the property information to System.out as follows:  

props.save( System.out, "Application Parameters" ); 

System.out is a standard output stream similar to C's stdout. We could also save the 
information to a file by using a FileOutputStream as the first argument to save( ). The 
second argument to save( ) is a String that is used as a header for the data. The previous 
code outputs something like the following to System.out: 

#Application Parameters   
#Mon Feb 12 09:24:23 CST 1999 
myApp.ysize=79   
myApp.xsize=52 

The load( ) method reads the previously saved contents of a Properties object from an 
InputStream: 

FileInputStream fin;   
...   
Properties props = new Properties( )   



props.load( fin ); 

The list( ) method is useful for debugging. It prints the contents to an OutputStream in a 
format that is more human-readable but not retrievable by load( ). It truncates long lines with 
an ellipsis (...). 

9.6.3 System Properties 

The java.lang.System class provides access to basic system environment information 
through the static System.getProperty( ) method. This method returns a Properties table 
that contains system properties. System properties take the place of environment variables in 
some programming environments. Table 9.8 summarizes system properties that are guaranteed 
to be defined in any Java environment. 

Table 9.8. System Properties  
System Property Meaning 

java.vendor Vendor-specific string 
java.vendor.url URL of vendor 
java.version Java version 
java.home Java installation directory 
java.class.version Java class version 
java.class.path The class path 
os.name Operating system name 
os.arch Operating system architecture 
os.version Operating system version 
file.separator File separator (such as / or \) 

path.separator Path separator (such as : or ;) 

line.separator Line separator (such as \n or \r\n) 
user.name User account name 
user.home User's home directory 
user.dir Current working directory 

Applets are, by current web browser conventions, prevented from reading the following 
properties: java.home, java.class.path, user.name, user.home, and user.dir. As 
you'll see later, these restrictions are implemented by a SecurityManager object. 

Your application can set system properties with the static method System. setProperty( ). 
You can also set system properties when you run the Java interpreter, using the -D option: 

%java -Dfoo=bar -Dcat=Boojum MyApp 

Since it is common to use system properties to provide parameters such as numbers and colors, 
Java provides some convenience routines for retrieving property values and parsing them into 
their appropriate types. The classes Boolean, Integer, Long, and Color each come with a 
"get" method that looks up and parses a system property. For example, 
Integer.getInteger("foo") looks for a system property called foo and then returns it as 
an Integer. Color.getColor("foo") parses the property as an RGB value and returns a 
Color object. 



9.6.4 Observers and Observables 

The java.util.Observer interface and java.util.Observable class are relatively small 
utilities, but they provide a peek at a fundamental design pattern. The concept of observers and 
observables is part of the MVC (Model View Controller) framework. It is an abstraction that lets a 
number of client objects (the observers) be notified whenever a certain object or resource (the 
observable) changes in some way. We will see this pattern used extensively in Java's event 
mechanism. 

The basic idea behind observers and observables is that the Observable object has a method 
that an Observer calls to register its interest. When a change happens, the Observable sends 
a notification by calling a method in each of the Observers. The observers implement the 
Observer interface, which specifies that notification causes an Observer object's update( ) 
method to be called. 

In the following example, we create a MessageBoard object that holds a String message. 
MessageBoard extends Observable, from which it inherits the mechanism for registering 
observers (addObserver( )) and notifying observers (notifyObservers( )). To observe 
the MessageBoard, we have Student objects that implement the Observer interface so that 
they can be notified when the message changes: 

//file: MessageBoard.java 
import java.util.*;  
  
public class MessageBoard extends Observable {  
    private String message;  
  
    public String getMessage( ) {  
        return message;  
    }  
    public void changeMessage( String message ) {  
        this.message = message;  
        setChanged( );  
        notifyObservers( message );  
    }  
    public static void main( String [] args ) {  
        MessageBoard board = new MessageBoard( );  
        Student bob = new Student( );  
        Student joe = new Student( );  
        board.addObserver( bob );  
        board.addObserver( joe );  
        board.changeMessage("More Homework!");  
    }  
} // end of class MessageBoard 
  
class Student implements Observer {  
    public void update(Observable o, Object arg) {  
        System.out.println( "Message board changed: " + arg );  
    }  
} 

Our MessageBoard object extends Observable, which provides a method called 
addObserver( ). Each of our Student objects registers itself using this method and receives 
updates via its update( ) method. When a new message string is set, using the 



MessageBoard's changeMessage( ) method, the Observable calls the setChanged() and 
notifyObservers( ) methods to notify the observers. notifyObservers( ) can take as an 
argument an Object to pass along as an indication of the change. This object, in this case the 
String containing the new message, is passed to the observer's update( ) method, as its 
second argument. The first argument to update( ) is the Observable object itself. 

The main( ) method of MessageBoard creates a MessageBoard and registers two Student 
objects with it. Then it changes the message. When you run the code, you should see each 
Student object print the message as it is notified. 

You can imagine how you could implement the observer/observable relationship yourself using a 
Vector to hold the list of observers. In Chapter 13, and beyond, we'll see that the Swing event 
model extends this design patttern to use strongly typed notification objects and observers; these 
are events and event listeners. 

9.7 The Security Manager 

A Java application's access to system resources, such as the display, the filesystem, threads, 
external processes, and the network, can be controlled at a single point with a security manager. 
The class that implements this functionality in the Java API is the 
java.lang.SecurityManager class. 

As you saw in Chapter 3, the Java 2 platform provides a default security manager that you can 
use with the Java interpreter. For many applications, this default security manager is sufficient; for 
some types of applications, such as those that do custom class loading, you may need to write 
your own security manager. 

An instance of the SecurityManager class can be installed once, and only once, in the life of 
the Java runtime environment. Thereafter, every access to a fundamental system resource is 
filtered through specific methods of the SecurityManager object by the core Java packages. 
By installing a specialized SecurityManager, we can implement arbitrarily complex (or simple) 
security policies for allowing access to individual resources. 

When the Java runtime system starts executing, it's in a wide-open state until a 
SecurityManager is installed. The "null" security manager grants all requests, so the Java 
runtime system can perform any activity with the same level of access as other programs running 
under the user's authority. If the application that is running needs to ensure a secure 
environment, it can install a SecurityManager with the static 
System.setSecurityManager( ) method. For example, a Java-enabled web browser such 
as Netscape Navigator installs a SecurityManager before it runs any Java applets. 

java.lang.SecurityManager must be subclassed to be used. This class does not actually 
contain any abstract methods; it's abstract as an indication that its default implementation is 
not very useful. By default, each security method in SecurityManager is implemented to 
provide the strictest level of security. In other words, the default SecurityManager simply 
rejects all requests. 

The following example, MyApp, installs a trivial subclass of SecurityManager as one of its first 
activities: 

class FascistSecurityManager extends SecurityManager { }   
   



public class MyApp {   
    public static void main( String [] args ) {   
        System.setSecurityManager( new FascistSecurityManager( ) ); 
        // no access to files, network, windows, etc.   
        ...   
    }   
} 

In this scenario, MyApp does little aside from reading from System.in and writing to 
System.out. Any attempt to read or write files, access the network, or even open a window 
results in a SecurityException being thrown. 

After this draconian SecurityManager is installed, it's impossible to change the 
SecurityManager in any way. The security of this feature is not dependent on the 
SecurityManager itself; it's built into the Java runtime system. You can't replace or modify the 
SecurityManager under any circumstances. The upshot of this is that you have to install one 
that handles all your needs up front. 

To do something more useful, we can override the methods that are consulted for access to 
various kinds of resources. Table 9.9 lists some of the more important access methods. You 
should not normally have to call these methods yourself, although you could. They are called by 
the core Java classes before granting particular types of access. 

Table 9.9. SecurityManager Methods  
Method Can I . . . 

checkAccess(Thread g) Access this thread? 
checkExit(int status) Execute a System.exit( )? 

checkExec(String cmd) exec( ) this process? 
checkRead(String file) Read a file? 
checkWrite(String file) Write a file? 
checkDelete(String file) Delete a file? 
checkConnect(String host, int port) Connect a socket to a host? 
checkListen(int port) Create a server socket? 
checkAccept(String host, int port) Accept this connection? 
checkPropertyAccess(String key) Access this system property? 
checkTopLevelWindow(Object window) Create this new top-level window? 

Most of these methods simply return to grant access. If access is not granted, they throw a 
SecurityException. checkTopLevelWindow( ) is different; it returns a boolean value: 
true indicates the access is granted; false indicates the access is granted, but with the 
restriction that the new window should provide a warning border that serves to identify it as an 
untrusted window. 

Let's implement a silly SecurityManager that allows only files whose names begin with foo to 
be read: 

class  FooFileSecurityManager extends SecurityManager {   
   
    public void checkRead( String s ) {   
        if ( s.startsWith("foo") ) { 



            return true; 
        } else { 
            throw new SecurityException("Access to non-foo file: " 
              + s + " not allowed." );   
        } 
    }   
} 

Once the FooFileSecurityManager is installed, any attempt to read a badly named file from 
any class will fail and cause a SecurityException to be thrown. All other security methods are 
inherited from SecurityManager, so they are left at their default restrictiveness. 

As we've shown, security managers can make their decisions about what to allow and disallow 
based on any kind of criterion. One very powerful facility that the SecurityManager class 
provides is the classDepth() method. classDepth( ) takes as an argument the name of a 
Java class; it returns an integer indicating the depth of that class if it is present on the Java stack. 
The depth indicates the number of nested method invocations that occurred between the call to 
classDepth( ) and the last method invocation from the given class. This can be used to 
determine what class required the security check. 

For example, if a class shows a depth of 1, the security check must have been caused by a 
method in that class—there are no method calls intervening between the last call to that class 
and the call requiring the check. You could allow or refuse an operation based on the knowledge 
that it came from a specific class. 

All restrictions placed on applets by an applet-viewer application are enforced through a 
SecurityManager, including whether to allow untrusted code loaded from over the network to 
be executed. The AppletSecurityManager is responsible for applying the various rules for 
untrusted applets and allowing user configured access to trusted (signed) applets. 

9.8 Internationalization 

In order to deliver on the promise "write once, run anywhere," the engineers at Java designed the 
famous Java Virtual Machine. True, your program will run anywhere there is a JVM, but what 
about users in other countries? Will they have to know English to use your application? Java 1.1 
answers that question with a resounding "no," backed up by various classes that are designed to 
make it easy for you to write a "global" application. In this section, we'll talk about the concepts of 
internationalization and the classes that support them. 

9.8.1 The java.util.Locale Class 

Internationalization programming revolves around the Locale class. The class itself is very 
simple; it encapsulates a country code, a language code, and a rarely used variant code. 
Commonly used languages and countries are defined as constants in the Locale class. (It's 
ironic that these names are all in English.) You can retrieve the codes or readable names, as 
follows: 

Locale l = Locale.ITALIAN;  
System.out.println(l.getCountry( ));            // IT  
System.out.println(l.getDisplayCountry( ));     // Italy  
System.out.println(l.getLanguage( ));           // it  
System.out.println(l.getDisplayLanguage( ));    // Italian 



The country codes comply with ISO3166. A complete list of country codes is at 
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html. The language codes 
comply with ISO639. A complete list of language codes is at 
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt. There is no official set of variant 
codes; they are designated as vendor-specific or platform-specific. 

Various classes throughout the Java API use a Locale to decide how to represent themselves. 
We have already seen how the DateFormat class uses Locales to determine how to format 
and parse strings. 

9.8.2 Resource Bundles 

If you're writing an internationalized program, you want all the text that is displayed by your 
application to be in the correct language. Given what you have just learned about Locale, you 
could print out different messages by testing the Locale. This gets cumbersome quickly, 
however, because the messages for all Locales are embedded in your source code. 
ResourceBundle and its subclasses offer a cleaner, more flexible solution. 

A ResourceBundle is a collection of objects that your application can access by name, much 
like a Hashtable with String keys. The same ResourceBundle may be defined for many 
different Locales. To get a particular ResourceBundle, call the factory method 
ResourceBundle.getBundle( ), which accepts the name of a ResourceBundle and a 
Locale. The following example gets the ResourceBundle named "Message" for two Locales; 
from each bundle, it retrieves the message whose key is "HelloMessage" and prints the message. 

//file: Hello.java 
import java.util.*;  
 
public class Hello {  
  public static void main(String[] args) {  
    ResourceBundle bun;  
    bun = ResourceBundle.getBundle("Message", Locale.ITALY);  
    System.out.println(bun.getString("HelloMessage"));  
    bun = ResourceBundle.getBundle("Message", Locale.US);  
    System.out.println(bun.getString("HelloMessage"));  
  }  
} 

The getBundle( ) method throws the runtime exception MissingResourceException if an 
appropriate ResourceBundle cannot be located. 

Locales are defined in three ways. They can be standalone classes, in which case they will be 
either subclasses of ListResourceBundle or direct subclasses of ResourceBundle. They 
can also be defined by a property file, in which case they will be represented at runtime by a 
PropertyResourceBundle object. ResourceBundle.getBundle( ) returns either a 
matching class or an instance of PropertyResourceBundle corresponding to a matching 
property file. The algorithm used by getBundle( ) is based on appending the country and 
language codes of the requested Locale to the name of the resource. Specifically, it searches 
for resources in this order: 

name_language_country_variant  
name_language_country  
name_language  



name  
name_default-language_default-country_default-variant  
name_default-language_default-country  
name_default-language 

In this example, when we try to get the ResourceBundle named Message, specific to 
Locale.ITALY, it searches for the following names (no variant codes are in the Locales we 
are using): 

Message_it_IT  
Message_it  
Message  
Message_en_US  
Message_en 

Let's define the Message_it_IT ResourceBundle now, using a subclass of 
ListResourceBundle: 

import java.util.*;  
 
public class Message_it_IT extends ListResourceBundle {  
  public Object[][] getContents( ) {  
    return contents;  
  }  
    
  static final Object[][] contents = {  
    {"HelloMessage", "Buon giorno, world!"},  
    {"OtherMessage", "Ciao."},  
  };  
} 

ListResourceBundle makes it easy to define a ResourceBundle class; all we have to do is 
override the getContents( ) method. This method simply returns a two-dimensional array 
containing the names and values of its resources. In this example, contents[1][0] is the 
second key (OtherMessage), and contents [1][1] is the corresponding message (Ciao.). 

Now let's define a ResourceBundle for Locale.US. This time, we'll make a property file. Save 
the following data in a file called Message_en_US.properties: 

HelloMessage=Hello, world!  
OtherMessage=Bye. 

So what happens if somebody runs your program in Locale.FRANCE, and no 
ResourceBundle is defined for that Locale? To avoid a runtime 
MissingResourceException, it's a good idea to define a default ResourceBundle. So in our 
example, you could change the name of the property file to Message.properties. That way, if 
a language- or country-specific ResourceBundle cannot be found, your application can still run.  

9.8.3 The java.text Class 

The java.text package includes, among other things, a set of classes designed for generating 
and parsing string representations of objects. We have already seen one of these classes, 



DateFormat. In this section we'll talk about the other format classes: NumberFormat, 
ChoiceFormat, and MessageFormat. 

The NumberFormat class can be used to format and parse currency, percents, or plain old 
numbers. Like DateFormat, NumberFormat is an abstract class. However, it has several useful 
factory methods. For example, to generate currency strings, use getCurrencyInstance( ): 

double salary = 1234.56;  
String here =     // $1,234.56  
    NumberFormat.getCurrencyInstance( ).format(salary);   
String italy =    // L 1.234,56   
    NumberFormat.getCurrencyInstance(Locale.ITALY).format(salary); 

The first statement generates an American salary, with a dollar sign, a comma to separate 
thousands, and a period as a decimal point. The second statement presents the same string in 
Italian, with a lire sign, a period to separate thousands, and a comma as a decimal point. 
Remember that NumberFormat worries about format only; it doesn't attempt to do currency 
conversion. (Among other things, that would require access to a dynamically updated table and 
exchange rates—a good opportunity for a Java Bean but too much to ask of a simple formatter.) 

Likewise, getPercentInstance( ) returns a formatter you can use for generating and parsing 
percents. If you do not specify a Locale when calling a getInstance( ) method, the default 
Locale is used: 

int progress = 44; 
NumberFormat pf = NumberFormat.getPercentInstance( );  
System.out.println(pf.format(progress));      // "44%"  
try {  
    System.out.println(pf.parse("77.2%"));    // "0.772"  
}  
catch (ParseException e) {} 

And if you just want to generate and parse plain old numbers, use a NumberFormat returned by 
getInstance() or its equivalent, getNumberInstance( ): 

NumberFormat guiseppe = NumberFormat.getInstance(Locale.ITALY);  
 
// defaults to Locale.US 
NumberFormat joe = NumberFormat.getInstance( );  
 
try {  
  double theValue = guiseppe.parse("34.663,252").doubleValue( );  
  System.out.println(joe.format(theValue));  // "34,663.252" 
}  
catch (ParseException e) {} 

We use guiseppe to parse a number in Italian format (periods separate thousands, comma is 
the decimal point). The return type of parse( ) is Number, so we use the doubleValue( ) 
method to retrieve the value of the Number as a double. Then we use joe to format the number 
correctly for the default (U.S.) locale. 

Here's a list of the factory methods for text formatters in the java.text package: 



DateFormat.getDateInstance( )  
DateFormat.getDateInstance(int style)  
DateFormat.getDateInstance(int style, Locale aLocale)  
DateFormat.getDateTimeInstance( )  
DateFormat.getDateTimeInstance(int dateStyle, int timeStyle)  
DateFormat.getDateTimeInstance(int dateStyle, int timeStyle, Locale 
aLocale)  
DateFormat.getInstance( )  
DateFormat.getTimeInstance( )  
DateFormat.getTimeInstance(int style)  
DateFormat.getTimeInstance(int style, Locale aLocale)  
NumberFormat.getCurrencyInstance( )  
NumberFormat.getCurrencyInstance(Locale inLocale)  
NumberFormat.getInstance( )  
NumberFormat.getInstance(Locale inLocale)  
NumberFormat.getNumberInstance( )  
NumberFormat.getNumberInstance(Locale inLocale)  
NumberFormat.getPercentInstance( )  
NumberFormat.getPercentInstance(Locale inLocale) 

Thus far we've seen how to format dates and numbers as text. Now we'll take a look at a class, 
ChoiceFormat, that maps numerical ranges to text. ChoiceFormat is constructed by 
specifying the numerical ranges and the strings that correspond to them. One constructor accepts 
an array of doubles and an array of Strings, where each string corresponds to the range 
running from the matching number up through (but not including) the next number: 

double[] limits = {0, 20, 40};  
String[] labels = {"young", "less young", "old"};  
ChoiceFormat cf = new ChoiceFormat(limits, labels);  
System.out.println(cf.format(12)); // young  
System.out.println(cf.format(26)); // less young 

You can specify both the limits and the labels using a special string in an alternative 
ChoiceFormat constructor: 

ChoiceFormat cf = new ChoiceFormat("0#young|20#less young|40#old");  
System.out.println(cf.format(40)); // old  
System.out.println(cf.format(50)); // old 

The limit and value pairs are separated by vertical bar (|) characters; the number sign (#) 
separates each limit from its corresponding value. 

To complete our discussion of the formatting classes, we'll take a look at another class, 
MessageFormat, that helps you construct human-readable messages. To construct a 
MessageFormat, pass it a pattern string. A pattern string is a lot like the string you feed to 
printf( ) in C, although the syntax is different. Arguments are delineated by curly brackets 
and may include information about how they should be formatted. Each argument consists of a 
number, an optional type, and an optional style. These are summarized in Table 9.10. 

Table 9.10. MessageFormat Arguments  
Type Styles 

choice pattern 
date short, medium, long, full, pattern 



number integer, percent, currency, pattern 

time short, medium, long, full, pattern 

Let's use an example to clarify all of this: 

MessageFormat mf = new MessageFormat("You have {0} messages.");  
Object[] arguments = {"no"};  
System.out.println(mf.format(arguments)); // "You have no messages." 

We start by constructing a MessageFormat object; the argument to the constructor is the pattern 
on which messages will be based. The special incantation {0} means "in this position, substitute 
element 0 from the array passed as an argument to the format( ) method." Thus, we construct 
a MessageFormat object. When we generate a message, by calling format( ), we pass in 
values to replace the placeholders ({0}, {1}, . . . ) in the template. In this case, we pass the 
array arguments[] to mf.format; this substitutes arguments[0], yielding the result You 
have no messages. 

Let's try this example again, except we'll show how to format a number and a date instead of a 
string argument: 

MessageFormat mf = new MessageFormat(  
    "You have {0, number, integer} messages on {1, date, long}."); 
Object[] arguments = {new Integer(93), new Date( )};  
 
// "You have 93 messages on April 10, 1999." 
System.out.println(mf.format(arguments)); 

In this example, we need to fill in two spaces in the template, and therefore we need two 
elements in the arguments[] array. Element 0 must be a number and is formatted as an 
integer. Element 1 must be a Date and will be printed in the long format. When we call format( 
), the arguments[] array supplies these two values. 

This is still sloppy. What if there is only one message? To make this grammatically correct, we 
can embed a ChoiceFormat-style pattern string in our MessageFormat pattern string: 

MessageFormat mf = new MessageFormat(  
  "You have {0, number, integer} message{0, choice, 0#s|1#|2#s}."); 
Object[] arguments = {new Integer(1)};  
 
// "You have 1 message." 
System.out.println(mf.format(arguments)); 

In this case, we use element 0 of arguments[] twice: once to supply the number of messages, 
and once to provide input to the ChoiceFormat pattern. The pattern says to add an s if 
argument 0 has the value zero or is two or more. 

Finally, a few words on how to be clever. If you want to write international programs, you can use 
resource bundles to supply the strings for your MessageFormat objects. This way, you can 
automatically format messages that are in the appropriate language with dates and other 
language-dependent fields handled appropriately. 



In this context, it's helpful to realize that messages don't need to read elements from the array in 
order. In English, you would say "Disk C has 123 files"; in some other language, you might say 
"123 files are on Disk C." You could implement both messages with the same set of arguments: 

MessageFormat m1 = new MessageFormat(  
    "Disk {0} has {1, number, integer} files.");  
MessageFormat m2 = new MessageFormat(  
    "{1, number, integer} files are on disk {0}.");  
Object[] arguments = {"C", new Integer(123)}; 

In real life, the code could be even more compact; you'd only use a single MessageFormat 
object, initialized with a string taken from a resource bundle. 



Chapter 10. Input/Output Facilities 

In this chapter, we'll continue our exploration of the Java API by looking at many of the classes in 
the java.io package. Figure 10.1 shows the class hierarchy of the java.io package. 

Figure 10.1. The java.io package 

 



We'll start by looking at the stream classes in java.io; these classes are all subclasses of the 
basic InputStream, OutputStream, Reader, and Writer classes. Then we'll examine the 
File class and discuss how you can interact with the filesystem using classes in java.io. 
Finally, we'll take a quick look at the data compression classes provided in java.util.zip. 

10.1 Streams 

All fundamental I/O in Java is based on streams. A stream represents a flow of data, or a channel 
of communication with (at least conceptually) a writer at one end and a reader at the other. When 
you are working with terminal input and output, reading or writing files, or communicating through 
sockets in Java, you are using a stream of one type or another. So that you can see the forest 
without being distracted by the trees, we'll start by summarizing the classes involved with the 
different types of streams: 

InputStream/OutputStream  

Abstract classes that define the basic functionality for reading or writing an unstructured 
sequence of bytes. All other byte streams in Java are built on top of the basic 
InputStream and OutputStream.  

Reader/Writer  

Abstract classes that define the basic functionality for reading or writing a sequence of 
character data, with support for Unicode. All other character streams in Java are built on 
top of Reader and Writer. 

InputStreamReader/ OutputStreamWriter  

"Bridge" classes that convert bytes to characters and vice versa. Remember: in Unicode, 
a character is not a byte! 

DataInputStream/ DataOutputStream  

Specialized stream filters that add the ability to read and write simple data types, such as 
numeric primitives and String objects, in a universal format. 

ObjectInputStream/ObjectOutputStream  

Specialized stream filters that are capable of writing serialized Java objects and 
reconstructing them. 

BufferedInputStream/BufferedOutputStream/BufferedReader/BufferedWriter  

Specialized stream filters that add buffering for additional efficiency. 

PrintWriter  

A specialized character stream that makes it simple to print text. 

PipedInputStream/PipedOutputStream/PipedReader/PipedWriter  



"Double-ended" streams that normally occur in pairs. Data written into a 
PipedOutputStream or PipedWriter is read from its corresponding 
PipedInputStream or PipedReader. 

FileInputStream/FileOutputStream/FileReader/FileWriter  

Implementations of InputStream, OutputStream, Reader, and Writer that read 
from and write to files on the local filesystem. 

Streams in Java are one-way streets. The java.io input and output classes represent the ends 
of a simple stream, as shown in Figure 10.2. For bidirectional conversations, we use one of 
each type of stream. 

Figure 10.2. Basic input and output stream functionality 

 

InputStream and OutputStream are abstract classes that define the lowest-level interface 
for all byte streams. They contain methods for reading or writing an unstructured flow of byte-level 
data. Because these classes are abstract, you can't create a generic input or output stream. Java 
implements subclasses of these for activities like reading from and writing to files and 
communicating with sockets. Because all byte streams inherit the structure of InputStream or 
OutputStream, the various kinds of byte streams can be used interchangeably. A method 
specifying an InputStream as an argument can, of course, accept any subclass of 
InputStream. Specialized types of streams can also be layered to provide features, such as 
buffering, filtering, or handling larger data types. 

In Java 1.1, new classes based around Reader and Writer were added to the java.io 
package. Reader and Writer are very much like InputStream and OutputStream, except 
that they deal with characters instead of bytes. As true character streams, these classes correctly 
handle Unicode characters, which was not always the case with the byte streams. However, 
some sort of bridge is needed between these character streams and the byte streams of physical 
devices like disks and networks. InputStreamReader and OutputStreamWriter are special 
classes that use an encoding scheme to translate between character and byte streams. 

We'll discuss all of the interesting stream types in this section, with the exception of 
FileInputStream, FileOutputStream, FileReader, and FileWriter. We'll postpone the 
discussion of file streams until the next section, where we'll cover issues involved with accessing 
the filesystem in Java. 

10.1.1 Terminal I/O 

The prototypical example of an InputStream object is the "standard input" of a Java application. 
Like stdin in C or cin in C++, this object reads data from the program's environment, which is 
usually a terminal window or a command pipe. The java.lang.System class, a general 



repository for system-related resources, provides a reference to standard input in the static 
variable in. System also provides objects for standard output and standard error in the out and 
err variables, respectively. The following example shows the correspondence: 

InputStream stdin = System.in;   
OutputStream stdout = System.out;   
OutputStream stderr = System.err; 

This example hides the fact that System.out and System.err aren't really OutputStream 
objects, but more specialized and useful PrintStream objects. We'll explain these later, but for 
now we can reference out and err as OutputStream objects, since they are a kind of 
OutputStream as well. 

We can read a single byte at a time from standard input with the InputStream's read( ) 
method. If you look closely at the API, you'll see that the read( ) method of the base 
InputStream class is an abstract method. What lies behind System.in is a particular 
implementation of InputStream—the subclass provides a real implementation of the read( ) 
method. 

try {   
    int val = System.in.read( );   
    ...   
}   
catch ( IOException e ) {   
    ...   
} 

As is the convention in C, read( ) provides a byte of information, but its return type is int. A 
return value of -1 indicates a normal end of stream has been reached; you'll need to test for this 
condition when using the simple read( ) method. If an error occurs during the read, an 
IOException is thrown. All basic input and output stream commands can throw an 
IOException, so you should arrange to catch and handle them appropriately. 

To retrieve the value as a byte, perform a cast: 

byte b = (byte) val; 

Be sure to check for the end-of-stream condition before you perform the cast. 

An overloaded form of read( ) fills a byte array with as much data as possible up to the 
capacity of the array, and returns the number of bytes read: 

byte [] bity = new byte [1024];   
int got = System.in.read( bity ); 

We can also check the number of bytes available for reading on an InputStream with the 
available( ) method. Using that information, we could create an array of exactly the right 
size: 

int waiting = System.in.available( );   
if ( waiting > 0 ) {   
    byte [] data = new byte [ waiting ];   



    System.in.read( data );   
    ...   
} 

However, the reliability of this technique depends on the ability of the underlying stream 
implementation to detect how much data is arriving. 

InputStream provides the skip( ) method as a way of jumping over a number of bytes. 
Depending on the implementation of the stream, skipping bytes may be more efficient than 
reading them. The close( ) method shuts down the stream and frees up any associated 
system resources. It's a good idea to close a stream when you are done using it. 

10.1.2 Character Streams 

Some InputStream and OutputStream subclasses of early versions of Java included 
methods for reading and writing strings, but most of them operated by assuming that a 16-bit 
Unicode character was equivalent to an 8-bit byte in the stream. This works only for Latin-1 (ISO 
8859-1) characters, so the character stream classes Reader and Writer were introduced in 
Java 1.1. Two special classes, InputStreamReader and OutputStreamWriter, bridge the 
gap between the world of character streams and the world of byte streams. These are character 
streams that are wrapped around an underlying byte stream. An encoding scheme is used to 
convert between bytes and characters. An encoding scheme name can be specified in the 
constructor of InputStreamReader or OutputStreamWriter. Or the default constructor can 
be used, which uses the system's default encoding scheme. For example, let's parse a human-
readable string from the standard input into an integer. We'll assume that the bytes coming from 
System.in use the system's default encoding scheme: 

try {  
    InputStreamReader converter = new InputStreamReader(System.in); 
    BufferedReader in = new BufferedReader(converter);  
      
    String text = in.readLine( );  
    int i = NumberFormat.getInstance().parse(text).intValue( );  
}   
catch ( IOException e ) { }  
catch ( ParseException pe ) { } 

First, we wrap an InputStreamReader around System.in. This object converts the incoming 
bytes of System.in to characters using the default encoding scheme. Then, we wrap a 
BufferedReader around the InputStreamReader. BufferedReader gives us the 
readLine( ) method, which we can use to convert a full line of text into a String. The string is 
then parsed into an integer using the techniques described in Chapter 9. 

We could have programmed the previous example using only byte streams, and it would have 
worked for users in the United States, at least. So why go to the extra trouble of using character 
streams? Character streams were introduced in Java 1.1 to correctly support Unicode strings. 
Unicode was designed to support almost all of the written languages of the world. If you want to 
write a program that works in any part of the world, in any language, you definitely want to use 
streams that don't mangle Unicode. 

So how do you decide when you need a byte stream (InputStream or OutputStream) and 
when you need a character stream? If you want to read or write character strings, use some 
variety of Reader or Writer. Otherwise, a byte stream should suffice. Let's say, for example, 



that you want to read strings from a file that was written by an earlier Java application. In this 
case, you could simply create a FileReader, which will convert the bytes in the file to 
characters using the system's default encoding scheme. If you have a file in a specific encoding 
scheme, you can create an InputStreamReader with the specified encoding scheme wrapped 
around a FileInputStream and read characters from it. 

Another example comes from the Internet. Web servers serve files as byte streams. If you want to 
read Unicode strings with a particular encoding scheme from a file on the network, you'll need an 
appropriate InputStreamReader wrapped around the InputStream of the web server's 
socket. 

10.1.3 Stream Wrappers 

What if we want to do more than read and write a sequence of bytes or characters? We can use 
a "filter" stream, which is a type of InputStream, OutputStream, Reader, or Writer that 
wraps another stream and adds new features. A filter stream takes the target stream as an 
argument in its constructor and delegates calls to it after doing some additional processing of its 
own. For example, you could construct a BufferedInputStream to wrap the system standard 
input: 

InputStream bufferedIn = new BufferedInputStream( System.in ); 

The BufferedInputStream is a type of filter stream that reads ahead and buffers a certain 
amount of data. (We'll talk more about it later in this chapter.) The BufferedInputSream wraps 
an additional layer of functionality around the underlying stream. Figure 10.3 shows this 
arrangment for a DataInputStream . 

As you can see from the previous code snippet, the BufferedInputStream filter is a type of 
InputStream. Because filter streams are themselves subclasses of the basic stream types, they 
can be used as arguments to the construction of other filter streams. This allows filter streams to 
be layered on top of on another to provide different combinations of features. For example, we 
could first wrap our System.in with a BufferedInputStream and then wrap the 
BufferedInputSream with a DataInputStream for reading special data types. 

There are four superclasses corresponding to the four types of filter streams: 
FilterInputStream , FilterOutputStream , FilterReader, and FilterWriter. The 
first two are for filtering byte streams, and the last two are for filtering character streams. These 
superclasses provide the basic machinery for a "no op" filter (a filter that doesn't do anything) by 
delegating all of their method calls to their underlying stream. Real filter streams subclass these 
and override various methods to add their additional processing. We'll make a filter stream a little 
later in this chapter. 

Figure 10.3. Layered streams 



 

10.1.3.1 Data streams 

DataInputStream and DataOutputStream are filter streams that let you read or write strings 
and primitive data types that comprise more than a single byte. DataInputStream and 
DataOutputStream implement the DataInput and DataOutput interfaces, respectively. 
These interfaces define the methods required for streams that read and write strings and Java 
primitive numeric and boolean types in a machine-independent manner. 

You can construct a DataInputStream from an InputStream and then use a method like 
readDouble( ) to read a primitive data type: 

DataInputStream dis = new DataInputStream( System.in );   
double d = dis.readDouble( ); 

This example wraps the standard input stream in a DataInputStream and uses it to read a 
double value. readDouble( ) reads bytes from the stream and constructs a double from 
them. The DataInputStream methods expect the bytes of numeric data types to be in network 
byte order, a standard that specifies that the high order bytes are sent first. 

The DataOutputStream class provides write methods that correspond to the read methods in 
DataInputStream. For example, writeInt( ) writes an integer in binary format to the 
underlying output stream. 

The readUTF( ) and writeUTF( ) methods of DataInputStream and DataOutputStream 
read and write a Java String of Unicode characters using the UTF-8 "transformation format." 
UTF-8 is an ASCII-compatible encoding of Unicode characters commonly used for the 
transmission and storage of Unicode text. This differs from the Reader and Writer streams, 
which can use arbitrary encodings and may not preserve all of the Unicode characters. 

We can use a DataInputStream with any kind of input stream, whether it be from a file, a 
socket, or standard input. The same applies to using a DataOutputStream, or, for that matter, 
any other specialized streams in java.io. 

10.1.3.2 Buffered streams 

The BufferedInputStream, BufferedOutputStream, BufferedReader, and 
BufferedWriter classes add a data buffer of a specified size to the stream path. A buffer can 



increase efficiency by reducing the number of physical read or write operations that correspond to 
read( ) or write( ) method calls. You create a buffered stream with an appropriate input or 
output stream and a buffer size. (You can also wrap another stream around a buffered stream, so 
that it benefits from the buffering.) Here's a simple buffered input stream: 

BufferedInputStream bis = 
  new BufferedInputStream(myInputStream, 4096); 
...  
bis.read( ); 

In this example, we specify a buffer size of 4096 bytes. If we leave off the size of the buffer in the 
constructor, a reasonably sized one is chosen for us. On our first call to read( ), bis tries to fill 
the entire 4096-byte buffer with data. Thereafter, calls to read( ) retrieve data from the buffer, 
which is refilled as necessary. 

A BufferedOutputStream works in a similar way. Calls to write( ) store the data in a 
buffer; data is actually written only when the buffer fills up. You can also use the flush( ) 
method to wring out the contents of a BufferedOutputStream at any time. The flush( ) 
method is actually a method of the OutputStream class itself. It's important because it allows 
you to be sure that all data in any underlying streams and filter streams has been sent (before, for 
example, you wait for a response). 

Some input streams like BufferedInputStream support the ability to mark a location in the 
data and later reset the stream to that position. The mark( ) method sets the return point in the 
stream. It takes an integer value that specifies the number of bytes that can be read before the 
stream gives up and forgets about the mark. The reset( ) method returns the stream to the 
marked point; any data read after the call to mark( ) is read again. 

This functionality is especially useful when you are reading the stream in a parser. You may 
occasionally fail to parse a structure and so must try something else. In this situation, you can 
have your parser generate an error (a homemade ParseException) and then reset the stream 
to the point before it began parsing the structure: 

BufferedInputStream input;   
...   
try {   
    input.mark( MAX_DATA_STRUCTURE_SIZE );   
    return( parseDataStructure( input ) );   
}   
catch ( ParseException e ) {   
    input.reset( );   
    ...   
} 

The BufferedReader and BufferedWriter classes work just like their byte-based 
counterparts, but operate on characters instead of bytes. 

10.1.3.3 Print streams 

Another useful wrapper stream is java.io.PrintWriter. This class provides a suite of 
overloaded print( ) methods that turn their arguments into strings and push them out the 
stream. A complementary set of println( ) methods adds a newline to the end of the strings. 



PrintWriter is an unusual character stream because it can wrap either an OutputStream or 
another Writer. 

PrintWriter is the more capable big brother of the PrintStream byte stream. The 
System.out and System.err streams are PrintStream objects; you have already seen such 
streams strewn throughout this book: 

System.out.print("Hello world...\n");   
System.out.println("Hello world...");   
System.out.println( "The answer is: " + 17 );   
System.out.println( 3.14 ); 

PrintWriter and PrintStream have a strange, overlapping history. Early versions of Java 
did not have the Reader and Writer classes and streams like PrintStream, which must of 
necessity convert bytes to characters simply made assumptions about the character encoding. As 
of Java 1.1, the PrintStream class was enhanced to translate characters to bytes using the 
system's default encoding scheme. For all new development, however, use a PrintWriter 
instead of a PrintStream. Because a PrintWriter can wrap an OutputStream, the two 
classes are more or less interchangeable. 

When you create a PrintWriter object, you can pass an additional boolean value to the 
constructor. If this value is true, the PrintWriter automatically performs a flush( ) on the 
underlying OutputStream or Writer each time it sends a newline: 

boolean autoFlush = true;   
PrintWriter p = new PrintWriter( myOutputStream, autoFlush ); 

When this technique is used with a buffered output stream, it corresponds to the behavior of 
terminals that send data line by line. 

Unlike methods in other stream classes, the methods of PrintWriter and PrintStream do 
not throw IOExceptions. This makes life a lot easier for printing text, which is a very common 
operation. Instead, if we are interested, we can check for errors with the checkError( ) 
method: 

System.out.println( reallyLongString );   
if ( System.out.checkError( ) )                // uh oh 

10.1.4 Pipes 

Normally, our applications are directly involved with one side of a given stream at a time. 
PipedInputStream and PipedOutputStream (or PipedReader and PipedWriter ), 
however, let us create two sides of a stream and connect them together, as shown in Figure 
10.4. This can be used to provide a stream of communication between threads, for example, or 
as a "loop-back" for testing. 

Figure 10.4. Piped streams 



 

To create a byte stream pipe, we use both a PipedInputStream and a PipedOutputStream. 
We can simply choose a side and then construct the other side using the first as an argument: 

PipedInputStream pin = new PipedInputStream( );   
PipedOutputStream pout = new PipedOutputStream( pin ); 

Alternatively: 

PipedOutputStream pout = new PipedOutputStream( );   
PipedInputStream pin = new PipedInputStream( pout ); 

In each of these examples, the effect is to produce an input stream, pin, and an output stream, 
pout, that are connected. Data written to pout can then be read by pin. It is also possible to 
create the PipedInputStream and the PipedOutputStream separately, and then connect 
them with the connect( ) method. 

We can do exactly the same thing in the character-based world, using PipedReader and 
PipedWriter in place of PipedInputStream and PipedOutputStream. 

Once the two ends of the pipe are connected, use the two streams as you would other input and 
output streams. You can use read( ) to read data from the PipedInputStream (or 
PipedReader) and write( ) to write data to the PipedOutputStream (or PipedWriter). If 
the internal buffer of the pipe fills up, the writer blocks and waits until space is available. 
Conversely, if the pipe is empty, the reader blocks and waits until some data is available. 

One advantage to using piped streams is that they provide stream functionality in our code, 
without compelling us to build new, specialized streams. For example, we can use pipes to create 
a simple logging facility for our application. We can send messages to the logging facility through 
an ordinary PrintWriter, and then it can do whatever processing or buffering is required 
before sending the messages off to their ultimate location. Because we are dealing with string 
messages, we use the character-based PipedReader and PipedWriter classes. The 
following example shows the skeleton of our logging facility: 

//file: LoggerDaemon.java 
import java.io.*;   
   
class LoggerDaemon extends Thread {   
    PipedReader in = new PipedReader( );    
   
    LoggerDaemon( ) {   
        start( );   
    }   
   



    public void run( ) {   
        BufferedReader bin = new BufferedReader( in );   
        String s;   
    
        try {   
           while ( (s = bin.readLine( )) != null ) {   
                // process line of data   
                // ...   
            }   
        }    
        catch (IOException e ) { }   
    }   
   
    PrintWriter getWriter( ) throws IOException {   
        return new PrintWriter( new PipedWriter( in ) );   
    }   
}   
   
class myApplication {   
    public static void main ( String [] args ) throws IOException { 
        PrintWriter out = new LoggerDaemon().getWriter( );   
 
        out.println("Application starting...");   
        // ...   
        out.println("Warning: does not compute!");   
        // ...   
    }   
} 

LoggerDaemon reads strings from its end of the pipe, the PipedReader named in. 
LoggerDaemon also provides a method, getWriter( ), that returns a PipedWriter that is 
connected to its input stream. To begin sending messages, we create a new LoggerDaemon and 
fetch the output stream. 

In order to read strings with the readLine( ) method, LoggerDaemon wraps a 
BufferedReader around its PipedReader. For convenience, it also presents its output pipe as 
a PrintWriter, rather than a simple Writer. 

One advantage of implementing LoggerDaemon with pipes is that we can log messages as 
easily as we write text to a terminal or any other stream. In other words, we can use all our 
normal tools and techniques. Another advantage is that the processing happens in another 
thread, so we can go about our business while the processing takes place. 

There is nothing stopping us from connecting more than two piped streams. For example, we 
could chain multiple pipes together to perform a series of filtering operations. Note that in this 
example, there is nothing to prevent messages printed to the pipe from different threads being 
mixed together. To do that we might have to create a number of pipes, one for each thread, in the 
getWriter( ) method. 

10.1.5 Strings to Streams and Back 

StringReader is another useful stream class; it essentially wraps stream functionality around a 
String. Here's how to use a StringReader: 



String data = "There once was a man from Nantucket...";   
StringReader sr = new StringReader( data );   
   
char T = (char)sr.read( );   
char h = (char)sr.read( );   
char e = (char)sr.read( ); 

Note that you will still have to catch IOExceptions thrown by some of the StringReader's 
methods. 

The StringReader class is useful when you want to read data in a String as if it were coming 
from a stream, such as a file, pipe, or socket. For example, suppose you create a parser that 
expects to read tokens from a stream. But you want to provide a method that also parses a big 
string. You can easily add one using StringReader. 

Turning things around, the StringWriter class lets us write to a character buffer through an 
output stream. The internal buffer grows as necessary to accommodate the data. When we are 
done we can fetch the contents of the buffer as a String. In the following example, we create a 
StringWriter and wrap it in a PrintWriter for convenience: 

StringWriter buffer = new StringWriter( );   
PrintWriter out = new PrintWriter( buffer );   
   
out.println("A moose once bit my sister.");   
out.println("No, really!");   
 
String results = buffer.toString( ); 

First we print a few lines to the output stream, to give it some data, then retrieve the results as a 
string with the toString( ) method. Alternately, we could get the results as a StringBuffer 
object using the getBuffer( ) method. 

The StringWriter class is useful if you want to capture the output of something that normally 
sends output to a stream, such as a file or the console. A PrintWriter wrapped around a 
StringWriter is a viable alternative to using a StringBuffer to construct large strings piece 
by piece. 

10.1.6 The rot13InputStream Class 

Before we leave streams, let's try our hand at making one of our own. I mentioned earlier that 
specialized stream wrappers are built on top of the FilterInputStream and 
FilterOutputStream classes. It's quite easy to create our own subclass of 
FilterInputStream that can be wrapped around other streams to add new functionality. 

The following example, rot13InputStream, performs a rot13 (rotate by 13 letters) operation on 
the bytes that it reads. rot13 is a trivial obfuscation algorithm that shifts alphanumeric letters to 
make them not quite human-readable; it's cute because it's symmetric. That is, to "un-rot13" 
some text, simply rot13 it again. We'll use the rot13InputStream class again in the crypt 
protocol handler example in , so we've put the class in the learningjava.io package to 
facilitate reuse. Here's our rot13InputStream class: 

//file: rot13InputStream.java 
package learningjava.io; 



import java.io.*;   
 
public class rot13InputStream extends FilterInputStream {   
 
    public rot13InputStream ( InputStream i ) {   
        super( i );   
    }   
 
    public int read( ) throws IOException {   
        return rot13( in.read( ) );   
    }   
  
    private int rot13 ( int c ) {  
        if ( (c >= 'A') && (c <= 'Z') )  
            c=(((c-'A')+13)%26)+'A';  
        if ( (c >= 'a') && (c <= 'z') )  
            c=(((c-'a')+13)%26)+'a';  
        return c;  
    }  
} 

The FilterInputStream needs to be initialized with an InputStream; this is the stream to be 
filtered. We provide an appropriate constructor for the rot13InputStream class and invoke the 
parent constructor with a call to super( ). FilterInputStream contains a protected instance 
variable, in, where it stores a reference to the specified InputStream, making it available to the 
rest of our class. 

The primary feature of a FilterInputStream is that it delegates its input tasks to the 
underlying InputStream. So, for instance, a call to FilterInputStream's read( )simply 
turns around and calls the read( ) method of the underlying InputStream, to fetch a byte. 

Filtering amounts to doing extra work (such as encryption) on the data as it passes through. In 
our example, the read( ) method to fetches a byte from the underlying InputStream, in, and 
then performs the rot13 shift on the byte before returning it. Note that the rot13( ) method 
shifts alphabetic characters, while simply passing all other values, including the end-of-stream 
value (-1). Our subclass is now a rot13 filter. 

run( ) is the only InputStream method that FilterInputStream overrides. All other 
normal functionality of an InputStream, like skip( ) and available( ), is unmodified, so 
calls to these methods are answered by the underlying InputStream. 

Strictly speaking, rot13InputStream works only on an ASCII byte stream, since the underlying 
algorithm is based on the Roman alphabet. A more generalized character-scrambling algorithm 
would have to be based on FilterReader to handle 16-bit Unicode classescorrectly. (Anyone 
want to try rot32768 ?) 

10.2 Files 

Unless otherwise restricted, a Java application can read and write to the host filesystem with the 
same level of access as the user who runs the Java interpreter. Java applets and other kinds of 
untrusted applications can, of course, be restricted by the security policy and cut off from these 
services. We'll discuss applet access at the end of this section. First, let's take a look at the tools 
for basic file access. 



Working with files in Java is still somewhat problematic. The host filesystem lies outside of Java's 
virtual environment, in the real world, and can therefore still suffer from architecture and 
implementation differences. Java tries to mask some of these differences by providing information 
to help an application tailor itself to the local environment; we'll mention these areas as they 
occur. 

10.2.1 The java.io.File Class 

The java.io.File class encapsulates access to information about a file or directory entry in 
the filesystem. It can be used to get attribute information about a file, list the entries in a directory, 
and perform basic filesystem operations like removing a file or making a directory. While the 
File object handles these tasks, it doesn't provide direct access for reading and writing file data; 
there are specialized streams for that purpose. 

10.2.1.1 File constructors 

You can create an instance of File from a String pathname: 

File fooFile = new File( "/tmp/foo.txt" );   
File barDir = new File( "/tmp/bar" ); 

You can also create a file with a relative path: 

File f = new File( "foo" ); 

In this case, Java works relative to the current directory of the Java interpreter. You can 
determine the current directory by checking the user.dir property in the System Properties 
list: 

System.getProperty("user.dir")); 

An overloaded version of the File constructor lets you specify the directory path and filename as 
separate String objects: 

File fooFile = new File( "/tmp", "foo.txt" ); 

With yet another variation, you can specify the directory with a File object and the filename with 
a String: 

File tmpDir = new File( "/tmp" );   
File fooFile = new File ( tmpDir, "foo.txt" ); 

None of the File constructors throw any exceptions. This means the object is created whether or 
not the file or directory actually exists; it isn't an error to create a File object for a nonexistent 
file. You can use the object's exists( ) instance method to find out whether the file or directory 
exists. The File object simply exists as a handle for getting information about what is (potentially 
at least) a file or directory. 

10.2.1.2 Path localization 

One of the reasons that working with files in Java is problematic is that pathnames are expected 
to follow the conventions of the local filesystem. Java's designers intend to provide an abstraction 



that deals with most system-dependent filename features, such as the file separator, path 
separator, device specifier, and root directory. Unfortunately, not all these features are 
implemented in the current version. 

On some systems, Java can compensate for differences such as the direction of the file separator 
slashes in a pathname. For example, in the current implementation on Windows platforms, Java 
accepts paths with either forward slashes or backslashes. However, under Solaris, Java accepts 
only paths with forward slashes. 

Your best bet is to make sure you follow the filename conventions of the host filesystem. If your 
application is just opening and saving files at the user's request, you should be able to handle 
that functionality with the Swing JFileDialog class. This class encapsulates a graphical file-
selection dialog box. The methods of the JFileDialog take care of system-dependent filename 
features for you. 

If your application needs to deal with files on its own behalf, however, things get a little more 
complicated. The File class contains a few static variables to make this task possible. 
File.separator defines a String that specifies the file separator on the local host (e.g., / on 
Unix and Macintosh systems and \ on Windows systems); File.separatorChar provides the 
same information as a char. File.pathSeparator defines a String that separates items in 
a path (e.g., : on Unix systems and ; on Macintosh and Windows systems); 
File.pathSeparatorChar provides the information as a char. 

You can use this system-dependent information in several ways. Probably the simplest way to 
localize pathnames is to pick a convention you use internally, for instance the forward slash, and 
do a String replace to substitute for the localized separator character: 

// we'll use forward slash as our standard   
String path = "mail/1999/june/merle";   
path = path.replace('/', File.separatorChar);   
File mailbox = new File( path ); 

Alternately, you could work with the components of a pathname and build the local pathname 
when you need it: 

String [] path = { "mail", "1999", "june", "merle" };   
 
   StringBuffer sb = new StringBuffer(path[0]);   
for (int i=1; i< path.length; i++)   
    sb.append( File.separator + path[i] );   
File mailbox = new File( sb.toString( ) ); 

One thing to remember is that Java interprets the backslash character (\) as an escape character 
when used in a String. To get a backslash in a String, you have to use \\. 

Another issue to grapple with is that some operating systems use special identifiers for the "roots" 
of filesystems. For example, Windows uses C:\. Should you need it, the File class provides the 
static method listRoots( ), which returns an array of File objects corresponding to the 
filesystem root directories. 

10.2.1.3 File operations 



Once we have a File object, we can use it to ask for information about the file or directory and 
to perform standard operations on it. A number of methods let us ask certain questions about the 
File. For example, isFile( ) returns true if the File represents a file, while 
isDirectory( ) returns true if it's a directory. isAbsolute( ) indicates if the File has an 
absolute or relative path specification. 

Components of the File pathname are available through the following methods: getName( ), 
getPath( ), getAbsolutePath( ), and getParent( ). getName( ) returns a String for 
the filename without any directory information; getPath( ) returns the directory information 
without the filename. If the File has an absolute path specification, getAbsolutePath( ) 
returns that path. Otherwise it returns the relative path appended to the current working directory. 
getParent( ) returns the parent directory of the File. 

Interestingly, the string returned by getPath( ) or getAbsolutePath( ) may not follow the 
same case-conventions as the underlying filesystem. You can retrieve the filesystem's own or 
"canonical" version of the file's path using the method getCanonicalPath( ). In Windows, for 
example, you can create a File object whose getAbsolutePath( ) is C:\Autoexec.bat, 
but whose getCanonical-Path( ) is C:\AUTOEXEC.BAT. This is useful for comparing 
filenames that may have been supplied with different case conventions. 

You can get or set the modification time of a file or directory with lastModified() and 
setLastModified( ) methods. The value is a long that is the number of milliseconds since 
the epoch ( Jan 1, 1970, 00:00:00 GMT). We can also get the size of the file in bytes with 
length( ). 

Here's a fragment of code that prints some information about a file: 

File fooFile = new File( "/tmp/boofa" );   
   
String type = fooFile.isFile( ) ? "File " : "Directory ";   
String name = fooFile.getName( );   
long len = fooFile.length( );   
System.out.println(type + name + ", " + len + " bytes " ); 

If the File object corresponds to a directory, we can list the files in the directory with the list( 
) method or the listFiles( ) method: 

String [] fileNames = fooFile.list( ); 
File [] files = fooFile.listFiles( ); 

list( ) returns an array of String objects that contains filenames. listFiles( ) returns an 
array of File objects. Note that in neither case are the files guaranteed to be in any kind of order 
(alphabetical, for example). 

If the File refers to a nonexistent directory, we can create the directory with mkdir( ) or 
mkdirs( ). mkdir( ) creates a single directory; mkdirs( ) also creates all of the intervening 
directories in a File specification. Use renameTo( ) to rename a file or directory and delete( 
) to delete a file or directory. 

Note that using the File object itself isn't generally the way to create a file; that's normally done 
implicitly with a FileOutputStream or FileWriter, as we'll discuss in a moment. The 
exception is the createNewFile( ) method, which can be used to attempt to create a new 



zero-length file at the location pointed to by the File object. The useful thing about this method 
is that the operation is guaranteed to be "atomic" with respect to all other file creation. 
createNewFile( ) returns a boolean value which tells you whether the file was created. 

You can use this to implement file locking from Java. This is useful in combination with 
deleteOnExit( ), which flags the file to be automatically removed when the Java Virtual 
Machine exits. Another file creation method related to the File class itself is the static method 
createTempFile( ), which creates a file in a specified location using an automatically 
generated unique name. This, too, is useful in combination with deleteOnExit( ). 

The toURL( ) method converts a file path to a file: URL object. We'll talk about URLs in 
Chapter 12. They are an abstraction that allows you to point to any kind of object anywhere on 
the Net. Converting a File reference to a URL may be useful for consistency with more general 
routines that deal with URLs. 

Table 10.1 summarizes the methods provided by the File class. 

Table 10.1. File Methods  

Method Return 
Type Description 

canRead( ) boolean Is the file (or directory) readable?  
canWrite( ) boolean Is the file (or directory) writable?  

createNewFile() boolean Creates a new file 

createTempFile (String pfx, 
String sfx) 

static File Creates a new file, with the specified prefix and 
suffix, in the default temp-file directory 

delete( ) boolean Deletes the file (or directory) 

deleteOnExit() void When it exits, Java runtime system will delete the 
file 

exists( ) boolean Does the file (or directory) exist?  
getAbsolutePath( ) String Returns the absolute path of the file (or directory) 

getCanonicalPath( ) String Returns the absolute, case-correct path of the file 
(or directory) 

getName( ) String Returns the name of the file (or directory) 

getParent( ) String Returns the name of the parent directory of the file 
(or directory) 

getPath( ) String Returns the path of the file (or directory) 
isAbsolute( ) boolean Is the filename (or directory name) absolute? 
isDirectory( ) boolean Is the item a directory? 
isFile( ) boolean Is the item a file? 

lastModified( ) long Returns the last modification time of the file (or 
directory) 

length( ) long Returns the length of the file 
list( ) String [] Returns a list of files in the directory 

listfiles() File[] 
Returns the contents of the directory as an array 
of File objects 

mkdir( ) boolean Creates the directory 
mkdirs( ) boolean Creates all directories in the path 
renameTo(File dest) boolean Renames the file (or directory) 



setLastModified() boolean Sets the last-modified time of the file (or directory) 

setReadOnly() boolean Sets the file to read-only status 

toURL() java.net.URL Generates a URL object for the Thefile (or 
directory) 

10.2.2 File Streams 

Java provides two specialized streams for reading and writing files in the filesystem: 
FileInputStream and FileOutputStream. These streams provide the basic InputStream 
and OutputStream functionality applied to reading and writing the contents of files. They can be 
combined with the filter streams described earlier to work with files in the same way we do other 
stream communications. 

Because FileInputStream is a subclass of InputStream, it inherits all standard 
InputStream functionality for reading the contents of a file. FileInputStream provides only a 
low-level interface to reading data, however, so you'll typically wrap it with another stream, such 
as a DataInputStream. 

You can create a FileInputStream from a String pathname or a File object: 

FileInputStream foois = new FileInputStream( fooFile );   
FileInputStream passwdis = new FileInputStream( "/etc/passwd" ); 

When you create a FileInputStream, the Java runtime system attempts to open the specified 
file. Thus, the FileInputStream constructors can throw a FileNotFoundException if the 
specified file doesn't exist, or an IOException if some other I/O error occurs. Be sure to catch 
and handle these exceptions in your code. When the stream is first created, its available( ) 
method and the File object's length( ) method should return the same value. Be sure to call 
the close( ) method when you are done with the file. 

To read characters from a file, you can wrap an InputStreamReader around a 
FileInputStream. If you want to use the default character-encoding scheme, you can use the 
FileReader class instead, which is provided as a convenience. FileReader works just like 
FileInputStream, except that it reads characters instead of bytes and wraps a Reader 
instead of an InputStream. 

The following class, ListIt , is a small utility that sends the contents of a file or directory to 
standard output: 

//file: ListIt.java 
import java.io.*;   
   
class ListIt {   
    public static void main ( String args[] ) throws Exception {   
        File file =  new File( args[0] );   
   
        if ( !file.exists() || !file.canRead( ) ) {   
            System.out.println( "Can't read " + file );   
            return;   
        }   
   
        if ( file.isDirectory( ) ) {   



            String [] files = file.list( );   
            for (int i=0; i< files.length; i++)   
                System.out.println( files[i] );   
        }   
        else   
            try {   
                FileReader fr = new FileReader ( file );  
                BufferedReader in = new BufferedReader( fr );  
                String line;  
                while ((line = in.readLine( )) != null)  
                System.out.println(line);  
            }   
            catch ( FileNotFoundException e ) {  
                System.out.println( "File Disappeared" );   
            }   
    }   
} 

ListIt constructs a File object from its first command-line argument and tests the File to see 
whether it exists and is readable. If the File is a directory, ListIt outputs the names of the files 
in the directory. Otherwise, ListIt reads and outputs the file. 

FileOutputStream is a subclass of OutputStream, so it inherits all the standard 
OutputStream functionality for writing to a file. Just like FileInputStream though, 
FileOutputStream provides only a low-level interface to writing data. You'll typically wrap 
another stream, like a DataOutputStream or a PrintWriter, around the 
FileOutputStream to provide higher-level functionality. 

You can create a FileOutputStream from a String pathname or a File object. Unlike 
FileInputStream, however, the FileOutputStream constructors don't throw a 
FileNotFoundException. If the specified file doesn't exist, the FileOutputStream creates 
the file. The FileOutputStream constructors can throw an IOException if some other I/O 
error occurs, so you still need to handle this exception. 

If the specified file does exist, the FileOutputStream opens it for writing. When you 
subsequently call the write( ) method, the new data overwrites the current contents of the file. 
If you need to append data to an existing file, you should use a different constructor that accepts 
an append flag: 

FileInputStream foois = new FileOutputStream( fooFile, true);   
FileInputStream psis = new FileOutputStream("/etc/passwd", true); 

Another way to append data to files is with a RandomAccessFile, as we'll discuss shortly. 

To write characters (instead of bytes) to a file, you can wrap an OutputStreamWriter around a 
FileOutputStream. If you want to use the default character-encoding scheme, you can use 
instead the FileWriter class, which is provided as a convenience. FileWriter works just like 
FileOutputStream, except that it writes characters instead of bytes and wraps a Writer 
instead of an OutputStream. 

The following example reads a line of data from standard input and writes it to the file /tmp/foo.txt: 

String s = new BufferedReader(  



    new InputStreamReader( System.in ) ).readLine( );   
File out = new File( "/tmp/foo.txt" );   
FileWriter fw = new FileWriter ( out );   
PrintWriter pw = new PrintWriter( fw )   
pw.println( s );  
fw.close( ); 

Notice how we have wrapped a PrintWriter around the FileWriter to facilitate writing the 
data. Also, to be a good filesystem citizen, we've called the close( ) method when we're done 
with the FileWriter. 

10.2.3 The java.io.RandomAccessFile Class 

The java.io.RandomAccessFile class provides the ability to read and write data from or to 
any specified location in a file. RandomAccessFile implements both the DataInput and 
DataOutput interfaces, so you can use it to read and write strings and primitive types. In other 
words, RandomAccessFile defines the same methods for reading and writing data as 
DataInputStream and DataOutputStream. However, because the class provides random, 
rather than sequential, access to file data, it's not a subclass of either InputStream or 
OutputStream. 

You can create a RandomAccessFile from a String pathname or a File object. The 
constructor also takes a second String argument that specifies the mode of the file. Use "r" for 
a read-only file or "rw" for a read-write file. Here's how we would start to create a simple 
database to keep track of user information: 

try {   
    RandomAccessFile users = 
        new RandomAccessFile( "Users", "rw" ); 
    ...   
}   
catch (IOException e) { ... } 

When you create a RandomAccessFile in read-only mode, Java tries to open the specified file. 
If the file doesn't exist, RandomAccessFile throws an IOException. If, however, you are 
creating a RandomAccessFile in read-write mode, the object creates the file if it doesn't exist. 
The constructor can still throw an IOException if some other I/O error occurs, so you still need 
to handle this exception. 

After you have created a RandomAccessFile, call any of the normal reading and writing 
methods, just as you would with a DataInputStream or DataOutputStream. If you try to write 
to a read-only file, the write method throws an IOException. 

What makes a RandomAccessFile special is the seek( ) method. This method takes a long 
value and uses it to set the location for reading and writing in the file. You can use the 
getFilePointer( ) method to get the current location. If you need to append data to the end 
of the file, use length( ) to determine that location, then seek( ) to it. You can write or seek 
beyond the end of a file, but you can't read beyond the end of a file. The read( ) method throws 
an EOFException if you try to do this.  

Here's an example of writing some data to our user database: 



users.seek( userNum * RECORDSIZE );   
users.writeUTF( userName );   
users.writeInt( userID ); 

One caveat to notice with this example is that we need to be sure that the String length for 
userName, along with any data that comes after it, fits within the specified record size. 

10.2.4 Applets and Files 

For security reasons, untrusted applets and applications are not permitted to read from and write 
to arbitrary places in the filesystem. The ability of untrusted code to read and write files, as with 
any kind of system resource, is under the control of the system security policy, through a 
SecurityManager object. A SecurityManager is installed by the application that is running 
the untrusted code, such as appletviewer or a Java-enabled web browser. All filesystem access 
must first pass the scrutiny of the SecurityManager. 

For example, Sun's HotJava web browser allows even untrusted applets to have access to 
specific files designated by the user in an access-control list. Netscape Navigator, on the other 
hand, currently doesn't allow untrusted applets any access to the filesystem. In both cases, 
trusted applets can be given arbitrary access to the filesystem, just like a standalone Java 
application. 

It isn't unusual to want an applet to maintain some kind of state information on the system on 
which it's running. But for a Java applet that is restricted from access to the local filesystem, the 
only option is to store data over the network on its server. Applets have at their disposal powerful 
general means for communicating data over networks. The only limitation is that, by convention, 
an applet's network communication is restricted to the server that launched it. This limits the 
options for where the data will reside. 

Currently, the only way for a Java program to send data to a server is through a network socket 
or tools like RMI, which run over sockets. In Chapter 11, we'll take a detailed look at building 
networked applications with sockets. With the tools described in that chapter, it's possible to build 
powerful client/server applications. Sun also has a Java extension called WebNFS, which allows 
applets and applications to work with files on an NFS server in much the same way as the 
ordinary File API. 

10.2.5 Loading Application Resources 

We often have data files and other objects that we want our programs to use. Java provides 
many ways to access these resources. In a standalone application, we can simply open files and 
read the bytes. In both standalone applications and applets, we can construct URLs to well-
known locations. The problem with these methods is that we have to know where our application 
lives in order to find our data. This is not always as easy as it seems. What is needed is a 
universal way to access resources associated with our application and our application's individual 
classes. The Class class's getResource( ) method provides just this. 

What does getResource( ) do for us? To construct a URL to a file, we normally have to figure 
out a home directory for our code and construct a path relative to that. In an applet, we could use 
getCodeBase( ) or getDocumentBase( ) to find the base URL, and use that base to create 
the URL for the resource we want. But these methods don't help a standalone application—and 
there's no reason that a standalone application and an applet shouldn't be able to share classes 
anyway. To solve this problem, the getResource( ) method provides a standard way to get 
objects relative to a given class file or to the system classpath. getResource( ) returns a 



special URL that uses the class's class loader. This means that no matter where the class came 
from—a web server, the local filesystem, or even a JAR file—we can simply ask for an object, get 
a URL for the object, and use the URL to access the object. 

getResource( ) takes as an argument a slash-separated pathname for the resource and 
returns a URL. There are two kinds of paths: absolute and relative. An absolute path begins with 
a slash. For example: /foo/bar/blah.txt. In this case, the search for the object begins at the top of 
the class path. If there is a directory foo/bar in the class path, getResource( ) searches that 
directory for the blah.txt file. A relative URL does not begin with a slash. In this case, the search 
begins at the location of the class file, whether it is local, on a remote server, or in a JAR file 
(either local or remote). So if we were calling getResource( ) on a class loader that loaded a 
class in the foo.bar package, we could refer to the file as blah.txt. In this case, the class itself 
would be loaded from the directory foo/bar somewhere on the class path, and we'd expect to find 
the file in the same directory. 

For example, here's an application that looks up some resources: 

//file: FindResources.java 
package mypackage;  
import java.net.URL; 
import java.io.IOException; 
  
public class FindResources {  
  public static void main( String [] args ) throws IOException {  
    // absolute from the classpath  
    URL url = FindResources.class.getResource("/mypackage/foo.txt"); 
    // relative to the class location  
    url = FindResources.class.getResource("foo.txt");  
    // another relative document  
    url = FindResources.class.getResource("docs/bar.txt");  
  } 
} 

The FindResources class belongs to the mypackage package, so its class file will live in a 
mypackage directory somewhere on the class path. FindResources locates the document 
foo.txt using an absolute and then a relative URL. At the end, FindResources uses a relative 
path to reach a document in the mypackage/docs directory. In each case we refer to the 
FindResources's Class object using the static .class notation. Alternatively, if we had an 
instance of the object, we could use its getClass( ) method to reach the Class object. 

For an applet, the search is similar but occurs on the host from which the applet was loaded. 
getResource( ) first checks any JAR files loaded with the applet, and then searches the 
normal remote applet class path, constructed relative to the applet's codebase URL. 

getResource( ) returns a URL for whatever type of object you reference. This could be a text 
file or properties file that you want to read as a stream, or it might be an image or sound file or 
some other object. If you want the data as a stream, the Class class also provides a 
getResourceAsStream( ) method. In the case of an image, you'd probably hand the URL 
over to the getImage( ) method of the Applet class or one of the components of the Swing 
package for loading. 

10.3 Serialization 



Using a DataOutputStream, you could write an application that saves the data content of an 
arbitrary object as simple types. However Java provides an even more powerful mechanism 
called object serialization that does almost all of the work for you. In its simplest form, object 
serialization is an automatic way to save and load the state of an object. However, object 
serialization has depths that we cannot plumb within the scope of this book, including complete 
control over the serialization process and interesting conundrums like class versioning. 

Basically, an object of any class that implements the Serializable interface can be saved and 
restored from a stream. Special stream subclasses, ObjectInputStream and 
ObjectOutputStream, are used to serialize primitive types and objects. Subclasses of 
Serializable classes are also serializable. The default serialization mechanism saves the 
value of an object's nonstatic and nontransient (see the following explanation) member variables. 

One of the most important (and tricky) things about serialization is that when an object is 
serialized, any object references it contains are also serialized. Serialization can capture entire 
"graphs" of interconnected objects and put them back together on the receiving end (we'll 
demonstrate this in an upcoming example). The implication is that any object we serialize must 
contain only references to other Serializable objects. We can take control by marking 
nonserializable members as transient or overriding the default serialization mechanisms. The 
transient modifier can be applied to any instance variable to indicate that its contents are not 
useful outside of the current context and should never be saved. 

In the following example, we create a Hashtable and write it to a disk file called h.ser. The 
Hashtable object is serializable because it implements the Serializable interface. 

//file: Save.java 
import java.io.*;  
import java.util.*;  
 
public class Save {  
  public static void main(String[] args) {  
    Hashtable h = new Hashtable( );  
    h.put("string", "Gabriel Garcia Marquez");  
    h.put("int", new Integer(26));  
    h.put("double", new Double(Math.PI));  
      
    try {  
      FileOutputStream fileOut = new FileOutputStream("h.ser");  
      ObjectOutputStream out = new ObjectOutputStream(fileOut);  
      out.writeObject(h);  
    }  
    catch (Exception e) {  
      System.out.println(e);  
    }  
  }  
} 

First we construct a Hashtable with a few elements in it. Then, in the three lines of code inside 
the try block, we write the Hashtable to a file called h.ser, using the writeObject( ) 
method of ObjectOutputStream. The ObjectOutputStream class is a lot like the 
DataOutputStream class, except that it includes the powerful writeObject( ) method. 



The Hashtable we created has internal references to the items it contains. Thus, these 
components are automatically serialized along with the Hashtable. We'll see this in the next 
example when we deserialize the Hashtable. 

//file: Load.java 
import java.io.*;  
import java.util.*;  
 
public class Load {  
  public static void main(String[] args) {  
    try {  
      FileInputStream fileIn = new FileInputStream("h.ser");  
      ObjectInputStream in = new ObjectInputStream(fileIn);  
      Hashtable h = (Hashtable)in.readObject( );  
      System.out.println(h.toString( ));  
    }  
    catch (Exception e) {  
      System.out.println(e);  
    }  
  }  
} 

In this example, we read the Hashtable from the h.ser file, using the readObject( ) method 
of ObjectInputStream. The ObjectInputStream class is a lot like DataInputStream, 
except that it includes the readObject( ) method. The return type of readObject( ) is 
Object, so we need to cast it to a Hashtable. Finally, we print out the contents of the 
Hashtable using its toString( ) method. 

We'll show more examples of serialization at work in Chapter 19, when we discuss JavaBeans. 
There we'll see that it is even possible to serialize graphical GUI components in mid-use and 
bring them back to life later. 

10.4 Data Compression 

The java.util.zip package contains classes you can use for data compression. In this 
section, we'll talk about how to use these classes. We'll also present two useful example 
programs that build on what you have just learned about streams and files. 

The classes in the java.util.zip package support two widespread compression formats: 
GZIP and ZIP. Both of these are based on the ZLIB compression algorithm, which is discussed in 
RFC 1950, RFC 1951, and RFC 1952. These documents are available at 
http://www.faqs.org/rfcs. But you don't need to read them unless you want to implement your 
own compression algorithm or otherwise extend the functionality of the java.util.zip 
package. 

10.4.1 Compressing Data 

The java.util.zip class provides two FilterOutputStream subclasses to write 
compressed data to a stream. To write compressed data in the GZIP format, simply wrap a 
GZIPOutputStream around an underlying stream and write to it. The following is a complete 
example that shows how to compress a file using the GZIP format: 

//file: GZip.java 



import java.io.*;  
import java.util.zip.*;  
 
public class GZip {  
  public static int sChunk = 8192;  
 
  public static void main(String[] args) {  
    if (args.length != 1) {  
      System.out.println("Usage: GZip source");  
      return;  
    }  
    // create output stream 
    String zipname = args[0] + ".gz";  
    GZIPOutputStream zipout;  
    try {  
      FileOutputStream out = new FileOutputStream(zipname);  
      zipout = new GZIPOutputStream(out);  
    }  
    catch (IOException e) {  
      System.out.println("Couldn't create " + zipname + ".");  
      return;  
    }  
    byte[] buffer = new byte[sChunk];  
    // compress the file 
    try {  
      FileInputStream in = new FileInputStream(args[0]);  
      int length;  
      while ((length = in.read(buffer, 0, sChunk)) != -1)  
        zipout.write(buffer, 0, length);  
      in.close( );  
    }  
    catch (IOException e) {  
      System.out.println("Couldn't compress " + args[0] + ".");  
    }  
    try { zipout.close( ); }  
    catch (IOException e) {}  
  }  
} 

First we check to make sure we have a command-line argument representing a filename. Then 
we construct a GZIPOutputStream wrapped around a FileOutputStream representing the 
given filename, with the .gz suffix appended. With this in place, we open the source file. We read 
chunks of data from it and write them into the GZIPOutputStream. Finally, we clean up by 
closing our open streams. 

Writing data to a ZIP file is a little more involved but still quite manageable. While a GZIP file 
contains only one compressed file, a ZIP file is actually a collection of files, some (or all) of which 
may be compressed. Each item in the ZIP file is represented by a ZipEntry object. When 
writing to a ZipOutputStream, you'll need to call putNextEntry( ) before writing the data 
for each item. The following example shows how to create a ZipOutputStream. You'll notice it's 
just like creating a GZIPOutputStream: 

ZipOutputStream zipout;  
try {  
  FileOutputStream out = new FileOutputStream("archive.zip");  



  zipout = new ZipOutputStream(out);  
}  
catch (IOException e) {} 

Let's say we have two files we want to write into this archive. Before we begin writing, we need to 
call putNextEntry( ). We'll create a simple entry with just a name. There are other fields in 
ZipEntry that you can set, but most of the time you won't need to bother with them. 

try {  
  ZipEntry entry = new ZipEntry("First");  
  zipout.putNextEntry(entry);  
}  
catch (IOException e) {} 

At this point, you can write the contents of the first file into the archive. When you're ready to write 
the second file into the archive, simply call putNextEntry( ) again: 

try {  
  ZipEntry entry = new ZipEntry("Second");  
  zipout.putNextEntry(entry);  
}  
catch (IOException e) {} 

10.4.2 Decompressing Data 

To decompress data, you can use one of the two FilterInputStream subclasses provided in 
java.util.zip. To decompress data in the GZIP format, simply wrap a GZIPInputStream 
around an underlying FileInputStream and read from it. The following is a complete example 
that shows how to decompress a GZIP file: 

//file: GUnzip.java 
import java.io.*;  
import java.util.zip.*;  
 
public class GUnzip {  
  public static int sChunk = 8192;  
  public static void main(String[] args) {  
    if (args.length != 1) {  
      System.out.println("Usage: GUnzip source");  
      return;  
    }  
    // create input stream 
    String zipname, source;  
    if (args[0].endsWith(".gz")) {  
      zipname = args[0];  
      source = args[0].substring(0, args[0].length( ) - 3);  
    }  
    else {  
      zipname = args[0] + ".gz";  
      source = args[0];  
    }  
    GZIPInputStream zipin;  
    try {  
      FileInputStream in = new FileInputStream(zipname);  



      zipin = new GZIPInputStream(in);  
    }  
    catch (IOException e) {  
      System.out.println("Couldn't open " + zipname + ".");  
      return;  
    }  
    byte[] buffer = new byte[sChunk];  
    // decompress the file 
    try {  
      FileOutputStream out = new FileOutputStream(source);  
      int length;  
      while ((length = zipin.read(buffer, 0, sChunk)) != -1)  
        out.write(buffer, 0, length);  
      out.close( );  
    }  
    catch (IOException e) {  
      System.out.println("Couldn't decompress " + args[0] + "."); 
    }  
    try { zipin.close( ); }  
    catch (IOException e) {}  
  }  
} 

First we check to make sure we have a command-line argument representing a filename. If the 
argument ends with .gz, we figure out what the filename for the uncompressed file should be. 
Otherwise, we use the given argument and assume the compressed file has the .gz suffix. Then 
we construct a GZIPInputStream wrapped around a FileInputStream, representing the 
compressed file. With this in place, we open the target file. We read chunks of data from the 
GZIPInputStream and write them into the target file. Finally, we clean up by closing our open 
streams. 

Again, the ZIP archive presents a little more complexity than the GZIP file. When reading from a 
ZipInputStream, you should call getNextEntry( ) before reading each item. When 
getNextEntry( ) returns null, there are no more items to read. The following example 
shows how to create a ZipInputStream. You'll notice it's just like creating a 
GZIPInputStream: 

ZipInputStream zipin;  
try {  
  FileInputStream in = new FileInputStream("archive.zip");  
  zipin = new ZipInputStream(in);  
}  
catch (IOException e) {} 

Suppose we want to read two files from this archive. Before we begin reading, we need to call 
getNextEntry( ). At the least, the entry will give us a name of the item we are reading from 
the archive: 

try {  
  ZipEntry first = zipin.getNextEntry( );  
}  
catch (IOException e) {} 



At this point, you can read the contents of the first item in the archive. When you come to the end 
of the item, the read( ) method will return -1. Now you can call getNextEntry( ) again to 
read the second item from the archive: 

try {  
  ZipEntry second = zipin.getNextEntry( );  
}  
catch (IOException e) {} 

If you call getNextEntry( ) and it returns null, there are no more items, and you have 
reached the end of the archive. 



Chapter 11. Network Programming with Sockets 
and RMI 

The network is the soul of Java. Most of what is new and exciting about Java centers around the 
potential for new kinds of dynamic, networked applications. In this chapter, we'll start our 
discussion of the java.net package, which contains the fundamental classes for 
communications and working with networked resources. We'll also talk about the java.rmi 
package, which provides Java's powerful, high-level, Remote Method Invocation facilities. 

The classes of java.net fall into two categories: the sockets API and tools for working with 
Uniform Resource Locators (URLs). Figure 11.1 shows the java.net package. 

Figure 11.1. The java.net package 

 

Java's sockets API provides access to the standard network protocols used for communications 
between hosts on the Internet. Sockets are the mechanism underlying all other kinds of portable 



networked communications. Sockets are a low-level tool—you can use sockets for any kind of 
communications between client and server server or peer applications on the Net, but you have 
to implement your own application-level protocols for handling and interpreting the data. Higher-
level networking tools, like remote method invocation and other distributed object systems, are 
implemented on top of sockets. 

Java remote method invocation (RMI) is a powerful tool that leverages Java object serialization, 
allowing you to transparently work with objects on remote machines as if they were local. With 
RMI it is easy to write distributed applications in which clients and servers work with each other's 
data as full-fledged Java objects, rather than streams or packets of data. 

In this chapter, we'll provide some simple and practical examples of Java network programming 
at both levels, using sockets and RMI. In the next chapter, we'll look at the other half of the 
java.net package, which works with URLs, content handlers, and protocol handlers; we'll also 
cover servlets, which allow you to write application components for web servers. 

11.1 Sockets 

Sockets are a low-level programming interface for networked communications. They send 
streams of data between applications that may or may not be on the same host. Sockets 
originated in BSD Unix and are, in other languages, hairy and complicated things with lots of 
small parts that can break off and choke little children. The reason for this is that most socket 
APIs can be used with almost any kind of underlying network protocol. Since the protocols that 
transport data across the network can have radically different features, the socket interface can 
be quite complex.[1]  

[1] For a discussion of sockets in general, see Unix Network Programming, by Richard Stevens (Prentice- 
Hall). For a complete discussion of network programming in Java, see Java Network Programming, by 
Elliotte Rusty Harold (O'Reilly & Associates). 

Java supports a simplified object-oriented interface to sockets that makes network 
communications considerably easier. If you have done network programming using sockets in C 
or another structured language, you should be pleasantly surprised at how simple things can be 
when objects encapsulate the gory details. If this is the first time you've come across sockets, 
you'll find that talking to another application over the network can be as simple as reading a file or 
getting user input from a terminal. Most forms of I/O in Java, including most network I/O, use the 
stream classes described in Chapter 10. Streams provide a unified I/O interface; reading or 
writing across the Internet is similar to reading or writing a file on the local system. 

Java provides different kinds of sockets to support three different distinct classes of underlying 
protocols. In this first section, we'll look at Java's basic Socket class, which uses a connection-
oriented protocol. A connection-oriented protocol gives you the equivalent of a telephone 
conversation; after establishing a connection, two applications can send data back and forth—the 
connection stays in place even when no one is talking. The protocol ensures that no data is lost 
and that whatever you send always arrives in order that you sent it. In the next section, we'll look 
at the DatagramSocket class, which uses a connectionless protocol. A connectionless protocol 
is more like the postal service. Applications can send short messages to each other, but no end-
to-end connection is set up in advance and no attempt is made to keep the messages in order. It 
is not even guaranteed that the messages will arrive at all. A MulticastSocket is a variation of 
a DatagramSocket that can be used to send data to multiple recipients (multicasting). Working 
with multicast sockets is very much like working with datagram sockets. However, multicasting is 
not widely supported across the Internet at this time, so we will not cover it here. 



Again, in theory, just about any protocol family can be used underneath the socket layer: Novell's 
IPX, Apple's AppleTalk, even the old ChaosNet protocols. But in practice, there's only one 
protocol family people care about on the Internet, and only one protocol family Java supports: the 
Internet Protocol, IP. The Socket class speaks TCP, and the DatagramSocket class speaks 
UDP, both standard Internet protocols. These protocols are generally available on any system 
that is connected to the Internet. 

11.1.1 Clients and Servers 

When writing network applications, it's common to talk about clients and servers. The distinction 
is increasingly vague, but the side that initiates the conversation is usually considered the client. 
The side that accepts the request to talk is usually the server. In the case where there are two 
peer applications using sockets to talk, the distinction is less important, but for simplicity we'll use 
this definition. 

For our purposes, the most important difference between a client and a server is that a client can 
create a socket to initiate a conversation with a server application at any time, while a server must 
prepare to listen for incoming conversations in advance. The java.net.Socket class 
represents one side of an individual socket connection on both the client and server. In addition, 
the server uses the java.net.ServerSocket class to listen for connections from clients. An 
application (or thread) acting as a server creates a ServerSocket object and waits, blocked in a 
call to its accept( ) method, until a connection arrives. When it does, the accept( ) method 
creates a Socket object the server uses to communicate with the client. A server may carry on 
conversations with multiple clients at once; in this case there will still be only a single 
ServerSocket but the server will have multiple Socket objects—one associated with each 
client, as shown in Figure 11.2. 

Figure 11.2. Clients and servers, Sockets and ServerSockets 

 

A client needs two pieces of information to locate and connect to another server on the Internet: a 
hostname (used to find the host's network address) and a port number. The port number is an 
identifier that differentiates between multiple clients or servers on the same host. A server 
application listens on a prearranged port while waiting for connections. Clients select the port 
number assigned to the service they want to access. If you think of the host computers as hotels 
and the applications as guests, then the ports are like the guests' room numbers. For one person 
to call another, he or she must know the other party's hotel name and room number. 

11.1.1.1 Clients 



A client application opens a connection to a server by constructing a Socket that specifies the 
hostname and port number of the desired server: 

try {   
    Socket sock = new Socket("wupost.wustl.edu", 25);   
}    
catch ( UnknownHostException e ) {   
    System.out.println("Can't find host.");   
}    
catch ( IOException e ) {   
    System.out.println("Error connecting to host.");   
} 

This code fragment attempts to connect a Socket to port 25 (the SMTP mail service) of the host 
wupost.wustl.edu. The client handles the possibility that the hostname can't be resolved 
(UnknownHostException) and that it might not be able to connect to it (IOException). As an 
alternative to using a hostname, you can provide a string version of the host's IP address: 

Socket sock = new Socket("22.66.89.167", 25); 

Once a connection is made, input and output streams can be retrieved with the Socket 
getInputStream( ) and getOutputStream( ) methods. The following (rather arbitrary) 
code sends and receives some data with the streams: 

try {   
    Socket server = new Socket("foo.bar.com", 1234);   
    InputStream in = server.getInputStream( );   
    OutputStream out = server.getOutputStream( );   
   
    // write a byte   
    out.write(42);   
   
    // write a newline or carriage return delimited string  
    PrintWriter pout = new PrintWriter( out, true );   
    pout.println("Hello!");   
   
    // read a byte   
    byte back = (byte)in.read( );   
   
    // read a newline or carriage return delimited string   
    BufferedReader bin =  
      new BufferedReader( new InputStreamReader( in ) );  
    String response = bin.readLine( );   
   
    // send a serialized Java object  
    ObjectOutputStream oout = new ObjectOutputStream( out );  
    oout.writeObject( new java.util.Date( ) );  
    oout.flush( );  
  
    server.close( );   
}    
catch (IOException e ) { ... } 

In this exchange, the client first creates a Socket for communicating with the server. The 
Socket constructor specifies the server's hostname ( foo.bar.com) and a prearranged port 



number (1234). Once the connection is established, the client writes a single byte to the server 
using the OutputStream's write( ) method. It then wraps a PrintWriter around the 
OutputStream in order to send a string of text more easily. Next, it performs the complementary 
operations: reading a byte from the server using InputStream's read( ) and then creating a 
BufferedReader from which to get a full string of text. Finally, we do something really funky 
and send a serialized Java object to the server, using an ObjectOutputStream. (We'll talk in 
depth about sending serialized objects later in this chapter.) The client then terminates the 
connection with the close( ) method. All these operations have the potential to generate 
IOExceptions; the catch clause is where our application would deal with these. 

11.1.1.2 Servers 

After a connection is established, a server application uses the same kind of Socket object for its 
side of the communications. However, to accept a connection from a client, it must first create a 
ServerSocket, bound to the correct port. Let's re-create the previous conversation from the 
server's point of view:  

// meanwhile, on foo.bar.com...   
try {   
    ServerSocket listener = new ServerSocket( 1234 );   
   
    while ( !finished ) {   
        Socket client = listener.accept( );  // wait for connection 
   
        InputStream in = client.getInputStream( );   
        OutputStream out = client.getOutputStream( );   
   
        // read a byte   
        byte someByte = (byte)in.read( );   
   
        // read a newline or carriage-return-delimited string   
        BufferedReader bin =  
          new BufferedReader( new InputStreamReader( in ) );  
        String someString = bin.readLine( );   
   
        // write a byte   
        out.write(43);   
   
        // say goodbye  
        PrintWriter pout = new PrintWriter( out, true );   
        pout.println("Goodbye!");   
  
        // read a serialized Java object  
        ObjectInputStream oin = new ObjectInputStream( in );  
        Date date = (Date)oin.readObject( );  
   
        client.close( );   
    }   
   
    listener.close( );   
}   
catch (IOException e ) { ... } 
catch (ClassNotFoundException e2 ) { ... } 



First, our server creates a ServerSocket attached to port 1234. On some systems, there are 
rules about what ports an application can use. Port numbers below 1024 are usually reserved for 
system processes and standard, well-known services, so we pick a port number outside of this 
range. The ServerSocket need be created only once; thereafter we can accept as many 
connections as arrive. 

Next we enter a loop, waiting for the accept( ) method of the ServerSocket to return an 
active Socket connection from a client. When a connection has been established, we perform 
the server side of our dialog, then close the connection and return to the top of the loop to wait for 
another connection. Finally, when the server application wants to stop listening for connections 
altogether, it calls the close( ) method of the ServerSocket. 

This server is single-threaded; it handles one connection at a time, not calling accept( ) to 
listen for a new connection until it's finished with the current connection. A more realistic server 
would have a loop that accepts connections concurrently and passes them off to their own 
threads for processing. (Our tiny web server example later in this chapter will do just this.) 

11.1.1.3 Sockets and security 

The previous examples presuppose that the client has permission to connect to the server, and 
that the server is allowed to listen on the specified socket. This is not always the case. 
Specifically, applets and other untrusted applications run under the auspices of a 
SecurityManager that can impose arbitrary restrictions on what hosts they may or may not talk 
to, and whether or not they can listen for connections. 

The security policy imposed on applets by the SDK appletviewer and the current version of 
Netscape allows untrusted applets to open socket connections only to the host that served them. 
That is, they can talk back only to the server from which their class files were retrieved. Untrusted 
applets are not allowed to open server sockets themselves. Now, this doesn't mean that an 
untrusted applet can't cooperate with its server to communicate with anyone, anywhere. The 
applet's server could run a proxy that lets the applet communicate indirectly with anyone it likes. 
What this security policy prevents is malicious applets roaming around inside corporate firewalls, 
making connections to trusted services. It places the burden of security on the originating server, 
and not the client machine. Restricting access to the originating server limits the usefulness of 
"trojan" applications that do annoying things from the client side. (You probably won't let your 
proxy mail-bomb people, because you'll be blamed.) 

While fully trusted code and applications that are run without any security manager can perform 
any kind of activities, the default security policy that comes with SDK 1.2 and later dissallows 
most network access. So if you are going to run your application under the default security 
manager (using the -Djava.security.manager option on the command line or by manually 
installing the security manager within your application) you will have to modify the policy file to 
grant the appropriate permissions to your code. (See Section 3.2 in Chapter 3.) 

The following policy file fragment sets the socket permissions to allow connections to or from any 
host, on any nonprivileged port: 

grant {  
  permission java.net.SocketPermission 
    "*:1024-", "listen,accept,connect"; 
}; 



When starting the Java interpreter, you can install the security manager and use this file (call it 
mysecurity.policy): 

java -Djava.security.manager  
    -Djava.security.policy=mysecurity.policy MyApplication 

11.1.2 The DateAtHost Client 

Many networked workstations run a time service that dispenses their local clock time on a well-
known port. This was a precursor of NTP, the more general Network Time Protocol. In the next 
example, DateAtHost, we'll make a specialized subclass of java.util.Date that fetches the 
time from a remote host instead of initializing itself from the local clock. (See Chapter 9, for a 
complete discussion of the Date class.) 

DateAtHost connects to the time service (port 37) and reads four bytes representing the time on 
the remote host. These four bytes are interpreted as an integer representing the number of 
seconds since the beginning of the 20th century. DateAtHost converts this to Java's variant of 
the absolute time (milliseconds since January 1, 1970, a date that should be familiar to Unix 
users). The conversion first creates a long value, which is the unsigned equivalent of the integer 
time. It subtracts an offset to make the time relative to the epoch ( January 1, 1970) rather than 
the century, and multiplies by 1000 to convert to milliseconds. It then uses the converted time to 
initialize itself: 

//file: DateAtHost.java 
import java.net.Socket;  
import java.io.*;  
  
public class DateAtHost extends java.util.Date {  
    static int timePort = 37;  
    // seconds from start of 20th century to Jan 1, 1970 00:00 GMT 
    static final long offset = 2208988800L;   
 
    public DateAtHost( String host ) throws IOException {  
        this( host, timePort );  
    }  
  
    public DateAtHost( String host, int port ) throws IOException { 
        Socket server = new Socket( host, port );  
        DataInputStream din = 
          new DataInputStream( server.getInputStream( ) );  
        int time = din.readInt( );  
        server.close( );  
   
        setTime( (((1L << 32) + time) - offset) * 1000 );  
    }  
} 

That's all there is to it. It's not very long, even with a few frills. We have supplied two possible 
constructors for DateAtHost. Normally we'd expect to use the first, which simply takes the name 
of the remote host as an argument. The second constructor specifies the hostname and the port 
number of the remote time service. (If the time service were running on a nonstandard port, we 
would use the second constructor to specify the alternate port number.) This second constructor 
does the work of making the connection and setting the time. The first constructor simply invokes 
the second (using the this( ) construct) with the default port as an argument. Supplying 



simplified constructors that invoke their siblings with default arguments is a common and useful 
technique; that is the only reason we've shown it here. 

The second constructor opens a socket to the specified port on the remote host. It creates a 
DataInputStream to wrap the input stream and then reads a four-byte integer using the 
readInt( ) method. It's no coincidence that the bytes are in the right order. Java's 
DataInputStream and DataOutputStream classes work with the bytes of integer types in 
network byte order (most significant to least significant). The time protocol (and other standard 
network protocols that deal with binary data) also uses the network byte order, so we don't need 
to call any conversion routines. Explicit data conversions would probably be necessary if we were 
using a nonstandard protocol, especially when talking to a non-Java client or server. In that case 
we'd have to read byte by byte and do some rearranging to get our four-byte value. After reading 
the data, we're finished with the socket, so we close it, terminating the connection to the server. 
Finally, the constructor initializes the rest of the object by calling Date's setTime( ) method 
with the calculated time value. 

The DateAtHost class can work with a time retrieved from a remote host almost as easily as 
Date is used with the time on the local host. The only additional overhead is that we have to deal 
with the possible IOException that can be thrown by the DateAtHost constructor: 

try {   
    Date d = new DateAtHost( "sura.net" );   
    System.out.println( "The time over there is: " + d );   
}    
catch ( IOException e ) { ... } 

This example fetches the time at the host sura.net and prints its value. 

11.1.3 The TinyHttpd Server 

Have you ever wanted your very own web server? Well, you're in luck. In this section, we're going 
to build TinyHttpd, a minimal but functional HTTP daemon. TinyHttpd listens on a specified 
port and services simple HTTP "get file" requests. They look something like this: 

GET /path/filename [ optional stuff ] 

Your web browser sends one or more of these requests for each document it retrieves from a 
web server. Upon reading a request, our server will attempt to open the specified file and send its 
contents. If that document contains references to images or other items to be displayed inline, the 
browser continues with additional GET requests. For best performance TinyHttpd services each 
request in its own thread. Therefore, TinyHttpd can service several requests concurrently. 

Over and above the limitations imposed by its simplicity, TinyHttpd suffers from the limitations 
imposed by the fickleness of filesystem access in Java. It's important to remember that file 
pathnames are still somewhat architecture-dependent—as is the concept of a filesystem to begin 
with. This example should work, as is, on Unix and DOS-like systems, but may require some 
customizations to account for differences on other platforms. It's possible to write slightly more 
elaborate code that uses the environmental information provided by Java to tailor itself to the 
local system. (Chapter 10 gives some hints about how.) 



 

Unless run with the security manager, the next example will serve files 
from your host without protection. Don't try this at work. 

 

Now, without further ado, here's TinyHttpd: 

//file: TinyHttpd.java 
import java.net.*;  
import java.io.*;  
import java.util.*;  
  
public class TinyHttpd {   
  public static void main( String argv[] ) throws IOException {  
    ServerSocket ss = 
        new ServerSocket( Integer.parseInt(argv[0]) ); 
    while ( true )  
      new TinyHttpdConnection( ss.accept() ).start( );  
  }  
} // end of class TinyHttpd 
  
class TinyHttpdConnection extends Thread {  
  Socket client;  
  TinyHttpdConnection ( Socket client ) throws SocketException {  
    this.client = client;  
    setPriority( NORM_PRIORITY - 1 );  
  }  
  
  public void run( ) {  
    try {  
      BufferedReader in = new BufferedReader(   
        new InputStreamReader(client.getInputStream( ), "8859_1" )); 
      OutputStream out = client.getOutputStream( );  
      PrintWriter pout = new PrintWriter(   
        new OutputStreamWriter(out, "8859_1"), true );  
      String request = in.readLine( );  
      System.out.println( "Request: "+request );  
  
      StringTokenizer st = new StringTokenizer( request );  
      if ( (st.countTokens( ) >= 2) 
            && st.nextToken( ).equals("GET") ) { 
        if ( (request = st.nextToken( )).startsWith("/") )  
          request = request.substring( 1 );  
        if ( request.endsWith("/") || request.equals("") )  
          request = request + "index.html";  
        try {   
          FileInputStream fis = new FileInputStream ( request );  
          byte [] data = new byte [ fis.available( ) ];  
          fis.read( data );  
          out.write( data );  
          out.flush( );  
        } catch ( FileNotFoundException e ) {  
          pout.println( "404 Object Not Found" ); }  
      } else   
        pout.println( "400 Bad Request" );  
      client.close( );  
    } catch ( IOException e ) {  



      System.out.println( "I/O error " + e ); }  
  }  
} 

Compile TinyHttpd and place it in your class path, as described in Chapter 3. Go to a 
directory with some interesting documents and start the daemon, specifying an unused port 
number as an argument. For example: 

% java TinyHttpd 1234 

You should now be able to use your web browser to retrieve files from your host. You'll have to 
specify the port number you chose in the URL. For example, if your hostname is foo.bar.com, and 
you started the server as shown, you could reference a file as in: 

http://foo.bar.com:1234/welcome.html 

TinyHttpd looks for files relative to its current directory, so the pathnames you provide should 
be relative to that location. Retrieved some files? (Did you notice that when you retrieved an 
HTML file your web browser automatically generated more requests for items like images that 
were contained within it?) Let's take a closer look. 

The TinyHttpd application has two classes. The public TinyHttpd class contains the main( 
) method of our standalone application. It begins by creating a ServerSocket, attached to the 
specified port. It then loops, waiting for client connections and creating instances of the second 
class, a TinyHttpdConnection thread, to service each request. The while loop waits for the 
ServerSocket accept( ) method to return a new Socket for each client connection. The 
Socket is passed as an argument to construct the TinyHttpdConnection thread that handles 
it. 

TinyHttpdConnection is a subclass of Thread. It lives long enough to process one client 
connection and then dies. TinyHttpdConnection's constructor does two things. After saving 
the Socket argument for its caller, it adjusts its priority. By lowering its priority to 
NORM_PRIORITY-1 ( just below the default priority), we ensure that the threads servicing 
established connections won't block TinyHttpd's main thread from accepting new requests. (On 
a time-slicing system, this is less important.) After our object is constructed, its start( ) 
method is invoked to bring the run( ) method to life. 

The body of TinyHttpdConnection's run( ) method is where all the magic happens. First, 
we fetch an OutputStream for talking back to our client. The second line reads the GET request 
from the InputStream into the variable req. This request is a single newline-terminated 
String that looks like the GET request we described earlier. For this we use a 
BufferedInputStream wrapped around an InputStreamReader. (We'll say more about the 
InputStreamReader in a moment.) 

We then parse the contents of req to extract a filename. The next few lines are a brief exercise in 
string manipulation. We create a StringTokenizer and make sure there are at least two 
tokens. Using nextToken( ), we take the first token and make sure it's the word GET. (If both 
conditions aren't met, we have an error.) Then we take the next token (which should be a 
filename), assign it to req, and check whether it begins with a forward slash. If so, we use 
substring( ) to strip the first character, giving us a filename relative to the current directory. If 
it doesn't begin with a forward slash, the filename is already relative to the current directory. 
Finally, we check to see if the requested filename looks like a directory name (i.e., ends in a 



slash) or is empty. In these cases, we append the familiar default filename index.html as a 
convenience. 

Once we have the filename, we try to open the specified file and load its contents into a large 
byte array. If all goes well, we write the data out to the client on the OutputStream. If we can't 
parse the request or the file doesn't exist, we wrap our OutputStream with a PrintStream to 
make it easier to send a textual message. Then we return an appropriate HTTP error message. 
Finally, we close the socket and return from run( ), removing our Thread. 

11.1.3.1 Do French web servers speak French? 

In TinyHttpd, we explicitly created the InputStreamReader for our BufferedRead and the 
OutputStreamWriter for our PrintWriter. We do this so that we can specify the character 
encoding to use when converting to and from the byte representation of the HTTP protocol 
messages. (Note that we're not talking about the body of the file we will be sending—that is 
simply a stream of raw bytes to us; rather we're talking here about the GET and response 
messages.) If we didn't specify, we'd get the default character encoding for the local system. For 
many purposes that may be correct, but in this case we are speaking of a well-defined 
international protocol, and we should be specific. The RFC for HTTP specifies that web clients 
and servers should use the ISO8859-1 character encoding. We specify this encoding explicitly 
when we construct the InputStreamReader and OutputStreamWriter. Now as it turns out, 
ISO8859-1 is just plain ASCII and conversion to and from Unicode should always leave ASCII 
values unchanged, so again we would probably not be in any trouble if we we did not specify an 
encoding. But it's important to think about these things at least once—and now you have. 

11.1.3.2 Taming the daemon 

An important problem with TinyHttpd is that there are no restrictions on the files it will serve. 
With a little trickery, the daemon will happily send any file in your filesystem to the client. It would 
be nice if we could enforce the restriction that TinyHttpd serve only files that are in the current 
working directory or a subdirectory, as it normally does. An easy way to do this is to activate the 
Java Security Manager. Normally, a security manager is used to prevent Java code downloaded 
over the Net from doing anything suspicious. However, the security manager will serve nicely to 
restrict file access in our application as well. 

You can use a policy like the simple one that we provided in the section "Sockets and security" 
earlier in this chapter; it allows the server to accept connections on a specified range of sockets. 
As a happy bonus, the default file access security policy does just what we want: allows an 
application access to files in its current working directory and subdirectories. So simply installing 
the security manager will provide exactly the kind of file protection that we wanted in this case. (It 
would be easy to add additional permissions if you wish to extend the server's range to other 
well-defined areas.) 

With the security manager in place, the daemon will not be able to access anything that isn't 
within the current directory or a subdirectory. If it tries to, the security manager throws an 
exception and prevents access to the file. In that case, we should have TinyHttpd catch the 
SecurityException and return a proper message to the web browser. Add the following 
catch clause after the FileNotFoundException's catch clause: 

... 
} catch ( Security Exception e ) { 
    pout.println("403 Forbidden"); 
} 



11.1.3.3 Room for improvement 

TinyHttpd still has quite a bit of room for improvement. First, it consumes a lot of memory by 
allocating a huge array to read the entire contents of the file all at once. A more realistic 
implementation would use a buffer and send large amounts of data in several passes. Reading 
and sending the data iteratively would also allow us to handle the contingency where the first 
read does not return all of the data. In practice, this will not happen when reading from files, but 
the possibility is left open by the API and a responsible application should handle it. Finally, 
TinyHttpd is of course not fully compliant with the HTTP 1.0 protocol, but only implements a 
rudimentary portion of the GET command. A modern web server would expect and send 
additional "meta" information about the requested file in HTTP header text. As an additional 
convenience, it wouldn't be hard to add a few lines of code to read directories and generate 
linked HTML listings as most web servers do. Have fun with this example and you can learn quite 
a bit! 

11.1.4 Socket Options 

The Java sockets API is a simplified interface to the general socket mechanisms. In a C 
environment, where all of the gory details of the network are visible to you, a lot of complex and 
sometimes esoteric options can be set on sockets to govern the behavior of the underlying 
protocols. Java gives us access to a few of the important ones. We'll refer to them by their C 
language names so that you can recognize them in other networking books. 

11.1.4.1 SO_TIMEOUT 

The SO_TIMEOUT option sets a timer on all I/O methods of a socket that block so that you don't 
have to wait forever if they don't return. This works for operations such as accept( ) on server 
sockets and read( ) or write( ) on all sockets. If the timer expires before the operation 
would complete, an InterruptedIOException is thrown. You can catch the exception and 
continue to use the socket normally if it is appropriate, or you can take the opportunity to bail out 
of the operation. Servers should use this sort of technique for their "shutdown" logic: 

serverSocket.setSoTimeout( 2000 ); // 2 seconds 
 
while ( !shutdown ) { 
    try { 
        Socket client = serverSocket.accept( ); 
        handleClient( client ); 
    } catch ( InterruptedIOException e ) { 
        // ignore the exception 
    } 
     
    // exit 
} 

You set the timer by calling the setSoTimeout( ) method of the Socket class with the timeout 
period, in milliseconds, as an int argument. This works for regular Sockets and 
ServerSockets (TCP) and DatagramSockets (UDP), which we'll discuss in the next section. 

To find out the current timeout value, call getSoTimeout( ). 

11.1.4.2 TCP_NODELAY 



This option turns off a feature of TCP called Nagle's algorithm, which tries to prevent certain 
interactive applications from flooding the network with very tiny packets. Turn this off if you have a 
fast network and you want all packets sent as soon as possible. The Socket setTcpNoDelay( 
) method takes a boolean argument specifying whether the delay is on or off. 

To find out whether the TCP_NODELAY option is enabled, call getTcpNoDelay( ), which 
returns a boolean. 

11.1.4.3 SO_LINGER 

This option controls what happens to any unsent data when you perform a close( ) on an 
active socket connection. Normally the system tries to deliver any network buffered data and 
close the connection gracefully. The setSoLinger( ) method of the Socket class takes two 
arguments: a boolean that enables or disables the option, and an int that sets the "linger" value, 
in seconds. If you set the linger value to 0, any unsent data is discarded, and the TCP connection 
is aborted (terminated with a reset). 

To find out the current linger value, call getSoLinger( ). 

11.1.4.4 TCP_KEEPALIVE 

This option can be enabled with the setKeepAlive( ) method. It triggers a feature of TCP that 
polls the other side every two hours if there is no other activity. Normally, when there is no data 
flowing on a TCP connection, no packets are sent at all. This can make it difficult to tell the 
difference between the other side simply being quiet and having disappeared. If one side of the 
connection closes it properly, this will be detected. But if the other side simply disappears, we will 
not know unless and until we try to talk to them. For this reason, servers often use this feature to 
detect lost client connections (where they might otherwise only respond to requests, rather than 
initiate them). Keepalive is not part of the TCP specification; it's an add-on that's not 
guaranteed to be implemented everywhere. If you have the option, the best way to be sure of 
detecting lost clients is to implement the polling as part of your own protocol. 

11.1.4.5 "Half Close" 

In TCP, it is technically possible to close one direction of a stream but not the other. In other 
words, you can shut down sending but not receiving, or vice versa. A few protocols use this to 
indicate the end of a client request by closing the client side of the stream, allowing the end of 
stream to be detected by the server. You can shut down either half of a socket connection with 
shutdownOutput( ) or shutdownInput( ). 

11.1.5 Proxies and Firewalls 

Many networks are behind firewalls, which prevent applications from opening direct socket 
connections to the outside network. Instead, they provide a service called SOCKS (named for 
sockets) that serves as a proxy server for socket connections, giving the administrators more 
control over what connections are allowed. 

Java has built-in support for SOCKS. All you have to do is set some system properties in your 
application (in an applet, this should be already taken care of for you, since you wouldn't have 
authority to set those properties). Here's a list of the properties that configure Java to use a proxy 
server: 



http.proxySet  

A boolean (true or false) indicating whether to use the proxy 

http.proxyHost  

The proxy server name 

http.proxyPort  

The proxy port number 

You can set these properties on the command line using the Java interpreter's -D option or by 
calling the System.setProperty( ) method. The following command runs MyProgram using 
the proxy server at foo.bar.com on port 1234: 

% java -Dhttp.proxySet=true -Dhttp.proxyServer=foo.bar.com   
    -Dhttp.proxyPort=1234 MyProgram 

In SDK 1.0.2, the names didn't have the http. prefix. SDK 1.1 and later checks for the new 
names and then the old names. If the firewall does not allow any outside socket connections, 
your applet or application may still be able to communicate with the outside world by using HTTP 
to send and receive data. See Chapter 12, for an example of how to perform an HTTP POST. 

11.2 Datagram Sockets 

TinyHttpd used a Socket to create a connection to the client using the TCP protocol. In that 
example, TCP itself took care of data integrity; we didn't have to worry about data arriving out of 
order or incorrect. Now we'll take a walk on the wild side. We'll build an applet that uses a 
java.net.DatagramSocket, which uses the UDP protocol. A datagram is sort of like a letter 
sent via the postal service: it's a discrete chunk of data transmitted in one packet. Unlike the 
previous example, where we could get a convenient OutputStream from our Socket and write 
the data as if writing to a file, with a DatagramSocket we have to work one datagram at a time. 
(Of course, the TCP protocol was taking our OutputStream and slicing the data into packets, 
but we didn't have to worry about those details.) 

UDP doesn't guarantee that the data will get through. If the data packets do get through, they 
may not arrive in the order in which we sent them; it's even possible for duplicate datagrams to 
arrive (under rare circumstances). Using UDP is something like cutting the pages out of the 
encyclopedia, putting them into separate envelopes, and mailing them to your friend. If your friend 
wants to read the encyclopedia, it's his or her job to put the pages in order. If some pages got lost 
in the mail, your friend has to send you a letter asking for replacements. 

Obviously, you wouldn't use UDP to send a huge amount of data without error correction. But it's 
significantly more efficient than TCP, particularly if you don't care about the order in which 
messages arrive, or whether 100% of their arrival is guaranteed. For example, in a simple 
periodic database lookup, the client can send a query; the server's response itself constitutes an 
acknowledgment. If the response doesn't arrive within a certain time, the client can send another 
query. It shouldn't be hard for the client to match responses to its original queries. Some 
important applications that use UDP are the Domain Name System (DNS) and Sun's Network 
Filesystem (NFS). 



11.2.1 The HeartBeat Applet 

In this section, we'll build a simple applet, HeartBeat, that sends a datagram to its server each 
time it's started and stopped. We'll also build a simple standalone server application, Pulse, that 
receives these datagrams and prints them. By tracking the output, you could have a crude 
measure of who is currently looking at your web page at any given time. This is an ideal 
application for UDP: we don't want the overhead of a TCP socket, and if datagrams get lost, it's 
no big deal. 

First, the HeartBeat applet: 

//file: HeartBeat.java 
import java.net.*;  
import java.io.*;  
  
public class HeartBeat extends java.applet.Applet {  
    String myHost;  
    int myPort;  
  
    public void init( ) {  
        myHost = getCodeBase().getHost( );  
        myPort = Integer.parseInt( getParameter("myPort") );  
    }  
  
    private void sendMessage( String message ) {  
        try {  
            byte [] data = message.getBytes( );  
            InetAddress addr = InetAddress.getByName( myHost );  
            DatagramPacket pack =   
              new DatagramPacket(data, data.length, addr, myPort ); 
            DatagramSocket ds = new DatagramSocket( );  
            ds.send( pack );  
            ds.close( );  
        } catch ( IOException e ) {  
            System.out.println( e );  // Error creating socket  
        }  
    }  
  
    public void start( ) {  
        sendMessage("Arrived");  
    }  
    public void stop( ) {  
        sendMessage("Departed");  
    }  
} 

Compile the applet and include it in an HTML document with an <APPLET> tag: 

<APPLET height=10 width=10 code=HeartBeat>    
    <PARAM name="myPort" value="1234">   
</APPLET> 

Make sure to place the HeartBeat.class file in the same directory as the HTML document. If 
you're not familiar with embedding applets in HTML documents, consult Chapter 20. 



The myPort parameter should specify the port number on which our server application listens for 
data. 

Next, the server-side application, Pulse: 

//file: Pulse.java 
import java.net.*;  
import java.io.*;  
  
public class Pulse {  
    public static void main( String [] argv ) throws IOException {  
        DatagramSocket s = 
          new DatagramSocket( Integer.parseInt(argv[0]) );  
  
        while ( true ) {  
            DatagramPacket packet = 
              new DatagramPacket(new byte [1024], 1024);  
            s.receive( packet );  
            String message = new String( packet.getData( ) );  
            System.out.println( "Heartbeat from: " 
              + packet.getAddress().getHostName( ) 
              + " - " + message );  
        }  
    }  
} 

Compile Pulse and run it on your web server, specifying a port number as an argument: 

% java Pulse 1234 

The port number should be the same as the one you used in the myPort parameter of the 
<APPLET> tag for HeartBeat. 

Now, pull up the web page in your browser. You won't see anything interesting there (a better 
application might do something visual as well), but you should get a blip from the Pulse 
application. Leave the page and return to it a few times. Each time the applet is started or 
stopped, it sends a message and Pulse reports it 

Heartbeat from: foo.bar.com - Arrived   
Heartbeat from: foo.bar.com - Departed   
Heartbeat from: foo.bar.com - Arrived   
Heartbeat from: foo.bar.com - Departed   
... 

Cool, eh? Just remember the datagrams are not guaranteed to arrive (although it's highly unlikely 
you'll ever see them fail on a normal network), and it's possible that you could miss an arrival or a 
departure. Now let's look at the code. 

11.2.1.1 The HeartBeat applet code 

HeartBeat overrides the init( ), start( ), and stop( ) methods of the Applet class, 
and implements one private method of its own, sendMessage( ), that sends a datagram. 
HeartBeat begins its life in init( ), where it determines the destination for its messages. It 



uses the Applet getCodeBase( ) and getHost( ) methods to find the name of its 
originating host and fetches the correct port number from the myPort parameter of the 
<APPLET> tag. After init( ) has finished, the start( ) and stop( ) methods are called 
whenever the applet is started or stopped. These methods merely call sendMessage( ) with 
the appropriate message. 

sendMessage( ) is responsible for sending a String message to the server as a datagram. It 
takes the text as an argument, constructs a datagram packet containing the message, and then 
sends the datagram. All of the datagram information is packed into a 
java.net.DatagramPacket object, including the destination and port number. The 
DatagramPacket is like an addressed envelope, stuffed with our bytes. After the 
DatagramPacket is created, sendMessage( ) simply has to open a DatagramSocket and 
send it. 

The first five lines of sendMessage( ) build the DatagramPacket: 

try {  
    byte [] data = message.getBytes( );  
    InetAddress addr = InetAddress.getByName( myHost );  
    DatagramPacket pack =   
      new DatagramPacket(data, data.length, addr, myPort ); 

First, the contents of message are placed into an array of bytes called data. Next a 
java.net.InetAddress object is created from the name myHost. An InetAddress holds the 
network address information for a host in a special format. We get an InetAddress object for 
our host by using the static getByName( ) method of the InetAddress class. (We can't 
construct an InetAddress object directly.) Finally, we call the DatagramPacket constructor 
with four arguments: the byte array containing our data, the length of the data, the destination 
address object, and the port number. 

The remaining lines construct a default client DatagramSocket and call its send( ) method to 
transmit the DatagramPacket. After sending the datagram, we close the socket: 

DatagramSocket ds = new DatagramSocket( );   
ds.send( pack );   
ds.close( ); 

Two operations throw a type of IOException: the InetAddress.getByName( ) lookup and 
the DatagramSocket send(). InetAddress.getByName( ) can throw an 
UnknownHostException, which is a type of IOException that indicates that the hostname 
can't be resolved. If send( ) throws an IOException, it implies a serious client-side problem in 
talking to the network. We need to catch these exceptions; our catch block simply prints a 
message telling us that something went wrong. If we get one of these exceptions, we can assume 
the datagram never arrived. However, we can't assume the inverse: even if we don't get an 
exception, we still don't know that the host is actually accessible or that the data actually arrived. 
With a DatagramSocket, we never find out from the API. 

11.2.1.2 The Pulse server code 

The Pulse server corresponds to the HeartBeat applet. First, it creates a DatagramSocket to 
listen on our prearranged port. This time, we specify a port number in the constructor; we get the 
port number from the command line as a string (argv[0]) and convert it to an integer with 



Integer.parseInt( ). Note the difference between this call to the constructor and the call in 
HeartBeat. In the server, we need to listen for incoming datagrams on a prearranged port, so 
we need to specify the port when creating the DatagramSocket. The client just sends 
datagrams, so we don't have to specify the port in advance; we build the port number into the 
DatagramPacket itself. 

Second, Pulse creates an empty DatagramPacket of a fixed size to receive an incoming 
datagram. This alternative constructor for DatagramPacket takes a byte array and a length as 
arguments. As much data as possible is stored in the byte array when it's received. (A practical 
limit on the size of a UDP datagram that can be sent over the Internet is 8K, although they can be 
larger for local network use.) Finally, Pulse calls the DatagramSocket's receive( ) method 
to wait for a packet to arrive. When a packet arrives, its contents are printed. 

As you can see, working with DatagramSocket is slightly more tedious than working with 
Sockets. With datagrams, it's harder to spackle over the messiness of the socket interface. The 
Java API rather slavishly follows the Unix interface, and that doesn't help. It's easy to imagine 
conveniences that would make all of this simpler; perhaps we'll have them in a future release. 

11.3 Simple Serialized Object Protocols 

Earlier in this chapter, we showed a hypothetical conversation in which a client and server 
exchanged some primitive data and a serialized Java object. Passing an object between two 
programs may not have seemed like a big deal at the time, but in the context of Java as a 
portable byte-code language, it has profound implications. In this section, we'll show how a 
protocol can be built using serialized Java objects. 

Before we move on, it's worth considering network protocols. Most programmers would consider 
working with sockets to be "low-level" and unfriendly. Even though Java makes sockets much 
much easier to use than many other languages, sockets still provide only an unstructured flow of 
bytes between their endpoints. If you want to do serious communications using sockets, the first 
thing you have to do is come up with a protocol that defines the data you'll be sending and 
receiving. The most complex part of that protocol usually involves how to marshal (package) your 
data for transfer over the Net and unpack it on the other side. 

As we've seen, Java's DataInputStream and DataOuputStream classes solve this problem 
for simple data types. We can read and write numbers, Strings, and Java primitives in a 
recognizable format that can be understood on any other Java platform. But to do real work, we 
need to be able to put simple types together into larger structures. Java object serialization solves 
this problem elegantly, by allowing us to send our data just as we use it, as the state of Java 
objects. Serialization can even pack up entire graphs of interconnected objects and put them 
back together at a later time, possibly in another Java VM. 

11.3.1 A Simple Object-Based Server 

In the following example, a client will send a serialized object to the server, and the server will 
respond in kind. The client object represents a request and the server object represents a 
response. The conversation ends when the client closes the connection. It's hard to imagine a 
simpler protocol. All the hairy details are taken care of by object serialization, so we can keep 
them out of our design. 

To start we'll define a class, Request, to serve as a base class for the various kinds of requests 
we make to the server. Using a common base class is a convenient way to identify the object as 
a type of request. In a real application, we might also use it to hold basic information like client 



names and passwords, timestamps, serial numbers, etc. In our example, Request can be an 
empty class that exists so others can extend it: 

//file: Request.java 
public class Request implements java.io.Serializable {} 

Request implements Serializable, so all of its subclasses will be serializable by default. Next 
we'll create some specific kinds of Requests. The first, DateRequest, is also a trivial class. 
We'll use it to ask the server to send us a java.util.Date object as a response: 

//file: DateRequest.java 
public class DateRequest extends Request {} 

Next, we'll create a generic WorkRequest object. The client sends a WorkRequest to get the 
server to perform some computation for it. The server calls the WorkRequest object's execute( 
) method and returns the resulting object as a response: 

//file: WorkRequest.java 
public abstract class WorkRequest extends Request {  
    public abstract Object execute( );  
} 

For our application, we'll subclass WorkRequest to create MyCalculation, which adds code 
that performs a specific calculation; in this case, we will just square a number: 

//file: MyCalculation.java 
public class MyCalculation extends WorkRequest {  
    int n;  
  
    public MyCalculation( int n ) {  
        this.n = n;  
    }  
    public Object execute( ) {  
        return new Integer( n * n );  
    }  
} 

As far as data content is concerned, MyCalculation really doesn't do much; it only transports 
an integer value for us. But keep in mind that a request object could hold lots of data, including 
references to many other objects in complex structures like arrays or linked lists. An interesting 
part here is that MyCalculation also contains behavior—the execute( ) operation. In our 
discussion of RMI below, we'll see how Java's ability to dynamically download bytecode for 
serialized objects makes both the data content and behavior portable over the network. 

Now that we have our protocol, we need the server. The following Server class looks a lot like 
the TinyHttpd server that we developed earlier in this chapter: 

//file: Server.java 
import java.net.*;  
import java.io.*;  
 
public class Server {   
  public static void main( String argv[] ) throws IOException {  



    ServerSocket ss = new ServerSocket( Integer.parseInt(argv[0]) ); 
    while ( true )  
      new ServerConnection( ss.accept() ).start( );  
  }  
} // end of class Server 
  
class ServerConnection extends Thread {  
  Socket client;  
  ServerConnection ( Socket client ) throws SocketException {  
    this.client = client;  
    setPriority( NORM_PRIORITY - 1 );  
  }  
  
  public void run( ) {  
    try {  
      ObjectInputStream in =   
        new ObjectInputStream( client.getInputStream( ) );  
      ObjectOutputStream out =   
        new ObjectOutputStream( client.getOutputStream( ) );  
      while ( true ) {  
        out.writeObject( processRequest( in.readObject( ) ) ); 
        out.flush( );  
      }  
    } catch ( EOFException e3 ) { // Normal EOF  
      try {  
        client.close( );  
      } catch ( IOException e ) { }  
    } catch ( IOException e ) {  
      System.out.println( "I/O error " + e ); // I/O error  
    } catch ( ClassNotFoundException e2 ) {  
      System.out.println( e2 ); // unknown type of request object  
    }  
  }  
  
  private Object processRequest( Object request ) {  
    if ( request instanceof DateRequest )   
      return new java.util.Date( );  
    else if ( request instanceof WorkRequest )  
      return ((WorkRequest)request).execute( );  
    else  
      return null;  
  }  
} 

The Server services each request in a separate thread. For each connection, the run( ) 
method creates an ObjectInputStream and an ObjectOutputStream, which the server 
uses to receive the request and send the response. The processRequest( ) method decides 
what the request means and comes up with the response. To figure out what kind of request we 
have, we use the instanceof operator to look at the object's type. 

Finally, we get to our Client, which is even simpler: 

//file: Client.java 
import java.net.*;  
import java.io.*;  
  



public class Client {   
  public static void main( String argv[] ) {  
    try {  
      Socket server =   
        new Socket( argv[0], Integer.parseInt(argv[1]) );  
      ObjectOutputStream out =   
        new ObjectOutputStream( server.getOutputStream( ) );  
      ObjectInputStream in =   
        new ObjectInputStream( server.getInputStream( ) );  
  
      out.writeObject( new DateRequest( ) );  
      out.flush( );  
      System.out.println( in.readObject( ) );  
  
      out.writeObject( new MyCalculation( 2 ) );  
      out.flush( );  
      System.out.println( in.readObject( ) );  
  
      server.close( );  
    } catch ( IOException e ) {  
      System.out.println( "I/O error " + e ); // I/O error  
    } catch ( ClassNotFoundException e2 ) {  
      System.out.println( e2 ); // unknown type of response object 
    }  
  }  
} 

Just like the server, Client creates the pair of object streams. It sends a DateRequest and 
prints the response; it then sends a MyCalculation object and prints the response. Finally, it 
closes the connection. On both the client and the server, we call the flush( ) method after 
each call to writeObject( ). This method forces the system to send any buffered data; it's 
important because it ensures that the other side sees the entire request before we wait for a 
response. When the client closes the connection, our server catches the EOFException that is 
thrown and ends the session. Alternatively, our client could write a special object, perhaps null, 
to end the session; the server could watch for this item in its main loop. 

The order in which we construct the object streams is important. We create the output streams 
first because the constructor of an ObjectInputStream tries to read a header from the stream 
to make sure that the InputStream really is an object stream. If we tried to create both of our 
input streams first, we would deadlock waiting for the other side to write the headers. 

Finally, we can run the example. Run the Server, giving it a port number as an argument: 

% java Server 1234 

Then run the Client, telling it the server's hostname and port number: 

% java Client flatland 1234 

The result should look like this: 

Sun Jul 11 14:25:25 PDT 1999 
4 



All right, the result isn't that impressive, but it's easy to imagine more substantial applications. 
Imagine that you needed to perform some complex computation on many large data sets. Using 
serialized objects makes maintenance of the data objects natural and sending them over the wire 
trivial. There is no need to deal with byte-level protocols at all. 

11.3.1.1 Limitations 

There is one catch in this scenario: both the client and server need access to the necessary 
classes. That is, all of the Request classes—including MyCalculation, which is really the 
property of the Client—have to be in the class path on both the client and the server machines. 
As we hinted earlier, in the next section we'll see that it's possible to send the Java bytecode 
along with serialized objects to allow completely new kinds of objects to be transported over the 
network dynamically. We could create this solution on our own, adding to the earlier example 
using a network class loader to load the classes for us. But we don't have to: Java's RMI facility 
automates that for us. The ability to send both serialized data and class definitions over the 
network makes Java a powerful tool for developing advanced distributed applications.  

11.4 Remote Method Invocation (RMI) 

The most fundamental means of inter-object communication in Java is method invocation. 
Mechanisms like the Java event model are built on simple method invocations between objects in 
the same virtual machine. Therefore, when we want to communicate between virtual machines on 
different hosts, it's natural to want a mechanism with similar capabilities and semantics. Java's 
Remote Method Invocation mechanism does just that. It lets us get a reference to an object on a 
remote host and use it as if it were in our own virtual machine. RMI lets us invoke methods on 
remote objects, passing real Java objects as arguments and getting real Java objects as returned 
values. 

Remote invocation is nothing new. For many years C programmers have used remote procedure 
calls (RPC) to execute a C function on a remote host and return the results. The primary 
difference between RPC and RMI is that RPC, being an offshoot of the C language, is primarily 
concerned with data structures. It's relatively easy to pack up data and ship it around, but for 
Java, that's not enough. In Java we don't just work with data structures; we work with objects, 
which contain both data and methods for operating on the data. Not only do we have to be able to 
ship the state of an object (the data) over the wire, but also the recipient has to be able to interact 
with the object (use its methods) after receiving it. 

It should be no surprise that RMI uses object serialization, which allows us to send graphs of 
objects (objects and all of the connected objects that they reference). When necessary, RMI can 
also use dynamic class loading and the security manager to transport Java classes safely. Thus, 
the real breakthrough of RMI is that it's possible to ship both data and behavior (code) around the 
Net. 

11.4.1 Remote and Non-Remote Objects 

Before an object can be used with RMI, it must be serializable. But that's not sufficient. Remote 
objects in RMI are real distributed objects. As the name suggests, a remote object can be an 
object on a different machine; it can also be an object on the local host. The term remote means 
that the object is used through a special kind of object reference that can be passed over the 
network. Like normal Java objects, remote objects are passed by reference. Regardless of where 
the reference is used, the method invocation occurs at the original object, which still lives on its 
original host. If a remote host returns a reference to one of its objects to you, you can call the 
object's methods; the actual method invocations will happen on the remote host, where the object 
resides. 



Nonremote objects are simpler. They are just normal serializable objects. (You can pass these 
over the network as we did in Section 11.3.1 earlier.) The catch is that when you pass a 
nonremote object over the network it is simply copied. So references to the object on one host 
are not the same as those on the remote host. Nonremote objects are passed by copy (as 
opposed to by reference). This may be acceptable for many kinds of data-oriented objects in your 
application, especially those that are not being modified. 

11.4.1.1 Stubs and skeletons 

No, we're not talking about a gruesome horror movie. Stubs and skeletons are used in the 
implementation of remote objects. When you invoke a method on a remote object (which could be 
on a different host), you are actually calling some local code that serves as a proxy for that object. 
This is the stub. (It is called a stub because it is something like a truncated placeholder for the 
object.) The skeleton is another proxy that lives with the real object on its original host. It receives 
remote method invocations from the stub and passes them to the object. 

After you create stubs and skeletons you never have to work with them directly; they are hidden 
from you (in the closet, so to speak). Stubs and skeletons for your remote objects are created by 
running the rmic (RMI compiler) utility. After compiling your Java source files normally, you run 
rmic on the remote object classes as a second pass. It's easy; we'll show you how in the 
following examples. 

11.4.1.2 Remote interfaces 

Remote objects are objects that implement a special remote interface that specifies which of the 
object's methods can be invoked remotely. The remote interface must extend the 
java.rmi.Remote interface. Your remote object will implement its remote interface; as will the 
stub object that is automatically generated for it. In the rest of your code, you should then refer to 
the remote object as an instance of the remote interface—not as an instance of its actual class. 
Because both the real object and stub implement the remote interface, they are equivalent as far 
as we are concerned (for method invocation); locally, we never have to worry about whether we 
have a reference to a stub or to an actual object. This "type equivalence" means that we can use 
normal language features, like casting with remote objects. Of course public fields (variables) of 
the remote object are not accessible through an interface, so you must make accessor methods if 
you want to manipulate the remote object's fields. 

All methods in the remote interface must declare that they can throw the exception 
java.rmi.RemoteException. This exception (actually, one of many subclasses to 
RemoteException) is thrown when any kind of networking error happens: for example, the 
server could crash, the network could fail, or you could be requesting an object that for some 
reason isn't available. 

Here's a simple example of the remote interface that defines the behavior of RemoteObject; 
we'll give it two methods that can be invoked remotely, both of which return some kind of Widget 
object: 

import java.rmi.*; 
 
public interface RemoteObject extends Remote {  
    public Widget doSomething( ) throws RemoteException;  
    public Widget doSomethingElse( ) throws RemoteException;  
} 



11.4.1.3 The UnicastRemoteObject class 

The actual implementation of a remote object (not the interface we discussed previously) will 
usually extend java.rmi.server.UnicastRemoteObject. This is the RMI equivalent to the 
familiar Object class. When a subclass of UnicastRemoteObject is constructed, the RMI 
runtime system automatically "exports" it to start listening for network connections from remote 
interfaces (stubs) for the object. Like java.lang.Object, this superclass also provides 
implementations of equals( ) , hashcode( ), and toString( ) that make sense for a 
remote object. 

Here's a remote object class that implements the RemoteObject interface; we haven't supplied 
implementations for the two methods or the constructor: 

public class MyRemoteObject implements RemoteObject  
        extends java.rmi.UnicastRemoteObject  
{  
    public RemoteObjectImpl( ) throws RemoteException {...}  
    public Widget doSomething( ) throws RemoteException {...}  
    public Widget doSomethingElse( ) throws RemoteException {...} 
    // other non-public methods  
    ...  
} 

This class can have as many additional methods as it needs; presumably, most of them will be 
private, but that isn't strictly necessary. We have to supply a constructor explicitly, even if the 
constructor does nothing, because the constructor (like any method) can throw a 
RemoteException; we therefore can't use the default constructor. 

What if we can't or don't want to make our remote object implementation a subclass of 
UnicastRemoteObject? Suppose, for example, that it has to be a subclass of BankAccount 
or some other special base type for our system. Well, we can simply export the object ourselves 
using the static method exportObject( ) of UnicastRemoteObject. The exportObject( 
) method takes as an argument a Remote interface and accomplishes what the 
UnicastRemoteObject constructor normally does for us. It returns as a value the remote 
object's stub. However, you will normally not do anything with this directly. In the next section, 
we'll discuss how to get stubs to your client through the RMI registry. 

Normally, exported objects listen on individual ephemeral (randomly assigned) port numbers by 
default. (This is implementation-dependent.) You can control the port number allocation explicitly 
by exporting your objects using another form of UnicastRemoteObject.exportObject( ), 
which takes both a Remote interface and a port number as arguments. 

Finally, the name UnicastRemoteObject suggests the question, "what other kinds of remote 
objects are there?" Right now, none. It's possible that Sun will develop remote objects using other 
protocols or multicast techniques in the future. They would take their place alongside 
UnicastRemoteObject. 

11.4.1.4 The RMI registry 

The registry is the RMI phone book. You use the registry to look up a reference to a registered 
remote object on another host. We've already described how remote references can be passed 
back and forth by remote method calls. But the registry is needed to bootstrap the process: the 
client needs some way of looking up some initial object. 



The registry is implemented by a class called Naming and an application called rmiregistry. 
This application must be running on the local host before you start a Java program that uses the 
registry. You can then create instances of remote objects and bind them to particular names in 
the registry. (Remote objects that bind themselves to the registry sometimes provide a main( ) 
method for this purpose.) A registry name can be anything you choose; it takes the form of a 
slash-separated path. When a client object wants to find your object, it constructs a special URL 
with the rmi: protocol, the hostname, and the object name. On the client, the RMI Naming class 
then talks to the registry and returns the remote object reference. 

Which objects need to register themselves with the registry? Well, initially any object that the 
client has no other way of finding. But a call to a remote method can return another remote object 
without using the registry. Likewise, a call to a remote method can have another remote object as 
its argument, without requiring the registry. So you could design your system such that only one 
object registers itself, and then serves as a factory for any other remote objects you need. In 
other words, it wouldn't be hard to build a simple object request "bouncer" (we won't say "broker") 
that returns references to all of the remote objects that your application uses. Depending on how 
you structure your application, this may happen naturally anyway. 

Why avoid using the registry for everything? The current RMI registry is not very sophisticated, 
and lookups tend to be slow. It is not intended to be a general-purpose directory service (like 
JNDI, the Java API for accessing directory/name services), but simply to bootstrap RMI 
communications. It wouldn't be surprising if Sun releases a much improved registry in the future, 
but that's not the one we have now. Besides, the factory design pattern is extremely flexible and 
useful. 

11.4.2 An RMI Example 

The first thing we'll implement using RMI is a duplication of the simple serialized object protocol 
from the previous section. We'll make a remote RMI object called MyServer on which we can 
invoke methods to get a Date object or execute a WorkRequest object. First, we'll define our 
Remote interface: 

//file: RmtServer.java 
import java.rmi.*;  
import java.util.*;  
  
public interface RmtServer extends Remote {  
    Date getDate( ) throws RemoteException;  
    Object execute( WorkRequest work ) throws RemoteException;  
} 

The RmtServer interface extends the java.rmi.Remote interface, which identifies objects that 
implement it as remote objects. We supply two methods that take the place of our old protocol: 
getDate( ) and execute( ). 

Next, we'll implement this interface in a class called MyServer that defines the bodies of these 
methods. (Note that a more common convention for naming the implementation of remote 
interfaces is to postfix the class name with "Impl". Using that convention MyServer would 
instead be named something like ServerImpl.) 

//file: MyServer.java 
import java.rmi.*;  
import java.util.*;  



 
public class MyServer   
    extends java.rmi.server.UnicastRemoteObject 
    implements RmtServer {     
 
    public MyServer( ) throws RemoteException { }  
 
    // implement the RmtServer interface  
    public Date getDate( ) throws RemoteException {  
        return new Date( );  
    }  
 
    public Object execute( WorkRequest work ) 
      throws RemoteException { 
        return work.execute( );  
    }  
  
    public static void main(String args[]) {  
        try {  
            RmtServer server = new MyServer( );  
            Naming.rebind("NiftyServer", server);  
        } catch (java.io.IOException e) {  
            // problem registering server  
        }  
    }  
} 

MyServer extends java.rmi.UnicastRemoteObject, so when we create an instance of 
MyServer, it will automatically be exported and start listening to the network. We start by 
providing a constructor, which must throw RemoteException, accommodating errors that might 
occur in exporting an instance. (We can't use the automatically generated default constructor, 
because it won't throw the exception.) Next, MyServer implements the methods of the remote 
RmtServer interface. These methods are straightforward. 

The last method in this class is main( ). This method lets the object set itself up as a server. 
main( ) creates an instance of the MyServer object and then calls the static method 
Naming.rebind( ) to register the object with the registry. The arguments to rebind( ) are 
the name of the remote object in the registry (NiftyServer), which clients will use to look up the 
object, and a reference to the server object itself. We could have called bind( ) instead, but 
rebind( ) is less prone to problems: if there's already a NiftyServer registered, rebind( ) 
replaces it. 

We wouldn't need the main( ) method or this Naming business if we weren't expecting clients 
to use the registry to find the server. That is, we could omit main( ) and still use this object as a 
remote object. We would be limited to passing the object in method invocations or returning it 
from method invocations—but that could be part of a factory design, as we discussed before. 

Now we need our client: 

//file: MyClient.java 
import java.rmi.*; 
import java.util.*;  
 
public class MyClient {  



  
    public static void main(String [] args) 
      throws RemoteException {  
        new MyClient( args[0] );  
    }  
  
    public MyClient(String host) {  
        try {  
            RmtServer server = (RmtServer)  
                Naming.lookup("rmi://"+host+"/NiftyServer"); 
            System.out.println( server.getDate( ) );  
            System.out.println( 
              server.execute( new MyCalculation(2) ) ); 
        } catch (java.io.IOException e) {   
              // I/O Error or bad URL  
        } catch (NotBoundException e) {   
              // NiftyServer isn't registered  
        }  
    }  
} 

When we run MyClient, we pass it the hostname of the server on which the registry is running. 
The main( ) method creates an instance of the MyClient object, passing the hostname from 
the command line as an argument to the constructor. 

The constructor for MyClient uses the hostname to construct a URL for the object. The URL will 
look something like this: rmi://hostname/NiftyServer. (Remember, NiftyServer is the name 
under which we registered our RmtServer.) We pass the URL to the static Naming.lookup( ) 
method. If all goes well, we get back a reference to a RmtServer (the remote interface). The 
registry has no idea what kind of object it will return; lookup( ) therefore returns an Object, 
which we must cast to RmtServer. 

Compile all of the code. Then run rmic , the RMI compiler, to make the stub and skeleton files for 
MyServer: 

% rmic MyServer 

Let's run the code. For the first pass, we'll assume that you have all of the class files, including 
the stubs and skeletons generated by rmic, available in the class path on both the client and 
server machines. (You can run this example on a single host to test it if you want.) Make sure 
your class path is correct and then start the registry; then start the server: 

% rmiregistry &     (on Windows: start rmiregistry  ) 
% java MyServer  

In each case, make sure the registry application has the class path including your server classes 
so that it can load the stub class. (Be warned, we're going to tell you to do the opposite later as 
part of setting up the dynamic class loading!) 

Finally, on the client machine, run MyClient, passing the hostname of the server: 

% java MyClient  myhost  



The client should print the date and the number 4, which the server graciously calculated. 
Hooray! With just a few lines of code you have created a powerful client/server application. 

11.4.2.1 Dynamic class loading 

Before running the example, we told you to distribute all the class files to both the client and 
server machines. However, RMI was designed to ship classes, in addition to data, around the 
network; you shouldn't have to distribute all the classes in advance. Let's go a step further, and 
have RMI load classes for us, as needed. This involves several steps. 

First, we need to tell RMI where to find any other classes it needs. We can use the system 
property java.rmi.server.codebase to specify a URL on a web server (or FTP server) when 
we run our client or server. This URL specifies the location of a JAR file or a base directory in 
which RMI will begin its search for classes. When RMI sends a serialized object (i.e., an object's 
data) to some client, it also sends this URL. If the recipient needs the class file in addition to the 
data, it fetches the file at the specified URL. In addition to stub classes, other classes referenced 
by remote objects in the application can be loaded dynamically. Therefore, we don't have to 
distribute many class files to the client; we can let the client download them as necessary. In 
Figure 11.3, we see an example as MyClient is going to the registry to get a reference to the 
RmtServer object. Then MyClient dynamically downloads the stub class for RmtMyServer 
from a web server running on the server object's host. 

Figure 11.3. RMI applications and dynamic class loading 

 

We can now split our class files between the server and client machines. For example, we could 
withhold the MyCalculation class from the server, since it really belongs to the client. Instead, 
we can make the MyCalculation class available via a web server on some machine (probably 
our client's) and specify the URL when we run MyClient: 

java -Djava.rmi.server.codebase="http://myserver/foo/" ... 



In this case, we would expect that MyCalculation would be accessible at the URL 
http://myserver/foo/MyCalculation.class/. (Note that the trailing slash in the URL is important: it 
says that the location is a base directory that contains the class files.) 

Next we have to set up security. Since we will be loading class files over the network and 
executing their methods, we must have a security manager in place to restrict the kinds of things 
those classes may do, at least in the case where they are not coming from a trusted code source. 
RMI will not load any classes dynamically unless a security manager is installed. One easy way 
to meet this condition is to install the RMISecurityManager as the system security manager for 
your application. It is an example security manager that works with the default system policy and 
imposes some basic restrictions on what downloaded classes can do. To install the 
RMISecurityManager, simply add the following line to the beginning of the main( ) method of 
both the client and server applications (yes, we'll be sending code both ways in the next section): 

main( ) { 
    System.setSecurityManager( new RMISecurityManager( ) ); 
    ... 

The RMISecurityManager will work with the system security policy file to enforce restrictions. 
So you'll have to provide a policy file that allows the client and server to do basic operations like 
make network connections. Unfortunately allowing all of the operations needed to load classes 
dynamically would require us listing a lot of permission information and we don't want to get into 
that here. So we're going to resort to suggesting that for this example you simply grant the code 
all permissions. Here is an example policy file—call it mysecurity.policy: 

grant { 
   permission java.security.AllPermission ; 
}; 

(It's exceedingly lame to install a security manager and then tell it to enforce no real security, but 
we're more interested in looking at the networking code at the moment.) 

So, to run our MyServer application we would now do something like this: 

java -Djava.rmi.server.codebase='http://myserver/foo/'  
    -Djava.security.policy=mysecurity.policy MyServer 

Finally, there is one last magic incantation required to enable dynamic class loading. As of the 
current implementation, the rmiregistry must be run without the classes which are to be 
loaded being in its class path. If the classes are in the class path of rmiregistry, it will not 
annotate the serialized objects with the URLs of their class files and no classes will be 
dynamically loaded. This limitation is really annoying; all we can say is to heed the warning for 
now. 

If you meet these conditions, you should be able to get the client to run starting with only the 
MyClient class and the RmtServer remote interface. All of the other classes will be loaded 
dynamically from a remote location. 

11.4.2.2 Passing remote object references 

So far, we haven't done anything that we couldn't have done with the simple object protocol. We 
only used one remote object, MyServer, and we got its reference from the RMI registry. Now 
we'll extend our example to pass some remote references between the client and server (these 



will be prime candidates for dynamic class loading). We'll add two methods to our remote 
RmtServer interface: 

public interface RmtServer extends Remote {  
    ... 
    StringIterator getList( ) throws RemoteException;  
    void asyncExecute( WorkRequest work, WorkListener listener ) 
        throws RemoteException;  
} 

getList( ) retrieves a new kind of object from the server: a StringIterator. The 
StringIterator is a simple list of strings, with some methods for accessing the strings in 
order. We will make it a remote object, so that implementations of StringIterator stay on the 
server. 

Next we'll spice up our work request feature by adding an asyncExecute( ) method. 
asyncExecute( ) lets us hand off a WorkRequest object as before, but it does the calulation 
on its own time. The return type for asyncExecute( ) is void, because it doesn't actually 
return a value; we get the result later. Along with the request, our client passes a reference to a 
WorkListener object that is to be notified when the WorkRequest is done. We'll have our 
client implement WorkListener itself. 

Because this is to be a remote object, our interface must extend Remote, and its methods must 
throw RemoteExceptions: 

//file: StringIterator.java 
import java.rmi.*; 
 
public interface StringIterator extends Remote {  
    public boolean hasNext( ) throws RemoteException;  
    public String next( ) throws RemoteException;  
} 

Next, we provide a simple implementation of StringIterator, called MyStringIterator: 

//file: MyStringIterator.java 
import java.rmi.*; 
 
public class MyStringIterator   
  extends java.rmi.server.UnicastRemoteObject 
  implements StringIterator {  
  
    String [] list;  
    int index = 0;  
   
    public MyStringIterator( String [] list ) 
      throws RemoteException { 
        this.list = list;  
    }  
    public boolean hasNext( ) throws RemoteException {  
        return index < list.length;  
    }  
    public String next( ) throws RemoteException {  
        return list[index++];  



    }  
} 

MyStringIterator extends UnicastRemoteObject. Its methods are simple: it can give you 
the next string in the list, and it can tell you whether there are any strings that you haven't seen 
yet. 

Next, we'll define the WorkListener remote interface. This is the interface that defines how an 
object should listen for a completed WorkRequest. It has one method, workCompleted( ), 
which the server that is executing a WorkRequest calls when the job is done: 

//file: WorkListener.java 
import java.rmi.*; 
 
public interface WorkListener extends Remote {  
    public void workCompleted(WorkRequest request, Object result ) 
        throws RemoteException; 
} 

Next, let's add the new features to MyServer. We need to add implementations of the 
getList( ) and asyncExecute( ) methods, which we just added to the RmtServer 
interface: 

public class MyServer extends java.rmi.server.UnicastRemoteObject 
                      implements RmtServer { 
  ... 
  public StringIterator getList( ) throws RemoteException {  
    return new MyStringIterator(   
        new String [] { "Foo", "Bar", "Gee" } );  
  }  
 
  public void asyncExecute( 
     WorkRequest request , WorkListener listener ) 
     throws java.rmi.RemoteException {  
 
     // should really do this in another thread  
     Object result = request.execute( );  
     listener.workCompleted( request, result );  
  } 
} 

getList( ) just returns a StringIterator with some stuff in it. asyncExecute( ) calls a 
WorkRequest's execute( ) method and notifies the listener when it's done. (Our 
implementation of asyncExecute( ) is a little cheesy. If we were forming a more complex 
calculation we would want to start a thread to do the calculation, and return immediately from 
asyncExecute( ), so the client won't block. The thread would call workCompleted( ) at a 
later time, when the computation was done. In this simple example, it would probably take longer 
to start the thread than to perform the calculation.) 

We have to modify MyClient to implement the remote WorkListener interface. This turns 
MyClient into a remote object, so we must make it a UnicastRemoteObject. We also add 
the workCompleted( ) method that the WorkListener interface requires: 

public class MyClient 



  extends java.rmi.server.UnicastRemoteObject 
  implements WorkListener {  
    ...  
    public void workCompleted( WorkRequest request, Object result) 
      throws RemoteException {  
        System.out.println("Async work result = " + result);  
    }  
} 

Finally, we want MyClient to exercise the new features. Add these lines after the calls to 
getDate( ) and execute( ): 

// MyClient constructor  
    ...  
StringIterator se = server.getList( );  
while ( se.hasNext( ) )  
    System.out.println( se.next( ) );  
  
server.asyncExecute( new MyCalculation(100), this ); 

We use getList( ) to get the iterator from the server, then loop, printing the strings. We also 
call asyncExecute( ) to perform another calculation; this time, we square the number 100. 
The second argument to asyncExecute( ) is the WorkListener to notify when the data is 
ready; we pass a reference to ourself (this). 

Now all we have to do is compile everything and run rmic to make the stubs for all our remote 
objects: 

rmic MyClient MyServer MyStringIterator 

Restart the RMI registry and MyServer on your server, and run the client somewhere. You 
should get the following: 

Fri Jul 11 23:57:19 PDT 1999 
4  
Foo  
Bar  
Gee  
Async work result = 10000 

If you are experimenting with dynamic class loading, you should be able to have the client 
download all of the server's auxiliary classes (the stubs and the StringIterator) from a web 
server. And, conversely, you should be able to have the MyServer download the Client stub 
and WorkRequest related classes when it needs them. 

We hope that this introduction has given you a feel for the tremendous power that RMI offers 
through object serialization and dynamic class loading. Java is one of the first programming 
languages to offer this kind of powerful framework for distributed applications. 

11.4.3 RMI Object Activation 

One of the newest features of RMI is the ability to create remote objects that are persistent. They 
can save their state and be reactivated when a request from a client arrives. This is an important 



feature for large systems with remote objects that must remain accessible across long periods of 
time. RMI activation effectively allows a remote object to be stored away—in a database, for 
example—and automatically be reincarnated when it is needed. RMI activation is not particularly 
easy to use and would not have benefited us in any of our simple examples; we won't delve into it 
here. Much of the functionality of activatable objects can be achieved by using factories of 
shorter-lived objects that know how to retrieve some state from a database (or other location). 
The primary users of RMI activation may be systems like Enterprise JavaBeans, which need a 
generalized mechanism to save remotely accessible objects and revive them at later times. 

11.4.4 RMI and CORBA 

Java supports an important alternative to RMI, called CORBA (Common Object Request Broker 
Architecture). We won't say much about CORBA here, but you should know that it exists. CORBA 
is a distributed object standard developed by the Object Management Group (OMG), of which 
Sun Microsystems is one of the founding members. Its major advantage is that it works across 
languages: a Java program can use CORBA to talk to objects written in other languages, like C or 
C++. This is may be a considerable advantage if you want to build a Java front end for an older 
program that you can't afford to re-implement. CORBA also provides other services similar to 
those in the Java Enterprise APIs. CORBA's major disadvantages are that it's complex, inelegant, 
and somewhat arcane. 

Sun and OMG have been making efforts to bridge RMI and CORBA. There is an implementation 
of RMI that can use IIOP (the Internet Inter-Object Protocol) to allow some RMI-to-CORBA 
interoperability. However, CORBA currently does not have many of the semantics necessary to 
support true RMI style distributed objects. So this solution is somewhat limited at this time. 



Chapter 12. Programming for the Web 

When we think about the World Wide Web, we normally think of applications—web browsers, 
web servers—and the many kinds of content that those applications move around the network. 
But it's important to note that standards and protocols, not the applications themselves, have 
enabled the Web's growth. Ever since the first days of the Internet, there have been ways to 
move files from here to there, and document formats that were just as good as HTML, but there 
was not a unifying model for how to identify, retrieve, and display information; nor was there a 
universal way for applications to interact with that data over the network. As we all know, HTML 
came to provide a common data basis for documents. In this chapter, we're going to talk about 
how to use HTTP, the protocol that governs communications between web clients and servers, 
and URLs, which provide a standard for naming and addressing objects on the Web. 

In this chapter, we're also going to talk about web programming: making the Web intelligent, 
making it do what you want. This involves writing code for both clients and servers. Java provides 
a powerful API for dealing with URLs, which will be the first focus of our discussion. Then we'll 
discuss how to write web clients that can interact with the standard CGI interface, using the GET 
and POST methods. Finally, we'll take a look at servlets, simple Java programs that run on web 
servers and provide an effective way to build intelligence into your web pages. Servlets have 
been one of the most important and popular developments in Java over the past couple of years. 

12.1 Uniform Resource Locators (URLs) 

A URL points to an object on the Internet. It's (usually) a text string that identifies an item, tells 
you where to find it, and specifies a method for communicating with it or retrieving it from its 
source. A URL can refer to any kind of information source. It might point to static data, such as a 
file on a local filesystem, a web server, or an FTP archive; or it can point to a more dynamic 
object such as a news article on a news spool or a record in a database. URLs can even refer to 
less tangible resources such as telnet sessions and mailing addresses. 

The Java URL classes provide an API for accessing well-defined networked resources, like 
documents and applications on servers. The classes use an extensible set of prefabricated 
protocol and content handlers to perform the necessary communication and data conversion for 
accessing URL resources. With URLs, an application can fetch a complete file or database record 
from a server on the network with just a few lines of code. Applications like web browsers, which 
deal with networked content, use the URL class to simplify the task of network programming. 
They also take advantage of the dynamic nature of Java, which allows handlers for new types of 
URLs to be added on the fly. As new types of servers and new formats for content evolve, 
additional URL handlers can be supplied to retrieve and interpret the data without modifying the 
original application. 

A URL is usually presented as a string of text, like an address.[1] Since there are many different 
ways to locate an item on the Net, and different mediums and transports require different kinds of 
information, there are different formats for different kinds of URLs. The most common form has 
three components: a network host or server, the name of the item and its location on that host, 
and a protocol by which the host should communicate: 

[1] The term URL was coined by the Uniform Resource Identifier (URI) working group of the IETF to 
distinguish URLs from the more general notion of Uniform Resource Names or URNs. URLs are really just 
static addresses, whereas URNs would be more persistent and abstract identifiers used to resolve the 
location of an object anywhere on the Net. URLs are defined in RFC 1738 and RFC 1808. 

protocol://hostname/location/item-name 



protocol (also called the "scheme") is an identifier such as http, ftp, or gopher; hostname 
is an Internet hostname; and the location and item components form a path that identifies the 
object on that host. Variants of this form allow extra information to be packed into the URL, 
specifying things like port numbers for the communications protocol and fragment identifiers that 
reference parts inside the object. 

We sometimes speak of a URL that is relative to another URL, called a base URL. In that case 
we are using the base URL as a starting point and supplying additional information. For example, 
the base URL might point to a directory on a web server; a relative URL might name a particular 
file in that directory. 

12.2 The URL Class 

A URL is represented by an instance of the java.net.URL class. A URL object manages all the 
component information within a URL string and provides methods for retrieving the object it 
identifies. We can construct a URL object from a URL specification string or from its component 
parts: 

try {   
    URL aDoc = 
      new URL( "http://foo.bar.com/documents/homepage.html" ); 
    URL sameDoc = 
      new URL("http","foo.bar.com","documents/homepage.html"); 
}    
catch ( MalformedURLException e ) { } 

These two URL objects point to the same network resource, the homepage.html document on the 
server foo.bar.com. Whether the resource actually exists and is available isn't known until we try 
to access it. At this point, the URL object just contains data about the object's location and how to 
access it. No connection to the server has been made. We can examine the URL's components 
with the getProtocol( ), getHost( ), and getFile( ) methods. We can also compare it 
to another URL with the sameFile( ) method (which has an unfortunate name for something 
which may not point to a file). sameFile( ) determines whether two URLs point to the same 
resource. It can be fooled, but sameFile( ) does more than compare the URLs for equality; it 
takes into account the possibility that one server may have several names, and other factors. 

When a URL is created, its specification is parsed to identify just the protocol component. If the 
protocol doesn't make sense, or if Java can't find a protocol handler for it, the URL constructor 
throws a MalformedURLException. A protocol handler is a Java class that implements the 
communications protocol for accessing the URL resource. For example, given an http URL, 
Java prepares to use the HTTP protocol handler to retrieve documents from the specified server. 

12.2.1 Stream Data 

The lowest level way to get data back from URL is to ask for an InputStream from the URL by 
calling openStream( ). Currently, if you're writing an applet or working in an otherwise 
untrusted environment this is about your only choice. Getting the data as a stream may be useful 
if you want to receive continuous updates from a dynamic information source. The drawback is 
that you have to parse the contents of the object yourself. Not all types of URLs support the 
openStream( ) method because not all types of URLs refer to concrete data; you'll get an 
UnknownServiceException if the URL doesn't. 



The following code prints the contents of an HTML file: 

try {   
    URL url = new URL("http://server/index.html");   
  
    BufferedReader bin = new BufferedReader (  
        new InputStreamReader( url.openStream( ) ));  
  
    String line;  
    while ( (line = bin.readLine( )) != null )    
        System.out.println( line );  
} catch (Exception e) { } 

We ask for an InputStream with openStream( ) and wrap it in a BufferedReader to read 
the lines of text. Because we specify the http protocol in the URL, we require the services of an 
HTTP protocol handler. As we'll discuss later, that raises some questions about what kinds of 
handlers we have available. This example partially works around those issues because no 
content handler is involved; we read the data and interpret the content ourselves (by simply 
printing it). 

Applets have additional restrictions. To be sure that you can access the specified URL and the 
correct protocol handler, construct URLs relative to the base URL that identifies the applet's 
codebase—the location of the applet code. For example: 

new URL( getCodeBase( ), "foo/bar.gif" ); 

This should guarantee that the needed protocol is available and accessible to the applet. 
However if you are just trying to get data files or media associated with an applet, there is a more 
general way; see the discussion of getResource( ) in Chapter 10. 

12.2.2 Getting the Content as an Object 

openStream( ) operates at a lower level than the more general content-handling mechanism 
implemented by the URL class. We showed it first because, until some things are settled, you'll be 
limited as to when you can use URLs in their more powerful role. When a proper content handler 
is installed, you can retrieve the item the URL addresses as a Java object, by calling the URL's 
getContent( ) method. Currently, this only works if you supply one with your application or 
install one in the local classpath. (The HotJava web browser also provides a mechanism for 
adding new handlers.) In this mode of operation getContent( ) initiates a connection to the 
host, fetches the data for you, determines the MIME (Multipurpose Internet Mail Extensions) type 
of the contents, and invokes a content handler to turn the bytes into a Java object. MIME is a 
standard that was developed to facilitate multimedia email, but it has become widely used as a 
general way to specify how to treat data; Java uses MIME to help it pick the right content handler. 

For example, given the URL http://foo.bar.com/index.html, a call to getContent( ) would use 
the HTTP protocol handler to retrieve data and an HTML content handler to turn the data into an 
appropriate document object. A URL that points to a plain-text file might use a text-content 
handler that returns a String object. Similarly, a GIF file might be turned into an 
ImageProducer object using a GIF content handler. If we accessed the GIF file using an "ftp" 
URL, Java would use the same content handler but would use the FTP protocol handler to 
receive the data. 



getContent( ) returns the output of the content handler, but leaves us wondering what kind of 
object we got. Since the content handler has to be able to return anything, the return type of 
getContent( ) is Object. In a moment, we'll describe how we could ask the protocol handler 
about the object's MIME type, which it discovered. Based on this, and whatever other knowledge 
we have about the kind of object we are expecting, we can cast the Object to its appropriate, 
more specific type. For example, if we expect a String, we'll cast the result of getContent( ) 
to a String: 

try  {  
    String content = (String)myURL.getContent( );   
} catch ( ClassCastException e ) { ... } 

If we're wrong about the type, we'll get a ClassCastException. As an alternative, we could 
check the type of the returned object using the instanceof operator, like this:  

if ( content instanceof String ) {   
    String s = (String)content;   
    ... 

Various kinds of errors can occur when trying to retrieve the data. For example, getContent( ) 
can throw an IOException if there is a communications error. Other kinds of errors can occur at 
the application level: some knowledge of how the application-specific content and protocol 
handlers deal with errors is necessary. 

One problem that could arise is that a content handler for the data's MIME type wouldn't be 
available. In this case, getContent( ) just invokes an "unknown type" handler and returns the 
data as a raw InputStream. A sophisticated application might specialize this behavior to try to 
decide what to do with the data on its own. 

In some situations, we may also need knowledge of the protocol handler. For example, consider 
a URL that refers to a nonexistent file on an HTTP server. When requested, the server probably 
returns a valid HTML document that contains the familiar "404 Not Found" message. In a naive 
implementation, an HTML content handler might be invoked to interpret this message and return 
it as it would any other HTML document. To check the validity of protocol-specific operations like 
this, we may need to talk to the protocol handler. 

The openStream( ) and getContent( ) methods both implicitly create the connection to the 
remote URL object. When the connection is set up, the protocol handler is consulted to create a 
URLConnection object. The URLConnection manages the protocol-specific communications. 
We can get a URLConnection for our URL with the openConnection( ) method. One of the 
things we can do with the URLConnection is ask for the object's content type. For example: 

URLConnection connection = myURL.openConnection( );  
String mimeType = connection.getContentType( );  
...  
Object contents = myURL.getContents( ); 

We can also get protocol-specific information. Different protocols provide different types of 
URLConnection objects. The HttpURLConnection object, for instance, can interpret the "404 
Not Found" message and tell us about the problem. (We'll examine URLConnections in detail in 
.) 



12.3 Web Browsers and Handlers 

The content- and protocol-handler mechanisms we've introduced can be used by any application 
that accesses data via URLs. This mechanism is extremely flexible; to handle a URL, you need 
only the appropriate protocol and content handlers. One obvious application is for Java-based 
web browsers that can handle new and specialized kinds of URLs. 

Furthermore, Java's ability to load new classes over the Net means that, in theory, the handlers 
don't even need to be owned by the browser. Content and protocol handlers could be 
downloaded over the Net from the same site that supplies the data, and used by the browser. If 
you wanted to supply some completely new data type, using a completely new protocol, you 
could make your data file plus a content handler and a protocol handler available on your web 
server; anyone using a Web browser supporting Java could automatically get the appropriate 
handlers whenever they access your data. In short, Java could allow you to build dynamically 
extensible web applications. Instead of gigantic do-everything software, you could build a 
lightweight scaffold that dynamically incorporates extensions as needed. 

Figure 12.1 shows the conceptual operation of a downloadable content handler in a web 
browser; Figure 12.2 does the same for a protocol handler. 

Figure 12.1. A content handler at work 

 

Figure 12.2. A protocol handler at work 

 

Unfortunately, a few nasty flies are stuck in this ointment. The schemes depicted in these figures 
have been part of the Java scene since it was an alpha product, but they are still hypothetical. 
There is no API for dynamically downloading new content and protocol handlers. In fact, there is 
no API for determining what content and protocol handlers exist on a given platform. Although 



content and protocol handlers are part of the Java API and an intrinsic part of the mechanism for 
working with URLs, specific content and protocol handlers aren't defined. The standard Java 
classes don't, for example, include content handlers for HTML, GIF, MPEG, or other common 
data types. Sun's SDK and all of the other Java environments do come with these kinds of 
handlers, but these are installed on an application-level basis. 

There are two real issues here: 

• There isn't a standard that says that certain types of handlers have to be provided in 
each environment along with the core Java API. Instead we have to rely on the 
application to decide what kinds of data types it needs. This makes sense but is 
frustrating when it should be reasonable to expect certain basic types to be covered in all 
environments. 

• There isn't any standard that tells you what kind of object the content handler should 
return. Maybe GIF data should be returned as an ImageProducer object, but at the 
moment, that's an application-level decision. If you're writing your own application and 
your own content handlers, that isn't an issue: you can make any decision you want. But 
if you're writing content handlers that are to be used by arbitrary applications (like 
HotJava), you need to know what they expect. 

For the HotJava web browser, you can install handlers locally (as for all Java applications), but 
other web browsers such as Netscape and Internet Explorer do not directly support handlers at 
all. You can install them locally for use in your own (intranet) applets but you cannot use them to 
extend the capabilities of the browser. Netscape and Internet Explorer are currently classic 
monolithic applications: knowledge about certain kinds of objects, like HTML and GIF files, is built 
in. These browsers can be extended via a plug-in mechanism, which is a much less fine grained 
and less powerful approach than Java's handler mechanism. If you're writing applets for use in 
Netscape or Internet Explorer now, about all you can do is use the openStream( ) method to 
get a raw input stream from which to read data. 

12.3.1 Other Handler Frameworks 

The idea of dynamically downloadable handlers could also be applied to other kinds of handler-
like components. For example, the XML community is fond of referring to XML as a way to apply 
semantics to documents and to Java as a portable way to supply the behavior that goes along 
with those semantics. It's possible that an XML viewer could be built with downloadable handlers 
for displaying XML tags. 

The JavaBeans APIs also touch upon this subject with the Java Activation Framework. The JAF 
provides a way to detect the type of a stream of data and "encapsulate access to it" in a Java 
Bean. If this sounds suspiciously like the content handler's job, it is. Unfortunately, it looks like 
these APIs will not be merged in the future. 

12.3.2 Writing Content and Protocol Handlers 

If you're adventurous and want to start leveraging content and protocol handlers in your own 
applications, you can find all the information you'll need in , which covers writing content and 
protocol handlers. 

12.4 Talking to CGI Programs and Servlets 

CGI stands for Common Gateway Interface; it is an API for writing applications (often scripts) that 
can be run by a web server to service a particular range of URLs. Servlets are an implementation 



very similar to CGI using a component-ized framework in Java. CGI programs and servlets can 
perform dynamic activities like automatically generating web documents. More important, they 
can accept data sent from the browser; they are most frequently used to process forms. 

The name/value pairs of HTML form fields are encoded by the client web browser in a special 
format and sent to the application using one of two methods. The first method, using the HTTP 
command GET , encodes the user's input into the URL and requests the corresponding 
document. The server recognizes that the first part of the URL refers to a program and invokes it, 
passing along the information encoded in the URL as a parameter. The second method uses the 
HTTP command POST to ask the server to accept the encoded data and pass it to the CGI 
program as a stream. 

In Java, we can create a URL that refers to a CGI program and send it data using either the GET 
or POST methods. Why would we want to talk to a CGI? Well, CGI remains a widely used 
technique for building web applications. Other techniques such as opening sockets or talking via 
RMI are coming on strong, but CGI has been in widespread use for several years. Another 
important reason for using CGI is that many firewalls block socket connections entirely. But all 
firewalls that allow web access have to let us use GET and POST to talk to CGIs. So CGI 
programs can be used as a last resort communications mechanism between applets and servers. 

In this section, we'll talk about writing the client side of these applications. Later in this chapter 
we'll talk about writing servlets for the server side of the application. We'll present the two data 
sending techniques GET and POST lightly here and in more detail when we revisit them in 
Section 12.5. 

12.4.1 Using the GET Method 

Using the GET method of encoding data in a URL is pretty easy. All we have to do is create a 
URL pointing to a server program and use a simple convention to tack on the encoded 
name/value pairs that make up our data. For example, the following code snippet opens a URL to 
a CGI program called login.cgi on the server myhost and passes it two name/value pairs. It then 
prints whatever text the CGI sends back: 

URL url = new URL(  
    // this string should be URL-encoded as well 
    "http://myhost/cgi-bin/login.cgi?Name=Pat&Password=foobar"); 
 
BufferedReader bin = new BufferedReader (  
  new InputStreamReader( url.openStream( ) )); 
 
String line;  
while ( (line = bin.readLine( )) != null ) 
    System.out.println( line ); 

To form the new URL, we start with the URL of login.cgi; we add a question mark (?), which 
marks the beginning of the form data, followed by the first name/value pair. We can add as many 
pairs as we want, separated by ampersand (&) characters. The rest of our code simply opens the 
stream and reads back the response from the server. Remember that creating a URL doesn't 
actually open the connection. In this case, the URL connection was made implicitly when we 
called openStream( ). Although we are assuming here that our CGI sends back text, it could 
send anything. (In theory of course we could use the getContentType( ) method of the URL 
to check the MIME type of any returned data, and try to retrieve the data as an object using 
getContent( ) as well). 



It's important to point out that we have skipped a step here. This example works because our 
name/value pairs happen to be simple text. If any "non-printable" or special characters (including 
? or &) are in the pairs, they have to be encoded first. The java.net.URLEncoder class 
provides a utility for encoding the data. We'll show how to use it in the next example. 

Another important thing to note is that although this example sends a password field, you should 
never do so using this simplistic approach. All of the data we're sending goes in clear text across 
the network (it is not encrypted). And in this case the password field would appear anywhere the 
URL is printed as well (e.g., server logs). We'll talk about secure web communications later in this 
chapter. 

12.4.2 Using the POST Method 

Next we'll create a small application that acts like an HTML form. It gathers data from two text 
fields—name and password—and posts the data to a specified URL using the HTTP POST 
method. If you look ahead to Chapter 15, which covers the Swing GUI text components, you will 
see that that writing an application that displays actual HTML text and can post using forms just 
like a web browser is simple. So why would we want to do things the hard way? 

There are many reasons that an application (or applet) might want to communicate with a CGI or 
servlet. For example, compatability with another web-based application might be important, or 
you might need to gain access to a server through a firewall where direct socket connections (and 
hence normal RMI) are not available. HTTP has become the lingua franca of the Net and despite 
its limitations (or more likely because of its simplicity) it has rapidly become one of the most 
widely supported protocols in the world. All of the other reasons that one would write a client GUI 
application (as opposed to a pure web/HTML-based application) also present themselves: a 
client-side GUI can do sophisticated presentation and field validation while, with the technique 
presented here, still use web-enabled services over the network. 

Here's the code: 

//file: Post.java 
import java.net.*; 
import java.io.*; 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class Post extends JPanel implements ActionListener { 
  JTextField nameField, passwordField; 
  String postURL; 
 
  GridBagConstraints constraints = new GridBagConstraints( ); 
  void addGB( Component component, int x, int y ) { 
    constraints.gridx = x;  constraints.gridy = y; 
    add ( component, constraints ); 
  } 
 
  public Post( String postURL ) { 
    this.postURL = postURL; 
    JButton postButton = new JButton("Post"); 
    postButton.addActionListener( this ); 
    setLayout( new GridBagLayout( ) ); 
    addGB( new JLabel("Name:"), 0,0 ); 
    addGB( nameField = new JTextField(20), 1,0 ); 



    addGB( new JLabel("Password:"), 0,1 ); 
    addGB( passwordField = new JPasswordField(20),1,1 ); 
    constraints.gridwidth = 2; 
    addGB( postButton, 0,2 ); 
  } 
 
  public void actionPerformed(ActionEvent e) { 
    postData( ); 
  } 
 
  protected void postData( ) { 
    StringBuffer sb = new StringBuffer( ); 
    sb.append( URLEncoder.encode("Name") + "=" ); 
    sb.append( URLEncoder.encode(nameField.getText( )) ); 
    sb.append( "&" + URLEncoder.encode("Password") + "=" ); 
    sb.append( URLEncoder.encode(passwordField.getText( )) ); 
    String formData = sb.toString( ); 
 
    try { 
      URL url = new URL( postURL ); 
      HttpURLConnection urlcon =  
          (HttpURLConnection) url.openConnection( ); 
      urlcon.setRequestMethod("POST"); 
      urlcon.setRequestProperty("Content-type",  
          "application/x-www-form-urlencoded"); 
      urlcon.setDoOutput(true); 
      urlcon.setDoInput(true); 
      PrintWriter pout = new PrintWriter( new OutputStreamWriter( 
          urlcon.getOutputStream( ), "8859_1"), true ); 
      pout.print( formData ); 
      pout.flush( ); 
 
      // read results... 
      if ( urlcon.getResponseCode( ) != HttpURLConnection.HTTP_OK ) 
        System.out.println("Posted ok!"); 
      else { 
        System.out.println("Bad post..."); 
        return; 
      } 
      //InputStream in = urlcon.getInputStream( ); 
      // ... 
 
    } catch (MalformedURLException e) { 
      System.out.println(e);     // bad postURL 
    } catch (IOException e2) { 
      System.out.println(e2);    // I/O error 
    } 
  } 
 
  public static void main( String [] args ) { 
    JFrame frame = new JFrame("SimplePost"); 
    frame.getContentPane( ).add( new Post( args[0] ), "Center" ); 
    frame.pack( ); 
    frame.setVisible(true); 
  } 
} 



When you run this application, you must specify the URL of the server program on the command 
line. For example: 

% java Post http://www.myserver.example/cgi-bin/login.cgi 

The beginning of the application creates the form; there's nothing here that won't be obvious after 
you've read the chapters on Swing. All the magic happens in the protected postData( ) 
method. First we create a StringBuffer and load it with name/value pairs, separated by 
ampersands. (We don't need the initial question mark when we're using the POST method, 
because we're not appending to a URL string.) Each pair is first encoded using the static 
URLEncoder.encode( ) method. We ran the name fields through the encoder as well as the 
value fields, even though we know that they contain no special characters. 

Next we set up the connection to the CGI program. In our previous example, we didn't have to do 
anything special to send the data, because the request was made by the web browser for us. 
Here, we have to carry some of the weight of talking to the remote web server. Fortunately, the 
HttpURLConnection object does most of the work for us; we just have to tell it that we want to 
do a POST to the URL and the type of data we are sending. We ask for the URLConnection 
object using the URL's openConnection( ) method. We know that we are using the HTTP 
protocol, so we should be able to cast it safely to an HttpURLConnection type, which has the 
support we need. 

Next we use setRequestMethod( ) to tell the connection we want to do a POST operation. We 
also use setRequestProperty( ) to set the "Content-Type" field of our HTTP request to the 
appropriate type—in this case, the proper MIME type for encoded form data. (This helps the 
server sort out what we're sending.) Finally, we use the setDoOutput( ) and setDoInput( ) 
methods to tell the connection that we want to both send and receive stream data. The URL 
connection infers from this combination that we are going to do a POST operation. Next we get an 
output stream from the connection with getOutputStream( ) and create a PrintWriter so 
we can easily write our encoded data. 

After we post the data, our application calls getResponseCode( ) to see whether the HTTP 
response code from the server indicates that the POST was successful. Other response codes 
(defined as constants in HttpURLConnection) indicate various failures. At the end, we indicate 
where we could have read back the text of the response. For this application, we'll assume that 
simply knowing the post was successful was sufficient. 

Although form-encoded data (as indicated by the MIME type we specified for the Content-Type 
field) is the most common, other types of communications are possible. We could have used the 
input and output streams to exchange arbitrary data types with the CGI program (provided that 
the CGI program was capable of listening for a connection from us). One great feature of servlets, 
which we'll discuss momentarily, is that they can easily exchange arbitrary data with the client. 

If you are writing a server application that needs to decode form data, you can use the 
java.net.URLDecoder to undo the operation of the URLEncoder. 

12.4.3 SSL and Secure Web Communications 

The previous examples sent a field called Password to the server. However, standard HTTP 
doesn't provide encryption to hide our data. Fortunately, adding security for GET and POST 
operations is easy. Where available you simply have to use a secure form of the HTTP protocol—
HTTPS. 



HTTPS is a version of the standard HTTP protocol run over SSL (Secure Socket Layer) sockets, 
which use public-key encryption techniques to encrypt the data sent. Most web browsers 
currently come with built-in support for HTTPS (or raw SSL sockets). Therefore, if your web 
server supports HTTPS, you can use a browser to send and receive secure data simply by 
specifying the https protocol in your URLs. This is not something your code has to deal with 
directly. Applets written using the Java plug-in have access to the HTTPS protocol handler. For 
other applications you will have to make sure that your environments have supplied an HTTPS 
(SSL) protocol handler, or set up the data connection yourself using other secure means. 

12.5 Implementing Servlets 

Now we're going to take a leap from the client side over to the server side, to write Java 
applications for web servers. The Java servlet API is a framework for writing servlets, which are 
application components for a web server or other type of server; just as applets are application 
components for a web browser. 

The servlet APIs live in the javax.servlet package, which is a standard Java API extension, 
not part of the core Java APIs. In this book we haven't talked about many standard extension 
packages, but this is one is particularly important. (It should probably be a core API.) You'll want 
to grab the latest Java Servlet Development Kit (JSDK) from 
http://java.sun.com/products/servlet. 

The servlet APIs are useless without a server on which to run them, so you'll also want to find an 
implementation of the servlet environment for your favorite web server: Netscape, Apache, or 
whatever. We won't try to anticipate which environment you have in this book, so the details 
about how to install your servlets and invoke them will be up to you. But it should be pretty easy. 

12.5.1 Why Servlets? 

Why would we want to use Java on the server side, as opposed to a scripting language, such as 
Perl? The simplest answer to that question is: for the same reasons that you would use Java 
anywhere else. Servlets simply let you write in Java and derive all of the benefits of Java and the 
virtual machine environment on the server side. (You also have the limitations of Java.) 
Historically, servlets had speed advantages over CGI programs written in scripting languages or 
even in C/C++. That is because servlets execute in a multithreaded way within one instance of a 
virtual machine. Older CGI applications required the server to start a separate process, "pipe" 
data to it, and then receive the response as a stream as well. Speed is still a factor, but a more 
important reason for using Java is that Java makes writing large applications much more 
manageable. Java isn't as easy to use as a scripting language, but it's much easier to come back 
to your program next year and add a new feature, and it's a lot better at scaling to large 
applications. 

Writing server code with servlets allows you to access all of the standard Java APIs within the 
virtual machine while your servlets are handling requests. This means that your Java server code 
can access "live" database connections, or communicate with other network services that have 
already been established. This kind of behavior has been hacked into other CGI environments, 
but it has always been there in Java in a robust and natural way. 

12.5.2 The Servlet Life Cycle 

The Servlet API is very simple, almost exactly paralleling the Applet API. There are three life-
cycle methods, init( ), service( ), and destroy( ), along with a couple of methods for 
getting configuration parameters and servlet info. Before a servlet is used for the first time, it is 



initialized by the server through its init( ) method. Thereafter the servlet spends its time 
handling service( ) requests and doing its job until (presumably) the server is shut down and 
the servlet's destroy( ) method is called, giving it an opportunity to clean up. 

The service( ) method of a servlet accepts two parameters: a servlet "request" object and a 
servlet "response" object. These provide tools for reading the client request and generating 
output; we'll talk about them in detail in the examples. 

By default, servlets are expected to handle multithreaded requests; that is, the servlet's service 
methods may be invoked by many threads at the same time. This means that you cannot store 
client-related data in instance variables of your servlet object. (Of course, you can store general 
data related to the servlet's operation, as long as it does not change on a per-request basis.) Per-
client state information can be stored in a client "session" object, which persists across client 
requests. We'll talk about that in detail later. 

If for some reason you have developed a servlet that cannot support multi-threaded access, you 
can tell the runtime system this by implementing the flag interface SingleThreadModel. It has 
no methods, serving only to indicate that the servlet should be invoked in a single-threaded 
manner. 

12.5.3 HTTP (Web) Servlets 

There are actually two packages of interest in the Servlet API. The first is the javax.servlet 
package, which contains the most general servlet APIs. The second important package is 
javax.servlet.http , which contains APIs specific to servlets that handle HTTP requests for 
web servers. In the rest of this section, we are going to discuss servlets pretty much as if all 
servlets were HTTP-related. Although you can write servlets for other protocols, that's not what 
we're currently interested in. 

The primary tool provided by the javax.servlet.http package is the HttpServlet base 
class. This is an abstract servlet that provides some basic implementation related to handling an 
HTTP request. In particular, it overrides the generic servlet service( ) request and breaks it 
out into several HTTP-related methods for you, including: doGet( ) , doPost( ), doPut( ), 
and doDelete( ). The default service( ) method examines the request to determine what 
kind it is and dispatches it to one of these methods, so you can override one or more of them to 
implement the corresponding web server behavior. 

doGet( ) and doPost( ) correspond to the standard HTTP GET and POST operations. GET is 
the standard request for the object at a specified URL: e. g., a file or document. POST is the 
method by which a client sends data to the server. HTML forms are the most common example of 
users of POST. 

To round these out, HttpServlet provides the doPut( ) and doDelete( ) methods. These 
methods correspond to a poorly supported part of the HTTP protocol, meant to provide a way to 
upload and remove files. doPut( ) is supposed to be like POST but with different semantics; 
doDelete( ) would be its opposite. 

HttpServlet also implements three other HTTP related methods for you: doHead( ) , 
doTrace( ), and doOptions( ). You don't normally need to override these methods. 
doHead( ) implements the HTTP HEAD request, which asks for the headers of a GET request 
without the body. (HttpServlet implements this by performing the GET and then sending only 
the headers). doTrace( ) and doOptions( ) implement other features of HTTP that allow for 



debugging and for simple client/server capabilities negotiation. Again, you generally shouldn't 
need to override these. 

Along with HttpServlet, javax.servlet.http also includes subclasses of the 
ServletRequest and ServletResponse objects, namely: HttpServletRequest and 
HttpServletResponse . These provide (respectively) the input and output streams needed to 
read and write client data. They also provide the APIs for getting or setting HTTP header 
information and, as we'll see, client session information. Rather than document these dryly, we'll 
just show them in the context of some examples. As usual, we'll start with the simplest example 
possible. 

12.5.4 The HelloClient Servlet 

Here's our "Hello World" of servlet land, HelloClient: 

//file: HelloClient.java 
import java.io.*; 
import javax.servlet.ServletException; 
import javax.servlet.http.*; 
 
public class HelloClient extends HttpServlet {  
 
    public void doGet(HttpServletRequest request, 
                      HttpServletResponse response)  
        throws ServletException, IOException { 
 
        // must come first 
        response.setContentType("text/html"); 
        PrintWriter out = response.getWriter( ); 
 
        out.println(  
            "<html><head><title>Hello Client</title></head><body>" 
            + "<h1> Hello Client </h1>" 
            + "</body></html>" ); 
        out.close( ); 
    } 
} 

HelloClient extends the base HttpServlet class and overrides the doGet( ) method to 
handle simple requests. In this case, we want to respond to any GET request by sending back a 
one-line HTML document that says "Hello Client". We get the output writer from our 
HttpServletResponse parameter using the getWriter( ) method and print the message to 
it. Then we close the stream to indicate that we are done generating output. 

12.5.5 Content Types 

Before fetching the output stream and writing to it, however, it's very important that we specify 
what kind of output we are sending by calling the response parameter's setContentType( ) 
method. 

In this case, we set the content type to text/html, which is the proper MIME type for an HTML 
document. But in general, it's possible for a servlet to generate any kind of data, including sound, 
video, or some other kind of text. If we were writing a generic FileServlet that serves files like 



a regular web server, we might inspect the filename extension and determine the MIME type from 
that, or from direct inspection of the data. 

The content type is used in the Content-Type: header of the server's HTTP response, which 
tells the client what to expect even before it starts reading the result. This is how your web 
browser is able to prompt you with the "Save File" dialog when you click on a zip archive or 
executable program. When the content type string is used in its full form to specify the character 
encoding (for example, text/html; charset=ISO-8859-1) that information is also used by 
the servlet engine to set the character encoding of the PrintWriter output stream. So you 
should call the setContentType( ) method before fetching the writer with the getWriter( ) 
method. 

12.5.6 Servlet Parameters 

Our first example shows how to accept a basic request. You can imagine how we might do 
arbitrary processing, database queries, etc., to generate an interesting response. Of course, to do 
anything really useful we are going to have to get some information from the user. Fortunately, 
the servlet engine handles this for us, interpreting both GET- and POST-encoded form information 
from the client and providing it to us through the simple getParameter( ) method of the servlet 
request. 

12.5.6.1 GET, POST, and the "extra path" 

There are essentially two ways to pass information from your web browser to a servlet or CGI 
program. The most general is to "post" it, which means that your client encodes the information 
and sends it as a stream to the program, which decodes it. Posting can be used to upload large 
amounts of form data or other data, including files. The other way is to somehow encode the 
information in the URL of your client's request. The primary way to do this is to use GET-style 
encoding of parameters in the URL string. In this case the web browser will append the 
parameters to the end of the URL string in an encoded way and the server will decode them and 
pass them to the application. 

As we described earlier in this chapter, GET-style encoding says that you take the parameters 
and append them to the URL in a name/value fashion, with the first parameter preceded by a 
question mark (?) and the rest separated by ampersands (&). The entire string is expected to be 
URL-encoded: any special characters (like spaces, ?, and & in the string) are specially encoded. 

A less sophisticated form of encoding data in the URL is called extra path. This simply means that 
when the server has located your servlet or CGI program as the target of a URL, it takes any 
remaining path components of the URL string and simply hands it over as an extra part of the 
URL. For example, consider these URLs: 

http://www.myserver.example/servlets/MyServlet 
http://www.myserver.example/servlets/MyServlet/foo/bar 

Suppose the server maps the first URL to the servlet called MyServlet. When subsequently 
given the second URL, the server would still invoke MyServlet, but would consider /foo/bar 
to be "extra path" that could be retrieved through the servlet request getExtraPath( ) method. 

Both GET and POST encoding can be used with HTML forms on the client, simply by specifying 
get or post in the action attribute of the form tag. The browser handles the encoding; on the 
server side, the servlet engine will handle the decoding. 



12.5.6.2 Which one to use? 

To users, the primary difference between GET and POST is that they can see the GET information 
in the encoded URL shown in their web browser. This can be useful because the user can cut 
and paste that URL (the result of a search for example) and mail it to a friend or bookmark it for 
future reference. POST information is never visible to the user and ceases to exist after it's sent to 
the server. This behavior goes along with the protocol's perspective that GET and POST are 
intended to have different semantics. By definition, the result of a GET operation is not supposed 
to have any side effects. That is, it's not supposed to cause the server to perform any 
consequential operations (such as making an e-commerce purchase). In theory, that's the job of 
POST. That's why your web browser warns you about "re-posting form data" if you hit reload on a 
page that was the result of a form posting. 

The extra path method is not useful for form data, but would be useful if you wanted to make a 
servlet that retrieves files or handles a range of URLs not driven by forms. 

12.5.7 The ShowParameters Servlet 

Our first example didn't do anything interesting. This example prints the values of any parameters 
that were received. We'll start by handling GET requests and then make some trivial modifications 
to handle POST as well. Here's the code: 

//file: ShowParameters.java 
import java.io.*; 
import javax.servlet.ServletException; 
import javax.servlet.http.*; 
import java.util.Enumeration; 
 
public class ShowParameters extends HttpServlet {  
 
    public void doGet(HttpServletRequest request, 
                      HttpServletResponse response)  
      throws ServletException, IOException { 
        showRequestParameters( request, response ); 
    } 
 
    void showRequestParameters(HttpServletRequest request, 
                               HttpServletResponse response) 
      throws IOException { 
        response.setContentType("text/html"); 
        PrintWriter out = response.getWriter( ); 
 
        out.println( 
          "<html><head><title>Show Parameters</title></head><body>" 
          + "<h1>Parameters</h1><ul>"); 
 
        for ( Enumeration e=request.getParameterNames( ); 
              e.hasMoreElements( ); ) { 
            String name = (String)e.nextElement( ); 
            String value = request.getParameter( name ); 
            if (! value.equals("") ) 
                out.println("<li>"+ name +" = "+ value ); 
        } 
 
        out.close( ); 



    } 
} 

There's not much new here. As in the first example, we override the doGet( ) method. Here, we 
delegate the request to a helper method that we've created, called showRequestParameters( 
). All this method does is enumerate the parameters using the request object's 
getParameterNames( ) method and print the names and values. (To make it pretty, we've 
listed them in an HTML list by prepending each with an <li> tag.) 

As it stands, our servlet would respond to any URL that contains a GET request. Let's round it out 
by adding our own form to the output and also accommodating POST method requests. To accept 
posts, we simply override the doPost( ) method. The implementation of doPost( ) could 
simply call our showRequest-Parameters( ) method as well, but we can make it simpler still. 
The API lets us treat GET and POST requests interchangeably, because the servlet engine 
handles the decoding of request parameters. So we simply delegate the doPost( ) operation to 
doGet( ). 

Add the following method to the example: 

public void doPost( HttpServletRequest request, 
                    HttpServletResponse response)  
  throws ServletException, IOException { 
    doGet( request, response ); 
} 

Now let's add an HTML form to the output. The form lets the user fill in some parameters and 
submit them to the servlet. Add this line to the showRequestParameters( ) method before 
the call to out.close( ): 

out.println( 
  "</ul><p><form method=\"POST\" action=\""  
  + request.getRequestURI( ) + "\">" 
  + "Field 1 <input name=\"Field 1\" size=20><br>" 
  + "Field 2 <input name=\"Field 2\" size=20><br>" 
  + "<br><input type=\"submit\" value=\"Submit\"></form>" 
); 

The form's action attribute is the URL of our servlet, so that it will get the data. We use the 
getRequestURI( ) method to ask for the location of our servlet. For the method attribute 
we've specified a POST operation; but you can try changing the operation to GET to see both 
styles. 

So far, we haven't done anything that you couldn't do easily with your average CGI script. Next, 
we'll show some more interesting stuff: how to manage a user session. 

12.5.8 User Session Management 

One of the nicest features of the servlet API is that it provides a simple mechanism for managing 
a user session. By a session, we mean that the servlet can maintain information over multiple 
pages and through multiple transactions as navigated by the user. Providing continuity through a 
series of web pages is important in many kinds of applications, like providing a login process or 
tracking purchases in a shopping cart. In a sense, session data takes the place of instance data 
in your servlet object. It lets you store data between invocations of your service methods. 



Session tracking is supported by the servlet engine; you don't have to worry about the details of 
how it's accomplished. It's done in one of two ways: using client-side cookies, or URL rewriting . 
Client-side cookies are a standard HTTP mechanism for getting the client web browser to 
cooperate in storing some state information for you. A cookie is basically just a name/value 
attribute that is issued by the server, stored on the client, and returned by the client whenever it is 
accessing a certain group of URLs on a specified server. First, we'll talk about cookies that live 
only for the duration of a typical user session (although it is possible to use cookies to store state 
across multiple user visits). 

URL rewriting appends the session tracking information to the URL, using GET-style encoding or 
extra path information. The term "rewriting" applies because the server rewrites the URL before it 
is seen by the client and absorbs the extra information before it is passed back to the servlet. 

To the servlet programmer, the state information is made available through an HttpSession 
object, which acts like a hashtable for storing whatever objects you would like to carry through the 
session. The objects stay on the server side; a special identifier is sent to the client through a 
cookie or URL rewriting. On the way back, the identifier is mapped to a session and the session is 
associated with the servlet again. 

12.5.8.1 The ShowSession servlet 

Here's a simple servlet that shows how to store some string information in a session. 

//file: ShowSession.java 
import java.io.*; 
import javax.servlet.ServletException; 
import javax.servlet.http.*; 
import java.util.Enumeration; 
 
public class ShowSession extends HttpServlet {  
 
    public void doPost( HttpServletRequest request, 
                        HttpServletResponse response)  
      throws ServletException, IOException { 
        doGet( request, response ); 
    } 
     
    public void doGet(HttpServletRequest request, 
                      HttpServletResponse response)  
      throws ServletException, IOException { 
        response.setContentType("text/html"); 
        PrintWriter out = response.getWriter( ); 
 
        out.println( 
          "<html><head><title>Show Session</title></head><body>"); 
        HttpSession session = request.getSession( ); 
         
        out.println("<h1>In this session:</h1><ul>"); 
        String [] names = session.getValueNames( ); 
        for (int i=0; i< names.length; i++) 
            out.println( 
              "<li>"+names[i]+" = "+session.getValue( names[i] )); 
 
        // add new name-value to session 
        String name = request.getParameter("Name"); 



        if ( name != null ) { 
            String value = request.getParameter("Value"); 
            session.putValue( name, value ); 
        } 
 
        out.println( 
          "</ul><p><hr><h1>Add String</h1>" 
          + "<form method=\"POST\" action=\"" 
          + request.getRequestURI( ) +"\">" 
          + "Name: <input name=\"Name\" size=20><br>" 
          + "Value: <input name=\"Value\" size=20><br>" 
          + "<br><input type=\"submit\" value=\"Submit\"></form>" 
        ); 
 
        out.close( ); 
    } 
} 

When you invoke the servlet, you are presented with a form that prompts you to enter a name 
and a value. The value string is stored in a session object under the name provided. Each time 
the servlet is called, it outputs the list of all data items associated with the session. You will see 
the session grow as each item is added (in this case, until you restart your web browser or the 
server). 

The basic mechanics are much like our ShowParameters servlet. Our doGet( ) method 
generates the form, which refers back to our servlet via a POST method. We override doPost( 
) to delegate back to our doGet( ) method, allowing it to handle everything. Once in doGet( 
), we attempt to fetch the user session object from the request parameter using getSession( 
). The HttpSession object supplied by the request functions like a hashtable. There is a 
putValue( ) method, which takes a string name and an Object argument and a 
corresponding getValue( ) method. In our example, we use the getValueNames( ) method 
to enumerate the values currently stored in the session and print them. 

By default, getSession( ) creates a session if one does not yet exist. If you want to test for a 
session or explicitly control when one is created, you can call the overloaded version 
getSession(false), which does not automatically create a new session. This method returns 
null if there is no session yet. 

12.5.8.2 The ShoppingCart servlet 

Next, we'll build on the previous example to make a servlet that could be used as part of an 
online store. ShoppingCart lets users choose items and add them to their basket until check-
out time: 

//file: ShoppingCart.java 
import java.io.*; 
import javax.servlet.ServletException; 
import javax.servlet.http.*; 
import java.util.Enumeration; 
 
public class ShoppingCart extends HttpServlet {  
    // from your database  
    String [] items = new String [] {  
        "Chocolate Covered Crickets", "Raspberry Roaches", 



        "Buttery Butterflies", "Chicken Flavored Chicklets(tm)" }; 
 
    public void doPost( HttpServletRequest request, 
                        HttpServletResponse response) 
      throws IOException, ServletException { 
        doGet( request, response );  
    } 
 
    public void doGet( HttpServletRequest request, 
                       HttpServletResponse response)  
      throws ServletException, IOException { 
        response.setContentType("text/html"); 
        PrintWriter out = response.getWriter( ); 
 
        // get or create the session information 
        HttpSession session = request.getSession( ); 
        int [] purchases = (int [])session.getValue("purchases"); 
        if ( purchases == null ) { 
            purchases = new int [ items.length ]; 
            session.putValue( "purchases", purchases ); 
        } 
 
        out.println( "<html><head><title>Shopping Cart</title>" 
                     + "</title></head><body><p>" ); 
        if ( request.getParameter("checkout") != null ) 
            out.println("<h1>Thanks for ordering!</h1>"); 
        else  { 
            if ( request.getParameter("add") != null ) { 
                addPurchases( request, purchases );  
                out.println( 
                    "<h1>Purchase added.  Please continue</h1>"); 
            } else { 
                if ( request.getParameter("clear") != null ) 
                    for (int i=0; i<purchases.length; i++) 
                         purchases[i] = 0; 
                out.println("<h1>Please Select Your Items!</h1>"); 
            } 
            doForm( out, purchases, request.getRequestURI( ) ); 
        } 
        showPurchases( out, purchases ); 
        out.close( ); 
    } 
 
    void addPurchases( HttpServletRequest request, 
                       int [] purchases ) { 
        for (int i=0; i<items.length; i++) { 
            String added = (String)request.getParameter( items[i] ); 
            if ( !added.equals("") ) 
                purchases[i] += Integer.parseInt( added ); 
        } 
    } 
 
    void doForm( PrintWriter out, int [] purchases, 
                String requestURI) { 
        out.println( "<form method=POST action="+ requestURI +">" ); 
     
        for(int i=0; i< items.length; i++) 



            out.println( "Quantity <input name=\"" + items[i] 
              + "\" value=0 size=3> of: " + items[i] + "<br>"); 
        out.println( 
          "<p><input type=submit name=add value=\"Add To Cart\">"  
          + "<input type=submit name=checkout value=\"Check Out\">"  
          + "<input type=submit name=clear value=\"Clear Cart\">" 
          + "</form>" ); 
    } 
 
    void showPurchases( PrintWriter out, int [] purchases ) 
        throws IOException { 
 
        out.println("<hr><h2>Your Shopping Basket</h2>"); 
        for (int i=0; i<items.length; i++) 
            if ( purchases[i] != 0 ) 
                out.println( purchases[i] +"  "+ items[i] +"<br>" ); 
    } 
} 

First we should point out that ShoppingCart has some instance data: a String array that 
holds a list of products. We're making the assumption that the product selection is the same for 
all customers. If it's not, we'd have to generate the product list on the fly or put it in the session for 
the user. 

Next, we see the same basic pattern as in our previous servlets, with doPost( ) delegating to 
doGet( ) and doGet( ) generating the body of the output and a form for gathering new data. 
Here we've broken down the work using a few helper methods: doForm( ), addPurchases( ) 
and showPurchases( ). Our shopping cart form has three submit buttons: one for adding items 
to the cart, one for check-out, and one for clearing the cart. In each case we show the user what 
his or her purchases are. Depending on the button chosen in the form, we either add new 
purchases, clear the list, or simply show the results as a check out window. 

The form is generated by our doForm( ) method, using the list of items for sale. As in the other 
examples, we supply our servlet's address as the target of the form. Next, we have placed an 
integer array called purchases into the user session. Each element in purchases holds a 
count of the number of each item the user wants to buy. We create the array after retrieving the 
session simply by asking the session for it. If this is a new session and the array hasn't been 
created, getValue( ) gives us a null array that we can then populate. Since we generate our 
form using the names from the items array, it's easy for addPurchases( ) to check for each 
name using getParameter( ), and increment the purchases array for the number of items 
requested.[2] Finally, showPurchases( ) simply loops over the purchases array and prints the 
name and quantity for each item that the user has purchased. 

[2] We also test for the value being equal to the null string, because some web browsers send empty strings 
for all field values. 

12.5.9 Cookies 

In our previous examples, a session lived only until you shut down your web browser or the 
server. You can do more long-lived kinds of user tracking or identification by managing cookies 
explicitly. You can send a cookie to the client by creating a javax.servlet.http.Cookie 
object and adding it to the servlet response using the addCookie( ) method. Later you can 
retrieve the cookie information from the servlet request and use it to look up persistent 



information in a database. The following servlet sends a "Learning Java" cookie to your web 
browser and displays it when you return to the page: 

//file: CookieCutter.java 
import java.io.*; 
import java.text.*; 
import java.util.*; 
import javax.servlet.*; 
import javax.servlet.http.*; 
 
public class CookieCutter extends HttpServlet { 
 
    public void doGet(HttpServletRequest request, 
                      HttpServletResponse response) 
      throws IOException, ServletException { 
        response.setContentType("text/html"); 
        PrintWriter out = response.getWriter( ); 
 
        if ( request.getParameter("setcookie") != null ) { 
            Cookie cookie = new Cookie("Learningjava", "Cookies!"); 
            cookie.setMaxAge(3600); 
            response.addCookie(cookie); 
            out.println("<html><body><h1>Cookie Set...</h1>"); 
        } else { 
            out.println("<html><body>"); 
            Cookie[] cookies = request.getCookies( ); 
            if ( cookies.length == 0 ) 
                out.println("<h1>No cookies found...</h1>"); 
            else 
                for (int i = 0; i < cookies.length; i++) 
                    out.print("<h1>Name: "+ cookies[i].getName( ) 
                              + "<br>" 
                              + "Value: " + cookies[i].getValue( ) 
                              + "</h1>" ); 
            out.println("<p><a href=\""+ request.getRequestURI( ) 
              +"?setcookie=true\">" 
              +"Reset the Learning Java cookie.</a>"); 
        } 
        out.println("</body></html>"); 
        out.close( ); 
    } 
} 

This example simply enumerates the cookies supplied by the request object using the 
getCookies( ) method, and prints their names and values. We provide a GET-style link that 
points back to our servlet with a parameter setcookie, indicating that we should set the cookie. 
In that case, we create a Cookie object using the specified name and value and add it to the 
response with the addCookie( ) method. We set the maximum age of the cookie to 3600 
seconds, so it will remain in a web browser for one hour before being discarded. You can specify 
an arbitrary time period here, or a negative time period to indicate that the cookie should not be 
stored persistently on the client. 

Two other methods of Cookie are of interest: setDomain( ) and setPath( ). These allow 
you to specify the domain name and path component that limits the servers to which the client will 
send the cookie. (If you're writing some kind of purchase applet for L.L. Bean, you don't want 



clients sending your cookies over to Eddie Bauer.) The default domain is the domain of the server 
sending the cookie. (You may not be able to specify other domains for security reasons.) The 
path parameter defaults to the base URL of the servlet, but you can specify a wider (or narrower) 
range of URLs on the server by setting this parameter manually. 



Chapter 13. Swing 

Swing is Java's user interface toolkit. It was developed during the life of SDK 1.1 and now is part 
of the core APIs in Java 2 (née JDK 1.2). Swing provides classes representing interface items like 
windows, buttons, combo boxes, trees, grids, and menus—everything you need to build a user 
interface for your Java application. The javax.swing package (and its numerous subpackages) 
contain the Swing user interface classes.[1]  

[1] Don't be fooled by the javax prefix, which usually denotes a standard extension API. Swing is part of the 
core APIs in Java 2; every Java 2 implementation includes Swing. 

Swing is part of a larger collection of software called the Java Foundation Classes (JFC). JFC 
includes the following APIs: 

• The Abstract Window Toolkit (AWT), the original user interface toolkit 
• Swing, the new user interface toolkit 
• Accessibility, which provides tools for integrating nonstandard input and output devices 

into your user interfaces 
• The 2D API, a comprehensive set of classes for high-quality drawing 
• Drag and Drop, an API that supports the drag-and-drop metaphor 

JFC is the largest and most complicated part of the standard Java platform, so it shouldn't be any 
surprise that we'll take several chapters to discuss it. In fact, we won't even get to talk about all of 
it, just the most important parts—Swing and the 2D API. Here's the lay of the land: 

• This chapter covers the basic concepts you need to understand how to build user 
interfaces with Swing. 

• Chapter 14, discusses the basic components from which user interfaces are built: lists, 
text fields, checkboxes, and so on. 

• Chapter 15, dives further into the Swing toolkit, describing text components, trees, 
tables, and other neat stuff. 

• Chapter 16 discusses layout managers, which are responsible for arranging 
components within a window. 

• Chapter 17 discusses the fundamentals of drawing, including simple image displays. 
• Chapter 18, covers the image generation and processing tools that are in the 

java.awt.image package. We'll throw in audio and video for good measure. 

We can't cover the full functionality of Swing in this book; if you want the whole story, see Java 
Swing, by Robert Eckstein, Marc Loy, and Dave Wood (O'Reilly & Associates). Instead, we'll 
cover the basic tools you are most likely to use and show some examples of what can be done 
with some of the more advanced features. Figure 13.1 shows the user interface component 
classes of the javax.swing package. 

Figure 13.1. User interface components in the javax.swing package 



 

To understand Swing, it helps to understand its predecessor, the Abstract Window Toolkit (AWT). 
As its name suggests, AWT is an abstraction. Its classes and functionality are the same for all 
Java implementations, so Java applications built with AWT should work in the same way on all 
platforms. You could choose to write your code under Windows, and then run it on an X Window 
System or a Macintosh. To achieve platform independence, AWT uses interchangeable toolkits 
that interact with the host windowing system to display user interface components. This shields 
your application from the details of the environment it's running in. Let's say you ask AWT to 
create a button. When your application or applet runs, a toolkit appropriate to the host 
environment renders the button appropriately: on Windows, you can get a button that looks like 
other Windows buttons; on a Macintosh, you can get a Mac button; and so on. 

AWT had some serious shortcomings. The worst was that the use of platform-specific toolkits 
meant that AWT applications might be subtly incompatible on different platforms. Furthermore, 
AWT was lacking advanced user interface components, like trees and grids. 

Swing takes a fundamentally different approach. Instead of using native toolkits to supply 
interface items like buttons and combo boxes, components in Swing are implemented in Java 



itself. This means that, whatever platform you're using, a Swing button (for example) looks the 
same. It also makes Swing much less prone to platform-specific bugs, which were a problem for 
AWT. 

If you already know AWT, you'll be able to transfer a lot of your knowledge into the Swing world. 
However, there's a lot more material in Swing than in AWT, so be prepared to learn. If you've 
never programmed with AWT, this chapter and the next two provide a gentle introduction to 
building user interfaces with Swing. 

Working with user interface components in Swing is meant to be easy. When building a user 
interface for your application, you'll be working with prefabricated components. It's easy to 
assemble a collection of user interface components (buttons, text areas, etc.) and arrange them 
inside containers to build complex layouts. You can also use simple components as building 
blocks for making entirely new kinds of interface gadgets that are completely portable and 
reusable. 

Swing uses layout managers to arrange components inside containers and control their sizing 
and positioning. Layout managers define a strategy for arranging components instead of 
specifying absolute positions. For example, you can define a user interface with a collection of 
buttons and text areas and be reasonably confident that it will always display correctly, even if the 
user resizes the application window. It doesn't matter what platform or user interface look-and-
feel you're using; the layout manager should still position them sensibly with respect to each 
other. 

The next two chapters contain examples using most of the components in the javax.swing 
package. But before we dive into those examples, we need to spend a bit of time talking about 
the concepts Swing uses for creating and handling user interfaces. This material should get you 
up to speed on GUI concepts and on how they are used in Java. 

13.1 Components 

A component is the fundamental user interface object in Java. Everything you see on the display 
in a Java application is a component. This includes things like windows, drawing canvases, 
buttons, checkboxes, scrollbars, lists, menus, and text fields. To be used, a component usually 
must be placed in a container. Container objects group components, arrange them for display 
using a layout manager, and associate them with a particular display device. All Swing 
components are derived from the abstract javax.swing.JComponent class, as you saw in 
Figure 13.1. For example, the JButton class is a subclass of AbstractButton, which is itself 
a subclass of the JComponent class. 

JComponent is the root of the Swing component hierarchy, but it descends from the AWT 
Container class. Intuitively, we can say that Swing is a very large extension to AWT. 
Container's superclass is Component, the root of all AWT components, and Component's 
superclass is, finally, Object. Because JComponent inherits from Container, it has the the 
capabilities of both a component and a container. 

AWT and Swing, then, have parallel hierarchies. The root of AWT's hierarchy is Component, 
while Swing's components are based on JComponent. You'll find similar classes in both 
hierarchies, like Button and JButton. But Swing is much more than simply a replacement for 
AWT—it contains sophisticated components, like trees and grids, as well as a real 
implementation of the Model View Controller (MVC) paradigm, which we'll discuss later. 



For the sake of simplicity, we can split the functionality of the JComponent class into two 
categories: appearance and behavior. The JComponent class contains methods and variables 
that control an object's general appearance. This includes basic attributes such as its visibility, its 
current size and location, and certain common graphical defaults, like font and color. The 
JComponent class also contains methods implemented by specific subclasses to produce the 
graphical displays. 

When a component is first displayed, it's associated with a particular display device. The 
JComponent class encapsulates access to its display area on that device. This includes methods 
for accessing graphics and for working with off-screen drawing buffers for the display. 

By a "component's behavior," we mean the way it responds to user-driven events. When the user 
performs an action (like pressing the mouse button) within a component's display area, a Swing 
thread delivers an event object that describes "what happened." The event is delivered to objects 
that have registered themselves as "listeners" for that type of event from that component. For 
example, when the user clicks on a button, the button delivers an ActionEvent object. To 
receive those events, an object registers with the button as an ActionListener. 

Events are delivered by invoking designated event-handler methods within the receiving object 
(the "listener"). A listener object prepares itself to receive events by implementing methods (e.g., 
actionPerformed( )) for the types of events in which it interested. Specific types of events 
cover different categories of component user interaction. For example, MouseEvents describe 
activities of the mouse within a component's area, KeyEvents describe key presses, and higher-
level events (such as ActionEvents) indicate that a user interface component has done its job. 

We will describe events thoroughly in this chapter, because they are so fundamental to the way in 
which user interfaces function in Java But they aren't limited to building user interfaces; they are 
an important interobject communications mechanism, which may be used by completely 
nongraphical parts of an application, as well. They are particularly important in the context of 
JavaBeans, which uses events as an extremely general notification mechanism. 

Swing's event architecture enables containers to take on certain responsibilities for the 
components that they hold. Instead of every component listening for and handling events for its 
own bit of the user interface, a container may register itself or another object to receive the events 
for its child components and "glue" those events to the correct application logic. 

One responsibility a container always has is laying out the components it contains. A component 
informs its container when it does something that might affect other components in the container, 
such as changing its size or visibility. The container then tells its layout manager that it is time to 
rearrange the child components. 

As you've seen, Swing components are also containers. Containers can manage and arrange 
JComponent objects without knowing what they are and what they are doing. Components can 
be swapped and replaced with new versions easily and combined into composite user interface 
objects that can be treated as individual components. This lends itself well to building larger, 
reusable user interface items. 

13.1.1 Peers 

Swing components are peerless or lightweight. To understand these terms, you'll have to 
understand the peer system that AWT used. The cold truth is that getting data out to a display 
medium and receiving events from input devices involve crossing the line from Java to the real 



world. The real world is a nasty place full of architecture dependence, local peculiarities, and 
strange physical devices like mice, trackballs, and '69 Buicks. 

At some level, our components will have to talk to objects that contain native methods to interact 
with the host operating environment. To keep this interaction as clean and well-defined as 
possible, AWT used a set of peer interfaces. The peer interface made it possible for a pure Java-
language graphic component to use a corresponding real component—the peer object—in the 
native environment. You didn't generally deal directly with peer interfaces or the objects behind 
them; peer handling was encapsulated within the Component class. 

AWT relied heavily on peers. For example, if you created a window and added eight buttons to it, 
AWT would create nine peers for you—one for the window and one for each of the buttons. As an 
application programmer, you wouldn't ever have to worry about the peers, but they would always 
be lurking under the surface, doing the real work of interacting with your operating system's 
windowing toolkit. 

In Swing, by contrast, most components are peerless, or lightweight. This means that Swing 
components don't have any direct interaction with the underlying windowing system. They draw 
themselves in their parent container and respond to user events, all without the aid of a peer. All 
of the components in Swing are written in pure Java, with no native code involved. In Swing, only 
top-level windows interact with the windowing system. These Swing containers descend from 
AWT counterparts, and thus still have peers. In Swing, if you create a window and add eight 
buttons to it, only one peer is created—for the window. Having far fewer interactions with the 
underlying windowing system than AWT, Swing is more reliable. 

Another consquence of using lightweight components is that it is easy to change the appearance 
of components. Since each component draws itself, instead of relying on a peer, it can decide at 
runtime how to draw itself. Accordingly, Swing supports different look-and-feel schemes, which 
can be changed at runtime. (A look-and-feel is the collected appearance of components in an 
application.) Look-and-feels based on Windows and Solaris are available, as well as an entirely 
original one called Metal, which is the default scheme. 

13.1.2 Why the Move from AWT to Swing? 

Java's developers initially decided to implement the standard AWT components with a "mostly 
native" toolkit. As we described earlier, that means that most of the important functionality of 
these classes is delegated to peer objects, which live in the native operating system. Using native 
peers allows Java to take on the look-and-feel of the local operating environment. Macintosh 
users see Mac applications, PC users see Windows' windows, and Unix users can have their 
Motif motif; warm fuzzy feelings abound. Java's chameleon-like ability to blend into the native 
environment was considered by many to be an integral part of platform independence. However, 
there are a few important downsides to this arrangement. 

First, using native peer implementations makes it much more difficult (if not impossible) to 
subclass these components to specialize or modify their behavior. Most of their behavior comes 
from the native peer, and therefore can't be overridden or extended easily. As it turns out, this is 
not a terrible problem because of the ease with which we can make our own components in Java. 
It is also true that a sophisticated new component, like an HTML viewer, would benefit little in 
deriving from a more primitive text-viewing component like TextArea. 

Next, as we mentioned before, porting the native code makes it much more difficult to bring Java 
to a new platform. For the user, this can only mean one thing—bugs. Basically, there were too 
many places where AWT was interacting with the underlying windowing system—one peer per 



component. There were too many places where something might go wrong, or peers might 
behave in subtly different ways on different platforms. 

Finally, we come to a somewhat counterintuitive problem with the use of native peers. In most 
current implementations of Java, the native peers are quite "heavy" and consume a lot of 
resources. You might expect that relying on native code would be much more efficient than 
creating the components in Java. However, it can take a long time to instantiate a large number 
of GUI elements when each requires the creation of a native peer from the toolkit. And in some 
cases you may find that once the native peers are created, they don't perform as well as the pure 
Java equivalents that you can create yourself. 

An extreme example would be a spreadsheet that uses an AWT TextField for each cell. 
Creating hundreds of TextFieldPeer objects would be something between slow and 
impossible. While simply saying "don't do that" might be a valid answer, this prompts the 
question: how do you create large applications with complex GUIs? The answer, of course, is 
Swing. Swing's peerless architecture means that it's possible to build large, complicated user 
interfaces and have them work efficiently. 

13.1.3 The Model/View/Controller Framework 

Before continuing our discussion of GUI concepts, we want to make a brief aside and talk about 
the Model/View/Controller (MVC) framework. MVC is a method of building reusable components 
that logically separates the structure, presentation, and behavior of a component into separate 
pieces. MVC is primarily concerned with building user interface components, but the basic ideas 
can be applied to many design issues; its principles can be seen throughout Java. 

The fundamental idea behind MVC is the separation of the data model for an item from its 
presentation. For example, we can draw different representations (e.g., bar graphs, pie charts) of 
the data in a spreadsheet. The data is the model ; the particular representation is the view . A 
single model can have many views that present the data differently. A user interface component's 
controller defines and governs its behavior. Typically, this includes changes to the model, which, 
in turn, cause the view(s) to change, also. For a checkbox component, the data model could be a 
single boolean variable, indicating whether it's checked or not. The behavior for handling mouse-
press events would alter the model, and the view would examine that data when it draws the on-
screen representation. 

The way in which Swing objects communicate, by passing events from sources to listeners, is 
part of this MVC concept of separation. Event listeners are "observers" (controllers) and event 
sources are "observables" (models). When an observable changes or performs a function, it 
notifies all of its observers of the activity. 

Swing components explicitly support MVC. Each component is actually composed of two pieces. 
One piece, called the UI-delegate, is responsible for the "view" and "controller" roles. It takes care 
of drawing the component and responding to user events. The second piece is the data model 
itself. This separation makes it possible for multiple Swing components to share a single data 
model. For example, a read-only text box and a drop-down list box could use the same list of 
strings as a data model.[2]  

[2] In Chapter 9, we described the Observer class and Observable interface of the java.util 
package. Swing doesn't use these classes directly, but it does use exactly the same design pattern for 
handling event sources and listeners. 

13.1.4 Painting 



In an event-driven environment like Swing, components can be asked to draw themselves at any 
time. In a more procedural programming environment, you might expect a component to be 
involved in drawing only when first created or when it changes its appearance. In Java, 
components act in a way that is closely tied to the underlying behavior of the display environment. 
For example, when you obscure a component with another window and then re-expose it, a 
Swing thread asks the component to redraw itself. 

Swing asks a component to draw itself by calling its paint( ) method. paint( ) may be 
called at any time, but in practice, it's called when the object is first made visible, whenever it 
changes its appearance, and whenever some tragedy in the display system messes up its area. 
Because paint( ) can't make any assumptions about why it was called, it must redraw the 
component's entire display. The system may limit the drawing if only part of the component needs 
to be redrawn, but you don't have to worry about this. 

A component never calls its paint( ) method directly. Instead, when a component requires 
redrawing, it schedules a call to paint( ) by invoking repaint( ). The repaint( ) method 
asks Swing to schedule the component for repainting. At some point in the future, a call to 
paint( ) occurs. Swing is allowed to manage these requests in whatever way is most efficient. 
If there are too many requests to handle, or if there are multiple requests for the same 
component, the thread can reschedule a number of repaint requests into a single call to paint( 
). This means that you can't predict exactly when paint( ) will be called in response to a 
repaint( ); all you can expect is that it happens at least once, after you request it. 

Calling repaint( ) is normally an implicit request to be updated as soon as possible. Another 
form of repaint( ) allows you to specify a time period within which you would like an update, 
giving the system more flexibility in scheduling the request. The system will try to repaint the 
component within the time you specify. An application can use this method to govern its refresh 
rate. For example, the rate at which you render frames for an animation might vary, depending on 
other factors (like the complexity of the image). You could impose an effective maximum frame 
rate by calling repaint( ) with a time (the inverse of the frame rate) as an argument. If you 
then happen to make more than one repaint request within that time period, Swing is not obliged 
to physically repaint for each one. It can simply condense them to carry out a single update within 
the time you have specified. 

Swing components can act as containers, holding other components. Because every Swing 
component does its own drawing, Swing components are responsible for telling contained 
components to draw themselves. Fortunately, this is all taken care of for you by a component's 
default paint( ) method. If you override this method, however, you have to make sure to call 
the superclass's implementation like this: 

public void paint(Graphics g) { 
    super.paint(g); 
    ... 
} 

There's another, cleaner way around this problem. All Swing components have a method called 
paintComponent( ). While paint( ) is responsible for drawing the component as well as its 
contained components, paintComponent( )'s sole responsibility is drawing the component 
itself. If you override paintComponent( ) instead of paint( ), you won't have to worry about 
drawing contained components. 

Both paint( ) and paintComponent( ) take a single argument: a Graphics object. The 
Graphics object represents the component's graphics context. It corresponds to the area of the 



screen on which the component can draw and provides the methods for performing primitive 
drawing and image manipulation. (We'll look at the Graphics class in detail in Chapter 17.) 

All components paint and update themselves using this mechanism. Because all Swing 
components are peerless, it's easy to draw on any of them. (With an AWT component, the 
presence of the native peer component can make such drawing operations difficult.) In practice, it 
won't make sense very often to draw on the prebuilt components, like buttons and list boxes. 
When creating your own components, you'll probably just subclass JComponent directly. 

13.1.5 Enabling and Disabling Components 

Standard Swing components can be turned on and off by calling the setEnabled( ) method. 
When a component like a JButton or JTextField is disabled, it becomes "ghosted" or 
"greyed-out" and doesn't respond to user input. 

For example, let's see how to create a component that can be used only once. This requires 
getting ahead of the story; we won't explain some aspects of this example until later. Earlier, we 
said that a JButton generates an ActionEvent when it is pressed. This event is delivered to 
the listeners' actionPerformed( ) method. The following code disables whatever component 
generated the event: 

public boolean void actionPerformed(ActionEvent e ) {  
    ...  
    ((JComponent)e.getSource( )).setEnabled(false);  
} 

This code calls getSource( ) to find out which component generated the event. We cast the 
result to JComponent because we don't necessarily know what kind of component we're dealing 
with; it might not be a button, because other kinds of components can generate action events. 
Once we know which component generated the event, we disable it. 

You can also disable an entire container. Disabling a JPanel, for instance, disables all the 
components it contains. This is one of the things that used to be unpredictable in AWT, because 
of the peers involved. In Swing, it just works. 

13.1.6 Focus, Please 

In order to receive keyboard events, a component has to have keyboard focus. The component 
with the focus is simply the currently selected input component. It receives all keyboard event 
information until the focus changes. A component can ask for focus with the JComponent's 
requestFocus( ) method. Text components like JTextField and JTextArea do this 
automatically whenever you click the mouse in their area. A component can find out when it gains 
or loses focus through the FocusListener interface (see Table 13.1 and Table 13.2 later in 
this chapter). If you want to create your own text-oriented component, you could implement this 
behavior yourself. For instance, you might request focus when the mouse is clicked in your 
component's area. After receiving focus, you could change the cursor or do something else to 
highlight the component. 

Many user interfaces are designed so that the focus automatically jumps to the "next available" 
component when the user presses the Tab key. This behavior is particularly common in forms; 
users often expect to be able to tab to the next text entry field. Swing handles automatic focus 
traversal for you. You can get control over the behavior through the transferFocus( ) , 
setNextFocusable-Component( ), and setFocusTraversable( ) methods of 



JComponent. The method transferFocus( ) passes the focus to the next appropriate 
component. If you want to change the traversal order, you can call setNextFocusable-
Component( ) to tell each component which component should be next. The setFocus-
Traversable( ) accepts a boolean value that determines whether the component should be 
considered eligible for receiving focus. You can use this method to determine whether your 
components can be tabbed to. 

13.1.7 Other Component Methods 

The JComponent class is very large; it has to provide the base-level functionality for all of the 
various kinds of Java GUI objects. It inherits a lot of functionality from its parent Container and 
Component classes. We don't have room to document every method of the JComponent class 
here, but we'll flesh out our discussion by covering some more of the important ones: 

Container  
getParent 
( )  

Return the container that holds this component. 

String  
getName 
( )  
void    
setName 
(String   name)    

Get or assign the String name of this component. Naming a component is useful for 
debugging. The name is returned by toString( ). 

void    
setVisible 
(boolean   visible)    

Make the component visible or invisible, within its container. If you change the 
component's visibility, the container's layout manager automatically lays out its visible 
components. 

Color  
getForeground 
( )  
void    
setForeground 
(Color   c)    
Color  
getBackground 
( )  
void    
setBackground 
(Color   c)    

Get and set the foreground and background colors for this component. The foreground 
color of any component is the default color used for drawing. For example, it is the color 



used for text in a text field; it is also the default drawing color for the Graphics object 
passed to the component's paint( ) and paintComponent( ) methods. The 
background color is used to fill the component's area when it is cleared by the default 
implementation of update( ). 

Dimension  
getSize 
( )  
void    
setSize 
(int   width, int   height)    

Get and set the current size of the component. Note that a layout manager may change 
the size of a component even after you've set its size yourself. To change the size a 
component "wants" to be, use setPreferredSize( ). There are other methods in 
JComponent to set its location, but normally this is the job of a layout manager. 

Dimension  
getPreferredSize 
( )  
void    
setPreferredSize 
(Dimension   preferredSize)    

Use these methods to examine or set the preferred size of a component. Layout 
managers attempt to set components to their preferred sizes. If you change a 
component's preferred size, remember to call revalidate( ) on the component to get 
it laid out again. 

Cursor  
getCursor 
( )  
void    
setCursor 
(Cursor   cursor)    

Get or set the type of cursor (mouse pointer) used when the mouse is over this 
component's area. For example: 

JComponent myComponent = ...;  
Cursor crossHairs = 
    Cursor.getPredefinedCursor( Cursor.CROSSHAIR_CURSOR );  
    myComponent.setCursor( crossHairs ); 

13.2 Containers 

A container is a kind of component that holds and manages other components. JComponent 
objects can be containers, because the JComponent class descends from the Container class. 

Three of the most useful container types are JFrame , JPanel, and JApplet. A JFrame is a 
top-level window on your display. JFrame is derived from JWindow, which is pretty much the 
same but lacks a border. A JPanel is a generic container element used to group components 



inside of JFrames and other JPanels. The JApplet class is a kind of container that provides 
the foundation for applets that run inside web browsers. Like every other JComponent, a 
JApplet has the ability to contain other user interface components. You can also use the 
JComponent class directly, like a JPanel, to hold components inside of another container. With 
the exception of JFrame and JWindow, all the components and containers in Swing are 
lightweight. 

A container maintains the list of "child" components that it manages, and has methods for dealing 
with those components. Note that this child relationship refers to a visual hierarchy, not a 
subclass/superclass hierarchy. By themselves, most components aren't very useful until they are 
added to a container and displayed. The add( ) method of the Container class adds a 
component to the container. Thereafter, this component can be displayed in the container's 
display area and positioned by its layout manager. You can remove a component from a 
container with the remove( ) method. 

13.2.1 Layout Managers 

A layout manager is an object that controls the placement and sizing of components within the 
display area of a container. A layout manager is like a window manager in a display system; it 
controls where the components go and how big they are. Every container has a default layout 
manager, but you can install a new one by calling the container's setLayout( ) method.  

Swing comes with a few layout managers that implement common layout schemes. The default 
layout manager for a JPanel is a FlowLayout, which tries to place objects at their preferred 
size from left to right and top to bottom in the container. The default for a JFrame is a 
BorderLayout, which places a limited number of objects at named locations within the window, 
such as NORTH, SOUTH, and CENTER. Another layout manager, GridLayout , arranges 
components in a rectangular grid. The most general (and difficult to use) layout manager is 
GridBagLayout, which lets you do the kinds of things you can do with HTML tables. (We'll get 
into the details of all of these layout managers in Chapter 16.) 

When you add a component to a container, you'll often use the version of add( ) that takes a 
single Component as an argument. However, if you're using a layout manager that uses 
"constraints," like BorderLayout or GridBagLayout, you must specify additional information 
about where to put the new component. For that you can use the version that takes a constraint 
object. For example, here's how to place a component at the top edge of a container that uses a 
BorderLayout manager: 

myContainer.add(myComponent, BorderLayout.NORTH); 

In this case, the constraint object is the static member variable NORTH. GridBagLayout uses a 
much more complex constraint object to specify positioning. 

13.2.2 Insets 

Insets specify a container's margins; the space specified by the container's insets won't be used 
by a layout manager. Insets are described by an Insets object, which has four public int fields: 
top, bottom, left, and right. You normally don't need to worry about the insets; the 
container will set them automatically, taking into account extras like the menu bar that may 
appear at the top of a frame. To find out the insets, call the component's getInsets( ) method, 
which returns an Insets object. 



13.2.3 Z-Ordering (Stacking Components) 

With the standard layout managers, components are not allowed to overlap. However, if you use 
custom-built layout managers or absolute positioning, components within a container may 
overlap. If they do, the order in which components were added to a container matters. When 
components overlap they are "stacked" in the order in which they were added: the first 
component added to the container is on top; the last is on the bottom. To give you more control 
over stacking, two additional forms of the add( ) method take an additional integer argument 
that lets you specify the component's exact position in the container's stacking order. 

13.2.4 The revalidate( ) and doLayout( ) Methods 

A layout manager arranges the components in a container only when asked to. Several things 
can mess up a container after it's initially laid out: 

• Changing its size 
• Resizing or moving one of its child components 
• Adding, showing, removing, or hiding a child component 

Any of these actions cause the container or its components to be marked invalid. This means it 
needs to have its child components readjusted by its layout manager. In most cases, Swing will 
re-layout container automatically. There are a few cases where you may need to tell Swing to fix 
things. One example is when you change the preferred size of a component. To fix up the layout, 
call the revalidate( ) method. revalidate( ) marks a component (or container) invalid 
and calls Container's doLayout( ) method, which asks the layout manager to do its job. In 
addition, revalidate( ) also notes that the Container has been fixed (i.e., it's valid again) 
and looks at each child component of the container, recursively validating any containers or 
components that are also messed up. 

So if you have a small JPanel—say a keypad holding some buttons—and you change the 
preferred size of the JPanel by calling its setPreferredSize( ) method, you should also call 
revalidate( ) on the panel or its container. The layout manager of the panel's container may 
then reposition or resize the keypad. It also automatically calls revalidate( ) for the keypad 
itself, so that it can rearrange its buttons to fit inside its new area. 

All components, not just containers, maintain a notion of when they are valid or invalid. If the size, 
location, or internal layout of a component changes, its revalidate( ) will automatically be 
called. 

Child containers are validated only if they are invalid. That means that if you have an invalid 
component nested inside a valid component and you validate a container above both, the invalid 
component may never be reached. To help avoid this situation, the invalidate( ) method that 
marks a container as dirty automatically marks parent containers as well, all the way up the 
container hierarchy. 

13.2.5 Managing Components 

There are a few additional tools of the Container class that we should mention: 

Component[]  
getComponents 
( )  



Returns the container's components in an array. 

void    
list 
(PrintWriter   out, int   indent)    

Generates a list of the components in this container and writes them to the specified 
PrintWriter. 

Component    
getComponentAt 
(int   x, int   y)    

Tells you what component is at the specified coordinates in the container's coordinate 
system. 

13.2.6 Listening for Components 

You can use the ContainerListener interface to automate the setting up of a container's new 
components. A container that implements this interface can receive an event whenever it gains or 
loses a component. This facility makes it easy for a container to micro-manage its components. 

13.2.7 Windows and Frames 

Windows and frames are the top-level containers for Java components. A JWindow is simply a 
plain, graphical screen that displays in your windowing system. Windows have no frills; they are 
mainly suitable for making "splash" screens and dialogs. JFrame, on the other hand, is a 
subclass of JWindow that has a border and can hold a menu bar. You can drag a frame around 
on the screen and resize it, using the ordinary controls for your windowing environment. Figure 
13.2 shows a JFrame on the left and a JWindow on the right. 

Figure 13.2. A frame and a window 

 

All other Swing components and containers must be held, at some level, inside of a JWindow or 
JFrame. Applets are a kind of Container. Even applets must be housed in a frame or window, 
though normally you don't see an applet's parent frame because it is part of (or simply is) the 
browser or appletviewer displaying the applet. 



JFrames and JWindows are the only components that can be displayed without being added or 
attached to another Container. After creating a JFrame or JWindow, you can call the 
setVisible( ) method to display it. The following short application creates a JFrame and a 
JWindow and displays them side by side, just like in Figure 13.2. 

//file: TopLevelWindows.java 
import javax.swing.*; 
 
public class TopLevelWindows { 
  public static void main(String[] args) { 
    JFrame f = new JFrame("The Frame"); 
    f.setSize(300, 300); 
    f.setLocation(100, 100); 
     
    JWindow w = new JWindow( ); 
    w.setSize(300, 300); 
    w.setLocation(500, 100); 
     
    f.setVisible(true); 
    w.setVisible(true); 
  } 
} 

The JFrame constructor can take a String argument that supplies a title, displayed in the 
JFrame's title bar. (Another approach would be to create the JFrame with no title and call 
setTitle( ) to supply the title later.) The JFrame's size and location on your desktop is 
determined by the calls to setSize( ) and setLocation( ). After creating the JFrame, we 
create a JWindow in almost exactly the same way. The JWindow doesn't have a title bar, so 
there are no arguments to the JWindow constructor. 

Once the JFrame and JWindow are set up, we call setVisible(true) to get them on the 
screen. The setVisible( ) method returns immediately, without blocking. Fortunately, our 
application does not exit, even though we've reached the end of the main( ) method, because 
the windows are still visible. You can close the JFrame by clicking on the close button in the title 
bar. JFrame's default behavior is to hide itself when you click on the box by calling 
setVisible(false). You can alter this behavior by calling the 
setDefaultCloseOperation( ) method, or by adding an event listener, which we'll cover 
later. 

There's no way to close the JWindow inside our application. You will have to hit Ctrl-C or 
whatever keystroke kills a process on your machine to stop execution of the TopLevelWindows 
application. 

13.2.8 Other Methods for Controlling Frames 

The setLocation( ) method of the Component class can be used on a JFrame or JWindow 
to set its position on the screen. The x and y coordinates are relative to the screen's origin (the 
top left corner). 

You can use the toFront( ) and toBack( ) methods to place a JFrame or JWindow in front 
of, or behind, other windows. By default, a user is allowed to resize a JFrame, but you can 
prevent resizing by calling setResizable(false) before showing the JFrame. 



On most systems, frames can be "iconified"; that is, they can be represented by a little icon 
image. You can get and set a frame's icon image by calling getIconImage( ) and 
setIconImage( ). As you can with all components, you set the cursor by calling the 
setCursor( ) method. 

13.2.9 Using Content Panes 

Windows and frames don't behave exactly like regular containers. With other containers, you can 
add child components with the add( ) method. JFrame and JWindow have some extra stuff in 
them (mostly to support Swing's peerless components), so you can't just add( ) components 
directly. Instead, you need to add the components to the associated content pane. The content 
pane is just a Container that covers the visible area of the JFrame or JWindow. Whenever you 
create a new JFrame or JWindow, a content pane is automatically created for you. You can 
retrieve it with getContentPane( ). Here's another example that creates a JFrame and adds 
some components to its content pane: 

//file: MangoMango1.java 
import java.awt.*; 
import javax.swing.*; 
 
public class MangoMango1 { 
  public static void main(String[] args) { 
    JFrame f = new JFrame("The Frame"); 
    f.setLocation(100, 100); 
     
    Container content = f.getContentPane( ); 
    content.setLayout(new FlowLayout( )); 
    content.add(new JLabel("Mango")); 
    content.add(new JButton("Mango")); 
     
    f.pack( ); 
    f.setVisible(true); 
  } 
} 

The call to JFrame's pack( ) method tells the frame window to resize itself so it exactly fits its 
components. Instead of having to determine the size of the JFrame, we just tell it to be "just big 
enough." If you do ever want to set the absolute size of the JFrame yourself, call setSize( ) 
instead. 

If you create your own Container, you can make it the content pane of a JFrame or JWindow 
by passing it to setContentPane( ). Using this strategy, you could rewrite the previous 
example as follows: 

//file: MangoMango2.java 
import java.awt.*; 
import javax.swing.*; 
 
public class MangoMango2 { 
  public static void main(String[] args) { 
    JFrame f = new JFrame("The Frame"); 
    f.setLocation(100, 100); 
     
    Container content = new JPanel( ); 



    content.add(new JLabel("Mango")); 
    content.add(new JButton("Mango")); 
    f.setContentPane(content); 
     
    f.pack( ); 
    f.setVisible(true); 
  } 
} 

We'll cover labels and buttons in Chapter 14 and layouts in Chapter 16. The important thing to 
remember is that you can't add components directly to a JFrame or JWindow. Instead, add them 
to the automatically created content pane, or create an entirely new content pane. 

13.3 Events 

We've spent a lot of time discussing the different kinds of objects in Swing—components, 
containers, and special containers like frames and windows. Now it's time to discuss interobject 
communication in detail. 

Swing objects communicate by sending events. The way we talk about "firing" events and 
"handling" them makes it sound as if they are part of some special Java language feature. But 
they aren't. An event is simply an ordinary Java object that is delivered to its receiver by invoking 
an ordinary Java method. Everything else, however interesting, is purely convention. The entire 
Java event mechanism is really just a set of conventions for the kinds of descriptive objects that 
should be delivered; these conventions prescribe when, how, and to whom events should be 
delivered. 

Events are sent from a single source object to one or more listeners (or receivers). A listener 
implements prescribed event-handling methods that enable it to receive a type of event. It then 
registers itself with a source of that kind of event. Sometimes an adapter object may be 
interposed between the event source and the listener, but in any case, registration of a listener is 
always established before any events are delivered. 

An event object is an instance of a subclass of java.util.EventObject; it holds information 
about something that's happened to its source. The EventObject class itself serves mainly to 
identify event objects; the only information it contains is a reference to the event source (the 
object that sent the event). Components do not normally send or receive EventObjects as 
such; they work with subclasses that provide more specific information. AWTEvent is a subclass 
of EventObject that is used within AWT; further subclasses of AWTEvent provide information 
about specific event types. Swing has events of its own that descend directly from 
EventObject. For the most part, you'll just be working with specific event subclasses, which are 
used in the same ways in AWT and Swing. 

ActionEvents correspond to a decisive "action" that a user has taken with the component—like 
pressing a button or pressing Enter. An ActionEvent thus carries the name of an action to be 
performed (the action command) by the program. MouseEvents are generated when a user 
operates the mouse within a component's area. They describe the state of the mouse, and 
therefore carry information like the x and y coordinates and the state of your mouse buttons at 
the time the MouseEvent was created. 

ActionEvent operates at a higher semantic level than MouseEvent: an ActionEvent lets us 
know that a component has performed its job, while a MouseEvent simply confers a lot of 
information about the mouse at a given time. You could figure out that somebody clicked on a 



JButton by examining mouse events, but it is simpler to work with action events. The precise 
meaning of an event, however, can depend on the context in which it is received. 

13.3.1 Event Receivers and Listener Interfaces 

An event is delivered by passing it as an argument to the receiving object's event-handler 
method. ActionEvents, for example, are always delivered to a method called 
actionPerformed( ) in the receiver: 

public void actionPerformed( ActionEvent e ) {  
    ...  
} 

For each type of event, there is a corresponding listener interface that prescribes the method(s) it 
must provide to receive those events. In this case, any object that receives ActionEvents must 
implement the ActionListener interface: 

public interface ActionListener extends java.util.EventListener {  
    public void actionPerformed( ActionEvent e );  
} 

All listener interfaces are subinterfaces of java.util.EventListener, which is an empty 
interface. It exists only to help the compiler identify listener interfaces. 

Listener interfaces are required for a number of reasons. First, they help to identify objects that 
are capable of receiving a given type of event. This way we can give the event-handler methods 
friendly, descriptive names and still make it easy for documentation, tools, and humans to 
recognize them in a class. Next, listener interfaces are useful because several methods can be 
specified for an event receiver. For example, the FocusListener interface contains two 
methods: 

abstract void focusGained( FocusEvent e );  
abstract void focusLost( FocusEvent e ); 

Athough these methods both take a FocusEvent as an argument, they correspond to different 
reasons for firing the event; in this case, whether the FocusEvent means that focus was 
received or lost. You could figure out what happened by inspecting the event; all AWTEvents 
contain a constant specifying the event's subtype. By requiring two methods, the 
FocusListener interface saves you the effort: if focusGained( ) is called, you know the 
event type was FOCUS_GAINED. 

Similarly, the MouseListener interface defines five methods for receiving mouse events (and 
MouseMotionListener defines two more), each of which gives you some additional 
information about why the event occurred. In general, the listener interfaces group sets of related 
event-handler methods; the method called in any given situation provides a context for the 
information in the event object. 

There can be more than one listener interface for dealing with a particular kind of event. For 
example, the MouseListener interface describes methods for receiving MouseEvents when 
the mouse enters or exits an area or a mouse button is pressed or released. 
MouseMotionListener is an entirely separate interface that describes methods to get mouse 
events when the mouse is moved (no buttons pressed) or dragged (buttons pressed). By 



separating mouse events into these two categories, Java lets you be a little more selective about 
the circumstances under which you want to receive MouseEvents. You can register as a listener 
for mouse events without receiving mouse motion events; since mouse motion events are 
extremely common, you don't want to handle them if you don't need to. 

Two simple patterns govern the naming of Swing event listener interfaces and handler methods: 

• Event-handler methods are public methods that return type void and take a single event 
object (a subclass of java.util.EventObject) as an argument.[3]  

[3] This rule is not complete. JavaBeans allows event-handler methods to take additional 
arguments when absolutely necessary and also to throw checked exceptions. 

• Listener interfaces are subclasses of java.util.EventListener that are named with 
the suffix "Listener"—for example, MouseListener and ActionListener. 

These may seem pretty obvious, but they are important because they are our first hint of a design 
pattern governing how to build components that work with events. 

13.3.2 Event Sources 

The previous section described the machinery that an event receiver uses to listen for events. In 
this section, we'll describe how a receiver tells an event source to send it events, as they occur. 

To receive events, an eligible listener must register itself with an event source. It does this by 
calling an "add listener" method in the event source and passing a reference to itself. (Thus, this 
scheme implements a callback facility.) For example, the Swing JButton class is a source of 
ActionEvents. Here's how a TheReceiver object might register to receive these events: 

// source of ActionEvents  
JButton theButton = new JButton("Belly");  
    
// receiver of ActionEvents  
class TheReceiver implements ActionListener {  
 
   setupReceiver( ) {  
      ...  
      theButton.addActionListener( this );  
   }  
 
   public void actionPerformed( ActionEvent e ) {  
      // Belly Button pushed...  
   } 

The receiver makes a call to addActionListener( ) to become eligible to receive 
ActionEvents from the button when they occur. It passes the reference this to register itself 
as an ActionListener. 

To manage its listeners, an ActionEvent source (like the JButton) always implements two 
methods: 

// ActionEvent source  
public void addActionListener(ActionListener listener) {  



    ...  
}  
public void removeActionListener(ActionListener listener) {  
    ...  
} 

The removeActionListener( ) method removes the listener from the list so that it will not 
receive future events of that kind. Swing components supply implementations of both methods; 
normally, you won't need to implement them yourself. 

Now, you may be expecting an EventSource interface listing these two methods, but there isn't 
one. There are no event source interfaces in the current conventions. If you are analyzing a class 
and trying to determine what events it generates, you have to look for the add and remove 
methods. For example, the presence of the addActionListener( ) and 
removeActionListener( ) methods define the object as a source of ActionEvents. If you 
happen to be a human being, you can simply look at the documentation; but if the documentation 
isn't available, or if you're writing a program that needs to analyze a class (a process called 
"reflection"), you can look for this design pattern: 

A source of FooEvent events for the FooListener interface must implement a pair of 
add/remove methods: 

addFooListener 
(FooListener listener)  
removeFooListener 
(FooListener listener)  

If an event source can support only one event listener (unicast delivery), the add listener method 
can throw the checked exception java.util.TooManyListenersException. 

So what do all the naming patterns up to this point accomplish? Well, for one thing, they make it 
possible for automated tools and integrated development environments to divine what are 
sources of particular events. Tools that work with Java Beans will use the Java reflection and 
introspection APIs to search for these kinds of design patterns and identify the events that can be 
fired by a component. 

It also means that event hookups are strongly typed, just like the rest of Java. So it's not easy to 
accidentally hook up the wrong kind of components; for example, you can't register to receive 
ItemEvents from a JButton, because a button doesn't have an addItemListener( ) 
method. Java knows at compile time what types of events can be delivered to whom. 

13.3.3 Event Delivery 

Swing and AWT events are multicast; every event is associated with a single source but can be 
delivered to any number of receivers. When an event is fired, it is delivered individually to each 
listener on the list (Figure 13.3). 

Figure 13.3. Event delivery 



 

There are no guarantees about the order in which events will be delivered. Neither are there any 
guarantees about what happens if you register yourself more than once with an event source; you 
may or may not get the event more than once. Similarly, you should assume that every listener 
receives the same event data. Events are immutable; they can't be changed by their listeners. 

To be complete, we could say that event delivery is synchronous with respect to the event 
source, but that follows from the fact that the event delivery is really just the invocation of a 
normal Java method. The source of the event calls the handler method of each listener. However, 
listeners shouldn't assume that all of the events will be sent in the same thread. An event source 
could decide to send out events to all of the listeners in parallel, each in its own thread. 

13.3.4 Event Types 

All of the events used by Swing GUI components are subclasses of java.util.EventObject. 
You can use or subclass any of the EventObject types for use in your own components. We'll 
describe the important event types here. 

The events and listeners that are used by Swing fall into two packages: java.awt.event and 
javax.swing.event. As we've discussed, the structure of components has changed 
significantly between AWT and Swing. The event mechanism, however, is fundamentally the 
same, so the events and listeners in java.awt.event are still used by the new Swing 
components. In addition, Swing has added its own event types and listeners in the 
javax.swing.event package. 

java.awt.event.ComponentEvent is the base class for events that can be fired by any 
component. This includes events that provide notification when a component changes its 
dimensions or visibility, as well as the other event types for mouse operation and key presses. 
ContainerEvents are fired by containers when components are added or removed. 

13.3.5 The java.awt.event.InputEvent Class 

MouseEvents, which track the state of the mouse, and KeyEvents, which are fired when the 
user uses the keyboard, are kinds of java.awt.event.InputEvent. When the user presses a 
key or moves the mouse within a component's area, the events are generated with that 
component as the source. 

Input events and some other GUI events are placed on a special event queue that is managed by 
Swing. This gives Swing control over how the events are delivered. First, under some 
circumstances, a sequence of the same type of event may be compressed into a single event. 
This is done to make some event types more efficient—in particular, mouse events and some 
special internal events used to control repainting. Perhaps more important to us, input events are 
delivered with extra information that lets listeners decide if the component itself should act on the 
event. 

13.3.6 Mouse and Key Modifiers on InputEvents 



InputEvents come with a set of flags for special modifiers. These let you detect whether the 
Shift or Alt key was held down during a mouse button or key press, and detect which mouse 
button was pressed. The following are the flag values contained in 
java.awt.event.InputEvent: 

SHIFT_MASK  
CTRL_MASK  
META_MASK  
ALT_MASK  
BUTTON1_MASK  
BUTTON2_MASK  
BUTTON3_MASK  

To check for one or more flags, evaluate the boolean AND of the complete set of modifiers and 
the flag or flags you're interested in. The complete set of modifiers involved in the event is 
returned by the InputEvent's getModifiers( ) method: 

public void mousePressed (MouseEvent e) {  
    int mods = e.getModifiers( );  
    if ((mods & InputEvent.SHIFT_MASK) != 0) { 
        // shifted Mouse Button press 
    } 
} 

The three BUTTON flags can be used to detect which mouse button was pressed on a two- or 
three-button mouse. If you use these, you run the risk that your program won't work on platforms 
without multibutton mice. Currently, BUTTON2_MASK is equivalent to ALT_MASK, and 
BUTTON3_MASK is equivalent to META_MASK. This means that pushing the second mouse button 
is equivalent to pressing the first (or only) button with the Alt key depressed, and the third button 
is equivalent to the first with the Meta key depressed. However, if you really want to guarantee 
portability, you should limit yourself to a single button, possibly in combination with keyboard 
modifiers, rather than relying on the button masks. 

13.4 Event Summary 

Table 13.1 and Table 13.2 summarize the commonly used Swing events, which Swing 
components fire them, and the methods of the listener interfaces that receive them. The events 
and listeners are divided between the java.awt.event and javax.swing.event packages. 

In Swing, a component's model and view are distinct. Strictly speaking, components don't fire 
events; models do. When you press a JButton, for example, it's actually the button's data model 
that fires an ActionEvent, not the button itself. But JButton has a convenience method for 
registering ActionListeners; this methods passes its argument through to register the listener 
with the button model. In many cases (as with JButtons), you don't have to deal with the data 
model separately from the view, so we can speak loosely of the component itself firing the events. 

Table 13.1. Swing Component and Container Events  
Event Fired by Listener Interface Handler Method 

java.awt.event.ComponentEvent All 
components 

ComponentListener component-
Resized( ) 

      componentMoved() 

      componentShown() 



      
componentHidden( 
) 

java.awt.event.FocusEvent All 
components 

FocusListener focusGained( ) 

      focusLost() 

java.awt.event.KeyEvent All 
components 

KeyListener keyTyped( ) 

      keyPressed( ) 

      keyReleased( ) 

java.awt.event.MouseEvent All 
components 

MouseListener mouseClicked( ) 

      mousePressed( ) 

      mouseReleased( ) 

      mouseEntered( ) 

      mouseExited( ) 

    MouseMotionListener mouseDragged( ) 

      mouseMoved( ) 

java.awt.event.ContainerEvent All 
containers 

ContainerListener componentAdded( 
) 

      
component-
Removed( ) 

Table 13.2. Component-Specific Swing Events  
Event Fired by Listener Interface 

java.awt.event.ActionEvent JButton ActionListener 

  JCheckBoxMenuItem   
  JComboBox   

  JFileChooser   
  JList   

  JRadioButtonMenuItem   
  JTextField   
  JToggleButton   

java.awt.event.AdjustmentEvent JScrollBar AdjustmentListener 

javax.swing.event.CaretEvent JTextComponent CaretListener 

javax.swing.event.HyperlinkEvent JEditorPane, JTextPane HyperlinkListener 

java.awt.event.InternalFrameEvent JInternalFrame InternalFrameListener

      

      

      

      



      

      

java.awt.event.ItemEvent JCheckBoxMenuItem ItemListener 

  JComboBox   
  JRadioButtonMenuItem   

  JToggleButton   

javax.swing.event.ListDataEvent ListModel ListDataListener 

      

      

javax.swing.event.ListSelectionEvent JList ListSelectionListener

  ListSelectionModel   
javax.swing.event.MenuEvent JMenu MenuListener 

      

      

javax.swing.event.PopupMenuEvent JPopupMenu PopupMenuListener 

      

      

javax.swing.event.MenuKeyEvent JMenuItem MenuKeyListener 

      

      

javax.swing.event.MenuDragMouseEvent JMenuItem MenuDragMouseListener

      

      

      

javax.swing.event.TableColumnModelEvent TableColumnModel[4]  TableColumnModelListener

      

      
      

      

javax.swing.event.TableModelEvent TableModel TableModelListener 



javax.swing.event.TreeExpansionEvent JTree TreeExpansionListener

      

javax.swing.event.TreeModelEvent TreeModel TreeModelListener 

      

      

      

javax.swing.event.TreeSelectionEvent JTree TreeSelectionListener

  TreeSelectionModel   

javax.swing.event.UndoableEditEvent javax.swing.text.Document UndoableEditListener

java.awt.event. WindowEvent JDialog WindowListener 

  JFrame   
  JWindow   

      

      

      

      

[4] The TableColumnModel class breaks with convention in the names of the methods that add listeners. 
They are addColumnModelListener( )and removeColumnModelListener( ). 

13.4.1 Adapter Classes 

It's not usually ideal to have your application components implement a listener interface and 
receive events directly. Sometimes it's not even possible. Being an event receiver forces you to 
modify or subclass your objects to implement the appropriate event listener interfaces and add 
the code necessary to handle the events. Since we are talking about Swing events here, a more 
subtle issue is that you are, of necessity, building GUI logic into parts of your application that 
shouldn't have to know anything about the GUI. Let's look at an example. 

In Figure 13.4, we have drawn the plans for our Vegomatic food processor. Here, we have 
made our Vegomatic object implement the ActionListener interface, so that it can receive 
events directly from the three JButton components: Chop, Puree, and Frappe. The problem is 
that our Vegomatic object now has to know more than how to mangle food. It also has to be 
aware that it will be driven by three controls—specifically, buttons that send action commands—
and be aware of which methods in itself it should invoke for those commands. Our boxes labeling 
the GUI and application code overlap in an unwholesome way. If the marketing people should 
later want to add or remove buttons or perhaps just change the names, we have to be careful. 
We may have to modify the logic in our Vegomatic object. All is not well. 

Figure 13.4. Implementing the ActionListener interface directly 



 

An alternative is to place an adapter class between our event source and receiver. An adapter is 
a simple object whose sole purpose is to map an incoming event to an outgoing method. 

Figure 13.5 shows a better design that uses three adapter classes, one for each button. The 
implementation of the first adapter might look like: 

class VegomaticAdapter1 implements ActionListener {  
    Vegomatic vegomatic;  
    VegomaticAdapter1 ( Vegotmatic vegomatic ) {  
        this.vegomatic = vegomatic;  
    }  
    public void actionPerformed( ActionEvent e ) {  
        vegomatic.chopFood( );  
    }  
} 

Figure 13.5. Implementing the ActionListener interface using adapter classes 



 

So somewhere in the code where we build our GUI, we could register our listener like this: 

Vegomatic theVegomatic = ...;  
Button chopButton = ...;  
 
// make the hookup 
chopButton.addActionListener( new VegomaticAdapter1(theVegomatic) ); 

Instead of registering itself (this) as the Button's listener, the adapter registers the Vegomatic 
object (theVegomatic). In this way, the adapter acts as an intermediary, hooking up an event 
source (the button) with an event receiver (the virtual chopper). 

We have completely separated the messiness of our GUI from the application code. However, we 
have added three new classes to our application, none of which does very much. Is that good? 
That depends on your vantage point. 

Under different circumstances, our buttons may have been able to share a common adapter class 
that was simply instantiated with different parameters. Various trade-offs can be made between 
size, efficiency, and elegance of code. Adapter classes will often be generated automatically by 
development tools. The way we have named our adapter classes VegomaticAdapter1, 
VegomaticAdapter2, and VegomaticAdapter3 hints at this. More often, when hand-coding, 
you'll use an inner class. At the other extreme, we can forsake Java's strong typing and use the 
reflection API to create a completely dynamic hookup between an event source and its listener. 

13.4.2 Dummy Adapters 

Many listener interfaces contain more than one event-handler method. Unfortunately, this means 
that to register yourself as interested in any one of those events, you must implement the whole 
listener interface. And to accomplish this you might find yourself typing in dummy "stubbed-out" 
methods, simply to complete the interface. There is really nothing wrong with this, but it is a bit 
tedious. To save you some trouble, AWT and Swing provide some helper classes that implement 
these dummy methods for you. For each of the most common listener interfaces containing more 
than one method, there is an adapter class containing the stubbed methods. You can use the 



adapter class as a base class for your own adapters. So when you need a class to patch together 
your event source and listener, you can simply subclass the adapter and override only the 
methods you want. 

For example, the MouseAdapter class implements the MouseListener interface and provides 
the following implementation: 

public void mouseClicked(MouseEvent e) {};  
public void mousePressed(MouseEvent e) {};  
public void mouseReleased(MouseEvent e) {};  
public void mouseEntered(MouseEvent e) {};  
public void mouseExited(MouseEvent e) {}; 

This isn't a tremendous time saver; it's simply a bit of sugar. The primary advantage comes into 
play when we use the MouseAdapter as the base for our own adapter in an anonymous inner 
class. For example, suppose we want to catch a mousePressed( ) event in some component 
and blow up a building. We can use the following to make the hookup: 

someComponent.addMouseListener( new MouseAdapter( ) {  
    public void MousePressed(MouseEvent e) {  
        building.blowUp( );  
    }  
} ); 

We've taken artistic liberties with the formatting, but it's very readable. Moreover, we've avoided 
creating stub methods for the four unused event-handler methods. Writing adapters is common 
enough that it's nice to avoid typing those extra few lines and perhaps stave off the onset of 
carpal tunnel syndrome for a few more hours. Remember that any time you use an inner class, 
the compiler is generating a class for you, so the messiness you've saved in your source still 
exists in the output classes. 

13.4.3 Old-Style and New-Style Event Processing 

Although Java is still a youngster, it has a bit of a legacy. Versions of Java before 1.1 used a 
different style of event delivery. Back in the old days (a couple of years ago), event types were 
limited, and an event was delivered only to the Component that generated it or one of its parent 
containers. The old style component event-handler methods (now deprecated) returned a 
boolean value declaring whether or not they had handled the event: 

boolean handleEvent( Event e ) {  
    ...  
} 

If the method returns false, the event is automatically redelivered to the component's container 
to give it a chance. If the container does not handle it, it is passed on to its parent container, and 
so on. In this way, events were propagated up the containment hierarchy until they were either 
consumed or passed over to the component peer, just as current InputEvents are ultimately 
interpreted using the peer if no registered event listeners have consumed them. 

Note that this older style of event processing applies only to AWT components. The newer Swing 
components handle only events with the new model. 



Although this style of event delivery was convenient for some simple applications, it is not very 
flexible. Events could be handled only by components, which meant that you always had to 
subclass a Component or Container type to handle events. This was a degenerate use of 
inheritance (i.e., bad design) that led to the creation of lots of unnecessary classes. 

We could, alternatively, receive the events for many embedded components in a single parent 
container, but that would often lead to very convoluted logic in the container's event-handling 
methods. It is also very costly to run every single AWT event through a gauntlet of (often empty) 
tests as it traverses its way up the tree of containers. This is why Swing now provides the more 
dynamic and general event source/listener model that we have described in this chapter. The old-
style events and event-handler methods are, however, still with us. 

Java is not allowed to simply change and break an established API. Instead, older ways of doing 
things are simply deprecated in favor of the new ones. This means that code using the old-style 
event handler methods will still work; you may see old-style code around for a long time. The 
problem with relying on old-style event delivery, however, is that the old and new ways of doing 
things cannot be mixed. 

By default, Java is obligated to perform the old behavior—offering events to the component and 
each of its parent containers. However, Java turns off the old-style delivery whenever it thinks 
that we have elected to use the new style. Java determines whether a Component should 
receive old-style or new-style events based on whether any event listeners are registered, or 
whether new style events have been explicitly enabled. When an event listener is registered with 
a Component, new-style events are implicitly turned on (a flag is set). Additionally, a mask is set 
telling the component the types of events it should process. The mask allows components to be 
more selective about which events they process. 

13.4.3.1 processEvent( ) 

When new-style events are enabled, all events are first routed to the dispatch-Event( ) 
method of the Component class. The dispatchEvent( ) method examines the component's 
event mask and decides whether the event should be processed or ignored. Events that have 
been enabled are sent to the processEvent( ) method, which looks at the event's type and 
delegates it to a helper processing method named for its type. The helper processing method 
finally dispatches the event to the set of registered listeners for its type. 

This process closely parallels the way in which old-style events are processed and the way in 
which events are first directed to a single handleEvent( ) method that dispatches them to 
more specific handler methods in the Component class. The differences are that new-style 
events are not delivered unless someone is listening for them, and the listener registration 
mechanism means that we don't have to subclass the component in order to override its event-
handler methods and insert our own code. 

13.4.3.2 Enabling new-style events explicitly 

Still, if you are subclassing a Component or you really want to process all events in a single 
method, you should be aware that it is possible to emulate the old-style event handling and 
override your component's event-processing methods. Call the Component's enableEvents( 
) method with the appropriate mask value to turn on processing for the given type of event. You 
can then override the corresponding method and insert your code. The mask values, listed in 
Table 13.3, are found in the java.awt.AWTEvent class. 

Table 13.3. AWT Event Masks 



java.awt.AWTEvent mask Method 
COMPONENT_EVENT_MASK ProcessComponentEvent( ) 

FOCUS_EVENT_MASK processFocusEvent( ) 

KEY_EVENT_MASK processKeyEvent( ) 
MOUSE_EVENT_MASK processMouseEvent( ) 
MOUSE_MOTION_EVENT_MASK ProcessMouseMotionEvent( ) 

For example: 

public void init( ) {  
    ...  
    enableEvent( AWTEvent.KEY_EVENT_MASK ):  
}  
 
public void processKeyEvent(KeyEvent e) {  
    if ( e.getID( ) == KeyEvent.KEY_TYPED ) { 
        // do work  
    } 
    super.processKeyEvent(e);  
} 

If you do this, it is very important that you remember to make a call to super. 
process...Event( ) in order to allow normal event delegation to continue. Of course, by 
emulating old-style event handling, we're giving up the virtues of the new style; this code is a lot 
less flexible than the code we could write with the new event model. As we've seen, the user 
interface is hopelessly tangled with the actual work your program does. A compromise solution 
would be to have your subclass declare that it implements the appropriate listener interface and 
register itself, as we have done in the simpler examples in this book: 

class MyApplet implements KeyListener ...  
    public void init( ) {  
        addKeyListener( this ):  
        ...  
    }  
 
    public void keyTyped(KeyEvent e) {  
        // do work  
    } 

13.5 Multithreading in Swing 

Multithreading programs need to be careful about updating Swing components. The issue arises 
because Swing has its own event-dispatching thread. If your application is changing components 
in a different thread, bad things might happen: misshapen components or race conditions. 

The fundamental rule is simple: if you need to update a Swing component from your own thread, 
do it using invokeAndWait( ) or invokeLater( ). These are static methods in the 
javax.swing.SwingUtilities class. 

public static void    
invokeLater 
(Runnable   doRun)    



Use this method to ask Swing to execute the run( ) method of the specified Runnable. 

public static void    
invokeAndWait 
(Runnable   doRun)throws InterruptedException,InvocationTargetException    

This method is just like invokeLater( ), except that it waits until the run( ) method 
has completed before returning. 

A simple example is a download progress indicator. If your application downloads a lot of data 
from the network, it should show a progress meter that indicates how much data has been 
downloaded and how much remains. You shouldn't update this meter directly from the download 
thread; instead, you should package updates in a Runnable and use invokeLater( ) or 
invokeAndWait( ). 



Chapter 14. Using Swing Components 

In the previous chapter, we discussed a number of concepts, including how Java's user interface 
facility is put together and how the larger pieces work. You should understand what components 
and containers are, how you use them to create a display, what events are, how components use 
them to communicate with the rest of your application, and what layout managers are. 

Now that we're through with the general concepts and background, we'll get to the fun stuff: how 
to do things with Swing. We will cover most of the components that the Swing package supplies, 
how to use these components in applets and applications, and how to build your own 
components. We will have lots of code and lots of pretty examples to look at. 

There's more material than fits in a single chapter. In this chapter, we'll cover all the basic user 
interface components. In the next chapter, we'll cover some of the more involved topics: text 
components, trees, tables, and creating your own components. 

14.1 Buttons and Labels 

We'll start with the simplest components: buttons and labels. Frankly, there isn't much to say 
about them. If you've seen one button, you've seen them all; and you've already seen buttons in 
the applications in Chapter 2 (HelloJava3 and HelloJava4). A button generates an 
ActionEvent when the user presses it. To receive these events, your program registers an 
ActionListener, which must implement the actionPerformed( ) method. The argument 
passed to actionPerformed( ) is the event itself. 

There's one more thing worth saying about buttons, which applies to any component that 
generates an action event. Java lets us specify an "action command" string for buttons (and other 
components, like menu items, that can generate action events). The action command is less 
interesting than it sounds. It is just a String that serves to identify the component that sent the 
event. By default, the action command of a JButton is the same as its label; it is included in 
action events, so you can use it to figure out which button an event came from. 

To get the action command from an action event, call the event's getAction-Command( ) 
method. The following code checks whether the user pressed the Yes button: 

public void actionPerformed(ActionEvent e){  
    if (e.getActionCommand( ).equals("Yes") {  
        //the user pressed "Yes"; do something  
        ...  
    }  
} 

You can change the action command by calling the button's setActionCommand( ) method. 
The following code changes button myButton's action command to "confirm": 

myButton.setActionCommand("confirm"); 

It's a good idea to get used to setting action commands explicitly; this helps to prevent your code 
from breaking when you or some other developer " internationalizes" it, or otherwise changes the 
button's label. If you rely on the button's label, your code will stop working as soon as that label 
changes; a French user might see the label Oui rather than Yes. By setting the action command, 



you eliminate one source of bugs; for example, the button myButton in the previous example will 
always generate the action command confirm, regardless of what its label says. 

Swing buttons can have an image in addition to a label. The JButton class includes constructors 
that accept an Icon object, which knows how to draw itself. You can create buttons with 
captions, images, or both. A handy class called ImageIcon takes care of loading an image for 
you and can be used to easily add an image to a button. The following example shows how this 
works: 

//file: PictureButton.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class PictureButton extends JFrame { 
 
  public PictureButton( ) { 
    super("PictureButton v1.0"); 
    setSize(200, 200); 
    setLocation(200, 200); 
     
    Icon icon = new ImageIcon("rhino.gif"); 
    JButton button = new JButton(icon); 
    button.addActionListener(new ActionListener( ) { 
      public void actionPerformed(ActionEvent ae) { 
        System.out.println("Urp!"); 
      } 
    }); 
     
    Container content = getContentPane( ); 
    content.setLayout(new FlowLayout( )); 
    content.add(button); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new PictureButton( ); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setVisible(true); 
  } 
} 

The example creates an ImageIcon from the rhino.gif file. Then a JButton is created from the 
ImageIcon. The whole thing is displayed in a JFrame. This example also shows the idiom of 
using an anonymous inner class as an ActionListener. 

There's even less to be said about JLabel components. They're just text strings or images 
housed in a component. There aren't any special events associated with labels; about all you can 
do is specify the text's alignment, which controls the position of the text within the label's display 
area. As with buttons, JLabels can be created with Icons if you want to create a picture label. 
The following code creates some labels with different options: 

// default alignment (CENTER) 
JLabel label1 = new JLabel("Lions"); 



 
// left aligned 
JLabel label2 = new JLabel("Tigers", SwingConstants.LEFT); 
 
//label with no text, default alignment 
JLabel label3 = new JLabel( ); 
 
// create image icon  
Icon icon = new ImageIcon("rhino.gif"); 
 
// create image label  
JLabel label4 = new JLabel(icon); 
 
// assigning text to label3 
label3.setText("and Bears"); 
 
// set alignment  
label3.setHorizontalAlignment(SwingConstants.RIGHT); 

The alignment constants are defined in the SwingConstants interface. 

Now we've built several labels, using a variety of constructors and several of the class's methods. 
To display the labels, just add them to a container by calling the container's add( ) method. 

The other characteristics you might like to set on labels, such as changing their font or color, are 
accomplished using the methods of the Component class, JLabel's distant ancestor. For 
example, you can call setFont( ) and setColor( ) on a label, as with any other component. 

Given that labels are so simple, why do we need them at all? Why not just draw a text string 
directly on the container object? Remember that a JLabel is a JComponent. That's important; it 
means that labels have the normal complement of methods for setting fonts and colors that we 
mentioned earlier, as well as the ability to be managed sensibly by a layout manager. Therefore, 
they're much more flexible than a text string drawn at an absolute location within a container. 

Speaking of layouts—if you use the setText( ) method to change the text of your label, the 
label's preferred size may change. But the label's container will automatically lay out its 
components when this happens, so you don't have to worry about it. 

Swing can interpret HTML-formatted text in JLabel and JButton labels. The following example 
shows how to create a button with HTML-formatted text: 

JButton button = new JButton( 
  "<html>" 
  + "S<font size=-1>MALL<font size=+0> " 
  + "C<font size=-1>APITALS"); 

14.2 Checkboxes and Radio Buttons 

A checkbox is a labeled toggle switch. Each time the user clicks it, its state toggles between 
checked and unchecked. Swing implements the checkbox as a special kind of button. Radio 
buttons are similar to checkboxes, but they are usually arranged in groups. Click on one radio 
button in the group, and the others automatically turn off. They are named for the preset buttons 
on old car radios. 



Checkboxes and radio buttons are represented by instances of JCheckBox and JRadioButton, 
respectively. Radio buttons can be tethered together using an instance of another class called 
ButtonGroup. By now you're probably well into the swing of things (no pun intended) and could 
easily master these classes on your own. We'll use an example to illustrate a different way of 
dealing with the state of components and to show off a few more things about containers. 

A JCheckBox sends ItemEvents when it's pushed. Since a checkbox is a kind of button, it also 
fires ActionEvents when it becomes checked. For something like a checkbox, we might want to 
be lazy and check on the state of the buttons only at some later time, such as when the user 
commits an action. It's like filling out a form; you can change your choices until you submit the 
form. 

The following application, DriveThrough, lets us check off selections on a fast food menu, as 
shown in Figure 14.1. DriveThrough prints the results when we press the Place Order button. 
Therefore, we can ignore all the events generated by our checkboxes and radio buttons and 
listen only for the action events generated by the regular button. 

//file: DriveThrough.java 
import java.awt.*; 
import java.awt.event.*; 
 
import javax.swing.*; 
 
public class DriveThrough { 
  public static void main(String[] args) { 
    JFrame f = new JFrame("Lister v1.0"); 
    f.setSize(300, 150); 
    f.setLocation(200, 200); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
 
    JPanel entreePanel = new JPanel( ); 
    final ButtonGroup entreeGroup = new ButtonGroup( ); 
    JRadioButton radioButton; 
    entreePanel.add(radioButton = new JRadioButton("Beef")); 
    radioButton.setActionCommand("Beef"); 
    entreeGroup.add(radioButton); 
    entreePanel.add(radioButton = new JRadioButton("Chicken")); 
    radioButton.setActionCommand("Chicken"); 
    entreeGroup.add(radioButton); 
    entreePanel.add(radioButton = new JRadioButton("Veggie", true)); 
    radioButton.setActionCommand("Veggie"); 
    entreeGroup.add(radioButton); 
     
    final JPanel condimentsPanel = new JPanel( ); 
    condimentsPanel.add(new JCheckBox("Ketchup")); 
    condimentsPanel.add(new JCheckBox("Mustard")); 
    condimentsPanel.add(new JCheckBox("Pickles")); 
     
    JPanel orderPanel = new JPanel( ); 
    JButton orderButton = new JButton("Place Order"); 
    orderPanel.add(orderButton); 
     
    Container content = f.getContentPane( ); 



    content.setLayout(new GridLayout(3, 1)); 
    content.add(entreePanel); 
    content.add(condimentsPanel); 
    content.add(orderPanel); 
     
    orderButton.addActionListener(new ActionListener( ) { 
      public void actionPerformed(ActionEvent ae) { 
        String entree =  
          entreeGroup.getSelection().getActionCommand( ); 
        System.out.println(entree + " sandwich"); 
        Component[] components = condimentsPanel.getComponents( ); 
        for (int i = 0; i < components.length; i++) { 
          JCheckBox cb = (JCheckBox)components[i]; 
          if (cb.isSelected( )) 
            System.out.println("With " + cb.getText( )); 
        } 
      } 
    }); 
     
    f.setVisible(true); 
  } 
} 

Figure 14.1. The DriveThrough application 

 

DriveThrough lays out three panels. The radio buttons in the entreePanel are tied together 
through a ButtonGroup object. We add( ) the buttons to a ButtonGroup to make them 
mutually exclusive. The ButtonGroup object is an odd animal. One expects it to be a container 
or a component, but it isn't; it's simply a helper object that allows only one RadioButton to be 
selected at a time. 

In this example, the button group forces you to choose a beef, chicken, or veggie entree, but not 
more than one. The condiment choices, which are JCheckBoxes, aren't in a button group, so you 
can request any combination of ketchup, mustard, and pickles on your sandwich. 

When the Place Order button is pushed, we receive an ActionEvent in the 
actionPerformed( ) method of our inner ActionListener. At this point, we gather the 
information in the radio buttons and checkboxes and print it. actionPerformed( ) simply 
reads the state of the various buttons. We could have saved references to the buttons in a 
number of ways; this example demonstrates two. First, we find out which entree was selected. To 
do so, we call the ButtonGroup's getSelection( ) method. This returns a ButtonModel, 
upon which we immediately call getActionCommand( ). This returns the action command as 
we set it when we created the radio buttons. The action commands for the buttons are the entrée 
names, which is exactly what we need. 



To find out which condiments were selected, we use a more complicated procedure. The problem 
is that condiments aren't mutually exclusive, so we don't have the convenience of a 
ButtonGroup. Instead, we ask the condiments JPanel for a list of its components. The 
getComponents( ) method returns an array of references to the container's child components. 
We'll use this to loop over the components and print the results. We cast each element of the 
array back to JCheckBox and call its isSelected( ) method to see if the checkbox is on or 
off. If we were dealing with different types of components in the array, we could determine each 
component's type with the instanceof operator. 

14.3 Lists and Combo Boxes 

JLists and JComboBox es are a step up on the evolutionary chain from JButtons and 
JLabels. Lists let the user choose from a group of alternatives. They can be configured to force 
the user to choose a single selection or to allow multiple choices. Usually, only a small group of 
choices are displayed at a time; a scrollbar lets the user move to the choices that aren't visible. 
The user can select an item by clicking on it. He or she can expand the selection to a range of 
items by holding down Shift and clicking on another item. To make discontinuous selections, the 
user can hold down the Control key instead of the Shift key. 

A combo box is a cross-breed between a text field and a list. It displays a single line of text 
(possibly with an image) and a downward pointing arrow at one side. If you click on the arrow, the 
combo box opens up and displays a list of choices. You can select a single choice by clicking on 
it. After a selection is made, the combo box closes up; the list disappears and the new selection is 
shown in the text field. 

Like every other component in Swing, lists and combo boxes have data models that are distinct 
from visual components. The list also has a selection model that controls how selections may be 
made on the list data. 

Lists and combo boxes are similar because they have similar data models. Each is simply an 
array of acceptable choices. This similarity is reflected in Swing, of course: the type of a 
JComboBox's data model is a subclass of the type used for a JList's data model. The next 
example demonstrates this relationship. 

The following example creates a window with a combo box, a list, and a button. The combo box 
and the list use the same data model. When you press the button, the program writes out the 
current set of selected items in the list. Figure 14.2 shows the example; the code itself follows. 

Figure 14.2. A combo box and a list using the same data model 

 
/file: Lister.java 
import java.awt.*;  
import java.awt.event.*; 



import javax.swing.*; 
 
public class Lister { 
  public static void main(String[] args) { 
    JFrame f = new JFrame("Lister v1.0"); 
    f.setSize(200, 200); 
    f.setLocation(200, 200); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
     
    // create a combo box 
    String [] items = { "uno", "due", "tre", "quattro", "cinque", 
                        "sei", "sette", "otto", "nove", "deici", 
                        "undici", "dodici" }; 
    JComboBox comboBox = new JComboBox(items); 
    comboBox.setEditable(true); 
 
    // create a list with the same data model 
    final JList list = new JList(comboBox.getModel( )); 
     
    // create a button; when it's pressed, print out 
    // the selection in the list 
    JButton button = new JButton("Per favore"); 
    button.addActionListener(new ActionListener( ) { 
      public void actionPerformed(ActionEvent ae) { 
        Object[] selection = list.getSelectedValues( ); 
        System.out.println("-----"); 
        for (int i = 0; i < selection.length; i++) 
          System.out.println(selection[i]); 
      } 
    }); 
     
    // put the controls the content pane 
    Container c = f.getContentPane( ); 
    JPanel comboPanel = new JPanel( ); 
    comboPanel.add(comboBox); 
    c.add(comboPanel, BorderLayout.NORTH); 
    c.add(new JScrollPane(list), BorderLayout.CENTER); 
    c.add(button, BorderLayout.SOUTH); 
 
    f.setVisible(true); 
  }     
} 

The combo box is created from an array of strings. This is a convenience—behind the scenes, 
the JComboBox constructor creates a data model from the strings you supply and sets the 
JComboBox to use that data model. The list is created using the data model of the combo box. 
This works because JList expects to use a ListModel for its data model, and the 
ComboBoxModel used by the JComboBox is a subclass of ListModel. 

The button's action event handler simply prints out the selected items in the list, which are 
retrieved with a call to getSelectedValues( ). This method actually returns an object array, 
not a string array. List and combo box items, like many other things in Swing, are not limited to 
text. You can use images, or drawings, or some combination of text and images. 



You might expect that selecting one item in the combo box would select the same item in the list. 
In Swing components, selection is controlled by a selection model. The combo box and the list 
have distinct selection models; after all, you can select only one item from the combo box, while 
it's possible to select multiple items from the list. Thus, while the two components share a data 
model, they have separate selection models. 

We've made the combo box editable. By default, it would not be editable: the user could choose 
only one of the items in the drop-down list. With an editable combo box, the user can type in a 
selection, as if it were a text field. Non-editable combo boxes are useful if you just want to offer a 
limited set of choices; editable combo boxes are handy when you want to accept any input but 
offer some common choices. 

There's a great class tucked away in the last example that deserves some recognition. It's 
JScrollPane . In Lister, you'll notice we created one when we added the List to the main 
window. 

JScrollPane simply wraps itself around another Component and provides scrollbars as 
necessary. The scrollbars show up if the contained Component's preferred size (as returned by 
getPreferredSize( )) is greater than the size of the JScrollPane itself. In the previous 
example, the scrollbars show up whenever the size of the List exceeds the available space. 

You can use JScrollPane to wrap any Component, including components with drawings or 
images or complex user interface panels. We'll discuss JScrollPane in more detail later in this 
chapter, and we'll use it frequently with the text components in the next chapter. 

14.4 Borders 

Any Swing component can have a decorative border. JComponent includes a method called 
setBorder( ); all you have to do is call setBorder( ), passing it an appropriate 
implementation of the Border interface. 

Swing provides many useful Border implementations in the javax.swing.border package. 
You could create an instance of one of these classes and pass it to a component's setBorder( 
) method, but there's an even simpler technique. 

The BorderFactory class can create any kind of border for you using static "factory" methods. 
Creating and setting a component's border, then, is simple: 

JLabel labelTwo = new JLabel("I have an etched border."); 
labelTwo.setBorder(BorderFactory.createEtchedBorder( )); 

Every component has a setBorder( ) method, from simple labels and buttons right up to the 
fancy text and table components we'll cover in the next chapter. 

BorderFactory is convenient, but it does not offer every option of every border type. For 
example, if you want to create a raised EtchedBorder instead of the default lowered border, 
you'll need to use EtchedBorder's constructor rather than a method in BorderFactory, like 
this: 

JLabel labelTwo = new JLabel("I have a raised etched border."); 
labelTwo.setBorder( new EtchedBorder(EtchedBorder.RAISED) ); 



The Border implementation classes are listed and briefly described here: 

BevelBorder  

This border draws raised or lowered beveled edges, giving an illusion of depth. 

SoftBevelBorder  

This border is similar to BevelBorder, but thinner. 

EmptyBorder  

Doesn't do any drawing, but does take up space. You can use it to give a component a 
little breathing room in a crowded user interface. 

EtchedBorder  

A lowered etched border gives the appearance of a rectangle that has been chiseled into 
a piece of stone. A raised etched border looks like it is standing out from the surface of 
the screen. 

LineBorder  

Draws a simple rectangle around a component. You can specify the color and width of 
the line in LineBorder's constructor. 

MatteBorder  

A souped-up version of LineBorder. You can create a MatteBorder with a certain 
color and specify the size of the border on the left, top, right, and bottom of the 
component. MatteBorder also allows you to pass in an Icon that will be used to draw 
the border. This could be an image (ImageIcon) or any other implementation of the 
Icon interface. 

TitledBorder  

A regular border with a title. TitledBorder doesn't actually draw a border; it just draws 
a title in conjunction with another border object. You can specify the locations of the title, 
its justification, and its font. This border type is particularly useful for grouping different 
sets of controls in a complicated interface. 

CompoundBorder  

A border that contains two other borders. This is especially handy if you want to enclose 
a component in an EmptyBorder and then put something decorative around it, like an 
EtchedBorder or a MatteBorder. 

The following example shows off some different border types. It's only a sampler, though; many 
more border types are available. Furthermore, the example only encloses labels with borders. 
You can put a border around any component in Swing. The example is shown in Figure 14.3; 
the source code follows. 



Figure 14.3. A bevy of borders 

 
//file: Borders.java 
import java.awt.*;  
import java.awt.event.*; 
import javax.swing.*; 
import javax.swing.border.*; 
 
public class Borders { 
  public static void main(String[] args) { 
    // create a JFrame to hold everything 
    JFrame f = new JFrame("Borders"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setSize(300, 300); 
    f.setLocation(200, 200); 
     
    // Create labels with borders. 
    int center = SwingConstants.CENTER; 
    JLabel labelOne = new JLabel("raised BevelBorder", center); 
    labelOne.setBorder( 
        BorderFactory.createBevelBorder(BevelBorder.RAISED)); 
    JLabel labelTwo = new JLabel("EtchedBorder", center); 
    labelTwo.setBorder(BorderFactory.createEtchedBorder( )); 
    JLabel labelThree = new JLabel("MatteBorder", center); 
    labelThree.setBorder( 
        BorderFactory.createMatteBorder(10, 10, 10, 10, Color.pink)); 
    JLabel labelFour = new JLabel("TitledBorder", center); 
    Border etch = BorderFactory.createEtchedBorder( ); 
    labelFour.setBorder( 
        BorderFactory.createTitledBorder(etch, "Title")); 
    JLabel labelFive = new JLabel("TitledBorder", center); 
    Border low = BorderFactory.createLoweredBevelBorder( ); 
    labelFive.setBorder( 
        BorderFactory.createTitledBorder(low, "Title", 
        TitledBorder.RIGHT, TitledBorder.BOTTOM)); 
    JLabel labelSix = new JLabel("CompoundBorder", center); 
    Border one = BorderFactory.createEtchedBorder( ); 
    Border two = 



        BorderFactory.createMatteBorder(4, 4, 4, 4, Color.blue); 
    labelSix.setBorder(BorderFactory.createCompoundBorder(one, two)); 
     
    // add components to the content pane 
    Container c = f.getContentPane( ); 
    c.setLayout(new GridLayout(3, 2)); 
    c.add(labelOne); 
    c.add(labelTwo); 
    c.add(labelThree); 
    c.add(labelFour); 
    c.add(labelFive); 
    c.add(labelSix); 
 
    f.setVisible(true); 
  }     
} 

14.5 Menus 

A JMenu is a standard pull-down menu with a fixed name. Menus can hold other menus as 
submenu items, enabling you to implement complex menu structures. In Swing, menus are first-
class components, just like everything else. You can place them wherever a component would 
go. Another class, JMenuBar , holds menus in a horizontal bar. Menu bars are real components, 
too, so you can place them wherever you want in a container: top, bottom, or middle. But in the 
middle of a container, it usually makes more sense to use a JComboBox rather than some kind of 
menu. 

Menu items may have associated images and shortcut keys; there are even menu items that look 
like checkboxes and radio buttons. Menu items are really a kind of button. Like buttons, menu 
items fire action events when they are selected. You can respond to menu items by registering 
action listeners with them. 

There are two ways to use the keyboard with menus. The first is called mnemonics . A mnemonic 
is one character in the menu name. If you hold down the Alt key and type a menu's mnemonic, 
the menu will drop down, just as if you had clicked on it with the mouse. Menu items may also 
have mnemonics. Once a menu is dropped down, you can select individual items in the same 
way. 

Menu items may also have accelerators . An accelerator is a key combination that selects the 
menu item, whether or not the menu that contains it is showing. A common example is the 
accelerator Ctrl-C, which is frequently used as a shortcut for the Copy item in the Edit menu. 

The following example demonstrates several different features of menus. It creates a menu bar 
with three different menus. The first, Utensils, contains several menu items, a submenu, a 
separator, and a Quit item that includes both a mnemonic and an accelerator. The second menu, 
Spices, contains menu items that look and act like checkboxes. Finally, the Cheese menu 
demonstrates how radio button menu items can be used. 

This application is shown in Figure 14.4 with one of its menus dropped down. Choosing Quit 
from the menu (or pressing Ctrl-Q) removes the window. Give it a try. 

//file: DinnerMenu.java 
import java.awt.*; 
import java.awt.event.*; 



import javax.swing.*; 
 
public class DinnerMenu extends JFrame { 
   
  public DinnerMenu( ) { 
    super("DinnerMenu v1.0"); 
    setSize(200, 200); 
    setLocation(200, 200); 
     
    // create the Utensils menu 
    JMenu utensils = new JMenu("Utensils"); 
    utensils.setMnemonic(KeyEvent.VK_U); 
    utensils.add(new JMenuItem("Fork")); 
    utensils.add(new JMenuItem("Knife")); 
    utensils.add(new JMenuItem("Spoon")); 
    JMenu hybrid = new JMenu("Hybrid"); 
    hybrid.add(new JMenuItem("Spork")); 
    hybrid.add(new JMenuItem("Spife")); 
    hybrid.add(new JMenuItem("Knork")); 
    utensils.add(hybrid); 
    utensils.addSeparator( ); 
 
    // do some fancy stuff with the Quit item 
    JMenuItem quitItem = new JMenuItem("Quit"); 
    quitItem.setMnemonic(KeyEvent.VK_Q); 
    quitItem.setAccelerator( 
        KeyStroke.getKeyStroke(KeyEvent.VK_Q, Event.CTRL_MASK)); 
    quitItem.addActionListener(new ActionListener( ) { 
      public void actionPerformed(ActionEvent e) { System.exit(0); } 
    }); 
    utensils.add(quitItem); 
     
    // create the Spices menu 
    JMenu spices = new JMenu("Spices"); 
    spices.setMnemonic(KeyEvent.VK_S); 
    spices.add(new JCheckBoxMenuItem("Thyme")); 
    spices.add(new JCheckBoxMenuItem("Rosemary")); 
    spices.add(new JCheckBoxMenuItem("Oregano", true)); 
    spices.add(new JCheckBoxMenuItem("Fennel")); 
     
    // create the Cheese menu 
    JMenu cheese = new JMenu("Cheese"); 
    cheese.setMnemonic(KeyEvent.VK_C); 
    ButtonGroup group = new ButtonGroup( ); 
    JRadioButtonMenuItem rbmi; 
    rbmi = new JRadioButtonMenuItem("Regular", true); 
    group.add(rbmi); 
    cheese.add(rbmi); 
    rbmi = new JRadioButtonMenuItem("Extra"); 
    group.add(rbmi); 
    cheese.add(rbmi); 
    rbmi = new JRadioButtonMenuItem("Blue"); 
    group.add(rbmi); 
    cheese.add(rbmi); 
     
    // create a menu bar and use it in this JFrame 
    JMenuBar menuBar = new JMenuBar( ); 



    menuBar.add(utensils); 
    menuBar.add(spices); 
    menuBar.add(cheese); 
    setJMenuBar(menuBar); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new DinnerMenu( ); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setVisible(true); 
  } 
} 

Figure 14.4. The DinnerMenu application 

 

Yes, we know. Quit doesn't belong in the Utensils menu. If it's driving you crazy, you can go 
back and add a File menu as an exercise when we're through. 

Creating menus is pretty simple work. You create a JMenu object, specifying the menu's title.[1] 
Then you just add JMenuItem s to the JMenu. You can also add JMenus to a JMenu; they show 
up as submenus. This is shown in the creation of the Utensils menu: 

[1] Like the text of JButtons and JLabels, menu labels can contain simple HTML. 

JMenu utensils = new JMenu("Utensils"); 
utensils.setMnemonic(KeyEvent.VK_U); 
utensils.add(new JMenuItem("Fork")); 
utensils.add(new JMenuItem("Knife")); 
utensils.add(new JMenuItem("Spoon")); 
JMenu hybrid = new JMenu("Hybrid"); 
hybrid.add(new JMenuItem("Spork")); 
hybrid.add(new JMenuItem("Spife")); 
hybrid.add(new JMenuItem("Knork")); 
utensils.add(hybrid); 

In the second line, we set the mnemonic for this menu using a constant defined in the KeyEvent 
class. 

You can add those pretty separator lines with a single call: 

utensils.addSeparator( ); 



The Quit menu item has some bells and whistles we should explain. First, we create the menu 
item and set its mnemonic, just as we did before for the Utensils menu: 

JMenuItem quitItem = new JMenuItem("Quit"); 
quitItem.setMnemonic(KeyEvent.VK_Q); 

Now we want to create an accelerator for the menu item. We do this with the help of a class 
called KeyStroke: 

quitItem.setAccelerator( 
    KeyStroke.getKeyStroke(KeyEvent.VK_Q, Event.CTRL_MASK)); 

Finally, to actually do something in response to the menu item, we register an action listener: 

quitItem.addActionListener(new ActionListener( ) { 
    public void actionPerformed(ActionEvent e) { System.exit(0); } 
}); 

Our action listener exits the application when the Quit item is selected. 

Creating the Spices menu is just as easy, except that we use JCheckBoxMenuItems instead of 
regular JMenuItems. The result is a menu full of items that behave like checkboxes. 

The next menu, Cheese , is a little more tricky. We want the items to be radio buttons, but we 
need to place them in a ButtonGroup to ensure they are mutually exclusive. Each item, then, is 
created, added to the button group, and added to the menu itself. 

The final step is to place the menus we've just created in a JMenuBar . This is simply a 
component that lays out menus in a horizontal bar. We have two options for adding it to our 
JFrame. Since the JMenuBar is a real component, we could add it to the content pane of the 
JFrame. Instead, we use a convenience method called setJMenuBar( ), which automatically 
places the JMenuBar at the top of the frame's content pane. This saves us the trouble of altering 
the layout or size of the content pane; it is adjusted to coexist peacefully with the menu bar. 

14.6 The PopupMenu Class 

One of Swing's nifty components is JPopupMenu, a menu that automatically appears when you 
press the appropriate mouse button inside of a component. (On a Windows system, for example, 
clicking the right mouse button invokes a popup menu.) Which button you press depends on the 
platform you're using; fortunately, you don't have to care—Swing figures it out for you. 

The care and feeding of JPopupMenu is basically the same as any other menu. You use a 
different constructor (JPopupMenu( )) to create it, but otherwise, you build a menu and add 
elements to it the same way. The big difference is you don't need to attach it to a JMenuBar. 
Instead, just pop up the menu whenever you need it. 

The following example, PopupColorMenu, contains three buttons. You can use a JPopupMenu 
to set the color of each button or the frame itself, depending on where you press the mouse. 
Figure 14.5 shows the example in action; the user is preparing to change the color of the bottom 
button. 

Figure 14.5. The PopupColorMenu application 



 
//file: PopUpColorMenu.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class PopUpColorMenu extends JFrame  
                            implements ActionListener { 
  JPopupMenu colorMenu; 
  Component selectedComponent; 
   
  public PopUpColorMenu( ) { 
    super("PopUpColorMenu v1.0"); 
    setSize(100, 200); 
    setLocation(200, 200); 
    addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
     
    MouseListener mouseListener = new MouseAdapter( ) { 
      public void mousePressed(MouseEvent e) { checkPopup(e); } 
      public void mouseClicked(MouseEvent e) { checkPopup(e); } 
      public void mouseReleased(MouseEvent e) { checkPopup(e); } 
      private void checkPopup(MouseEvent e) { 
        if (e.isPopupTrigger( )) { 
          selectedComponent = e.getComponent( ); 
          colorMenu.show(e.getComponent(), e.getX(), e.getY( )); 
        } 
      } 
    }; 
 
    final Container content = getContentPane( ); 
    content.setLayout(new FlowLayout( )); 
    JButton button = new JButton("Uno"); 
    button.addMouseListener(mouseListener); 
    content.add(button); 
    button = new JButton("Due"); 
    button.addMouseListener(mouseListener); 
    content.add(button); 
    button = new JButton("Tre"); 
    button.addMouseListener(mouseListener); 
    content.add(button); 
     
    colorMenu = new JPopupMenu("Color"); 
    colorMenu.add(makeMenuItem("Red")); 
    colorMenu.add(makeMenuItem("Green")); 
    colorMenu.add(makeMenuItem("Blue")); 
     



    getContentPane( ).addMouseListener(mouseListener); 
 
    setVisible(true); 
  } 
   
  public void actionPerformed(ActionEvent e) { 
    String color = e.getActionCommand( ); 
    if (color.equals("Red")) 
      selectedComponent.setBackground(Color.red); 
    else if (color.equals("Green")) 
      selectedComponent.setBackground(Color.green); 
    else if (color.equals("Blue")) 
      selectedComponent.setBackground(Color.blue); 
  } 
   
  private JMenuItem makeMenuItem(String label) { 
    JMenuItem item = new JMenuItem(label); 
    item.addActionListener( this ); 
    return item; 
  } 
 
  public static void main(String[] args) { 
    new PopUpColorMenu( ); 
  } 
} 

Because the popup menu is triggered by mouse events, we need to register a MouseListener 
for any of the components to which it applies. In this example, all three buttons and the content 
pane of the frame are eligible for the color popup menu. Therefore, we add a mouse event 
listener for all of these components explicitly. The same instance of an anonymous inner 
MouseAdapter subclass is used in each case. In this class, we override the mousePressed( 
), mouse-Released( ), and mouseClicked( ) methods to display the popup menu when 
we get an appropriate event. How do we know what an "appropriate event" is? Fortunately, we 
don't need to worry about the specifics of our user's platform; we just need to call the event's 
isPopupTrigger( ) method. If this method returns true, we know the user has done 
whatever normally displays a popup menu on his or her system. 

Once we know that the user wants to raise a popup menu, we display the popup menu by calling 
its show( ) method with the mouse event coordinates as arguments. 

If we wanted to provide different menus for different types of components or the background, 
we'd create different mouse listeners for each different kind of component. The mouse listeners 
would invoke different kinds of popup menus as appropriate. 

The only thing left is to handle the action events from the popup menu items. We use a helper 
method called makeMenuItem( ) to register the PopUpColorMenu window as an action 
listener for every item we add. The example implements ActionListener and has the required 
actionPerformed( ) method. This method reads the action command from the event, which 
is equal to the selected menu item's label by default. It then sets the background color of the 
selected component appropriately. 

14.7 The JScrollPane Class 



We used JScrollPane earlier in this chapter without explaining much about it. In this section 
we'll remedy the situation. 

A JScrollPane is a container that can hold one component. Said another way, a 
JScrollPane wraps another component. By default, if the wrapped component is larger than 
the JScrollPane itself, the JScrollPane supplies scrollbars. JScrollPane handles the 
events from the scrollbars and displays the appropriate portion of the contained component. 

Technically, JScrollPane is a Container, but it's a funny one. It has its own layout manager, 
which can't be changed. It can accommodate only one component at a time. This seems like a 
big limitation, but it isn't. If you want to put a lot of stuff in a JScrollPane, just put your 
components into a JPanel, with whatever layout manager you like, and put that panel into the 
JScrollPane. 

When you create a JScrollPane, you can specify the conditions under which its scrollbars will 
be displayed. This is called the scrollbar display policy; a separate policy is used for the horizontal 
and vertical scrollbars. The following constants can be used to specify the policy for each of the 
scrollbars: 

HORIZONTAL_SCROLLBAR_AS_NEEDED  

Displays a scrollbar only if the wrapped component doesn't fit. 

HORIZONTAL_SCROLLBAR_ALWAYS  

Always shows a scrollbar, regardless of the contained component's size. 

HORIZONTAL_SCROLLBAR_NEVER  

Never shows a scrollbar, even if the contained component won't fit. If you use this policy, 
you should provide some other way to manipulate the JScrollPane. 

VERTICAL_SCROLLBAR_AS_NEEDED  

Displays a scrollbar only if the wrapped component doesn't fit. 

VERTICAL_SCROLLBAR_ALWAYS  

Always shows a scrollbar, regardless of the contained component's size. 

VERTICAL_SCROLLBAR_NEVER  

Never shows a scrollbar, even if the contained component won't fit. If you use this policy, 
you should provide some other way to manipulate the JScrollPane. 

By default, the policies are HORIZONTAL_SCROLLBAR_AS_NEEDED and 
VERTICAL_SCROLLBAR_AS_NEEDED. 

Here's an example that uses a JScrollPane to display a large image. The application itself is 
very simple; all we do is place the image in an ImageComponent, wrap a JScrollPane around 
it, and put the JScrollPane in a JFrame's content pane. Here's the code: 



//file: ScrollPaneFrame.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class ScrollPaneFrame { 
  public static void main(String[] args) { 
    String filename = "Piazza di Spagna.jpg"; 
    if (args.length > 0) 
      filename = args[0]; 
     
    JFrame f = new JFrame("ScrollPaneFrame v1.0"); 
    f.setSize(300, 300); 
    f.setLocation(200, 200); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
 
    Image image = Toolkit.getDefaultToolkit( ).getImage(filename); 
    f.getContentPane( ).add( 
      new JScrollPane(new ImageComponent(image))); 
    f.setVisible(true); 
  } 
} 

And here's the ImageComponent. It waits for the image to load, using a MediaTracker, and 
sets its size to the size of the image. It also provides a paint( ) method to draw the image. 
This takes a single call to drawImage( ). The first argument is the image itself; the next two are 
the coordinates of the image relative to the ImageComponent; and the last is a reference to the 
ImageComponent itself (this), which serves as an image observer. (We'll discuss image 
observers in Chapter 18; for the time being, take this on faith.) 

//file: ImageComponent.java 
import java.awt.*; 
import javax.swing.*; 
 
public class ImageComponent extends JComponent { 
  Image image; 
  Dimension size; 
   
  public ImageComponent(Image image) { 
    this.image = image; 
    MediaTracker mt = new MediaTracker(this); 
    mt.addImage(image, 0); 
    try { 
      mt.waitForAll( ); 
    } 
    catch (InterruptedException e) { 
      // error ... 
    }; 
 
    size = new Dimension (image.getWidth(null), 
                          image.getHeight(null)); 
    setSize(size); 
  } 
   



  public void paint(Graphics g) { 
    g.drawImage(image, 0, 0, this); 
  } 
   
  public Dimension getPreferredSize( ) { 
    return size; 
  } 
} 

Finally, ImageComponent provides a getPreferredSize( ) method, overriding the method it 
inherits from Component. This method simply returns the image's size, which is a Dimension 
object. When you're using JScrollPane, it's important for the object you're scrolling to provide a 
reliable indication of its size. Figure 14.6 shows the ScrollPaneFrame with the 
ImageComponent. 

Figure 14.6. The ScrollPaneFrame application 

 

14.8 The JSplitPane Class 

A split pane is a special container that holds two components, each in its own sub-pane. A splitter 
bar adjusts the sizes of the two sub-panes. In a document viewer, you could use a split pane to 
show a table of contents next to a full document. 

The following example capitalizes on the ImageComponent class from the previous example. It 
displays two ImageComponents, wrapped in JScrollPanes, in either side of a JSplitPane. 
You can drag the splitter bar back and forth to adjust the sizes of the two contained components. 

//file: SplitPaneFrame.java 
import java.awt.*;  
import java.awt.event.*; 
import javax.swing.*; 
import javax.swing.border.*; 
 
public class SplitPaneFrame { 
  public static void main(String[] args) { 
    String fileOne = "Piazza di Spagna.jpg"; 
    String fileTwo = "L1-Light.jpg"; 



     
    if (args.length > 0) fileOne = args[0]; 
    if (args.length > 1) fileTwo = args[1]; 
   
    // create a JFrame to hold everything 
    JFrame f = new JFrame("SplitPaneFrame"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setSize(300, 200); 
    f.setLocation(200, 200); 
     
    Image leftImage = Toolkit.getDefaultToolkit( ).getImage(fileOne); 
    Component left = 
      new JScrollPane(new ImageComponent(leftImage)); 
    Image rightImage = Toolkit.getDefaultToolkit( ).getImage(fileTwo); 
    Component right =  
      new JScrollPane(new ImageComponent(rightImage)); 
    JSplitPane split =  
      new JSplitPane(JSplitPane.HORIZONTAL_SPLIT, left, right); 
    split.setDividerLocation(100); 
    f.getContentPane( ).add(split); 
 
    f.setVisible(true); 
  } 
} 

This example is shown in Figure 14.7. 

Figure 14.7. Using a split pane 

 

14.9 The JTabbedPane Class 

If you've ever dealt with the System control panel in Windows, you already know what a 
JTabbedPane is. It's a container with labeled tabs. When you click on a tab, a new set of 
controls is shown in the body of the JTabbedPane. In Swing, JTabbedPane is simply a 
specialized container. 

Each tab has a name. To add a tab to the JTabbedPane, simply call addTab( ). You'll need to 
specify the name of the tab as well as a component that supplies the tab's contents. Typically, it's 
a container holding other components. 



Even though the JTabbedPane only shows one set of components at a time, be aware that all 
the components on all the pages are in memory at one time. If you have components that hog 
processor time or memory, try to put them into some "sleep" state when they are not showing. 

The following example shows how to create a JTabbedPane. It adds standard Swing 
components to a first tab, named Controls. The second tab is filled with an instance of 
ImageComponent, which was presented earlier in this chapter. 

//file: TabbedPaneFrame.java 
import java.awt.*;  
import java.awt.event.*; 
import javax.swing.*; 
import javax.swing.border.*; 
 
public class TabbedPaneFrame { 
  public static void main(String[] args) { 
    // create a JFrame to hold everything 
    JFrame f = new JFrame("TabbedPaneFrame"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setSize(200, 200); 
    f.setLocation(200, 200); 
 
    JTabbedPane tabby = new JTabbedPane( ); 
     
    // create a controls pane 
    JPanel controls = new JPanel( ); 
    controls.add(new JLabel("Service:")); 
    JList list = new JList( 
        new String[] { "Web server", "FTP server" }); 
    list.setBorder(BorderFactory.createEtchedBorder( )); 
    controls.add(list); 
    controls.add(new JButton("Start")); 
     
    // create an image pane 
    String filename = "Piazza di Spagna.jpg"; 
    Image image = Toolkit.getDefaultToolkit( ).getImage(filename); 
    JComponent picture = new JScrollPane(new ImageComponent(image)); 
     
    tabby.addTab("Controls", controls); 
    tabby.addTab("Picture", picture); 
     
    f.getContentPane( ).add(tabby); 
    f.setVisible(true); 
  } 
} 

The code is not especially fancy, but the result is an impressive-looking user interface. The first 
tab is a JPanel that contains some other components, including a JList with an etched border. 
The second tab simply contains an ImageComponent wrapped in a JScrollPane. The running 
example is shown in Figure 14.8. 

Figure 14.8. Using a tabbed pane 



 

14.10 Scrollbars and Sliders 

JScrollPane is such a handy component that you may not ever need to use scrollbars by 
themselves. In fact, if you ever do find yourself using a scrollbar by itself, chances are you really 
want to use another component called a slider. 

There's not much point in describing the appearance and functionality of scrollbars and sliders. 
Instead, let's jump right in with an example that includes both components. Figure 14.9 shows a 
simple example with both a scrollbar and a slider. 

Figure 14.9. Using a scrollbar and a slider 

 

Here is the source code for this example: 

//file: Slippery.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
import javax.swing.event.*; 
 
public class Slippery extends JFrame { 
   
  public Slippery( ) { 
    super("Slippery v1.0"); 
    setSize(220, 160); 
    setLocation(200, 200); 
     
    Container content = getContentPane( ); 
     
    JPanel main = new JPanel(new GridLayout(2, 1)); 
    JPanel scrollBarPanel = new JPanel( ); 
    final JScrollBar scrollBar = 
        new JScrollBar(JScrollBar.HORIZONTAL, 0, 48, 0, 255); 



    int height = scrollBar.getPreferredSize( ).height; 
    scrollBar.setPreferredSize(new Dimension(175, height)); 
    scrollBarPanel.add(scrollBar); 
    main.add(scrollBarPanel); 
     
    JPanel sliderPanel = new JPanel( ); 
    final JSlider slider = 
        new JSlider(JSlider.HORIZONTAL, 0, 255, 128); 
    slider.setMajorTickSpacing(48); 
    slider.setMinorTickSpacing(16); 
    slider.setPaintTicks(true); 
    sliderPanel.add(slider); 
    main.add(sliderPanel); 
     
    content.add(main, BorderLayout.CENTER); 
     
    final JLabel statusLabel = 
        new JLabel("Welcome to Slippery v1.0"); 
    content.add(statusLabel, BorderLayout.SOUTH); 
     
    // wire up the event handlers 
    scrollBar.addAdjustmentListener(new AdjustmentListener( ) { 
      public void adjustmentValueChanged(AdjustmentEvent e) { 
        statusLabel.setText("JScrollBar's current value = " 
                            + scrollBar.getValue( )); 
      } 
    }); 
     
    slider.addChangeListener(new ChangeListener( ) { 
      public void stateChanged(ChangeEvent e) { 
        statusLabel.setText("JSlider's current value = " 
                            + slider.getValue( )); 
      } 
    }); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new Slippery( ); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setVisible(true); 
  } 
} 

All we've really done here is added a JScrollBar and a JSlider to our main window. If the 
user adjusts either of these components, the current value of the component is displayed in a 
JLabel at the bottom of the window. 

The JScrollBar and JSlider are both created by specifying an orientation, either 
HORIZONTAL or VERTICAL. You can also specify the minimum and maximum values for the 
components, as well as the initial value. The JScrollBar supports one additional parameter, 
the extent. The extent simply refers to what range of values is represented by the slider within the 
scroll bar. For example, in a scrollbar that runs from 0 to 255, an extent of 128 means that the 
slider will be half the width of the scrollable area of the scrollbar. 



JSlider supports the idea of tick marks, which are lines drawn at certain values along the 
slider's length. Major tick marks are slightly larger than minor tick marks. To draw tick marks, just 
specify an interval for major and minor tick marks, and then paint the tick marks: 

slider.setMajorTickSpacing(48); 
    slider.setMinorTickSpacing(16); 
    slider.setPaintTicks(true); 

JSlider also supports labeling the ticks with text strings, using the setLabel-Table( ) 
method. 

Responding to events from the two components is straightforward. The JScrollBar sends out 
AdjustmentEvents every time something happens; the JSlider fires off ChangeEvents 
when its value changes. In our simple example, we display the new value of the changed 
component in the JLabel at the bottom of the window. 

14.11 Dialogs 

A dialog is another standard feature of user interfaces. Dialogs are frequently used to present 
information to the user ("Your fruit salad is ready.") or to ask a question ("Shall I bring the car 
around?"). Dialogs are used so commonly in GUI applications that Swing includes a handy set of 
pre-built dialogs. These are accessible from static methods in the JOptionPane class. Many 
variations are possible; JOptionPane groups them into four basic types: 

message dialog  

Displays a message to the user, usually accompanied by an OK button. 

confirmation dialog  

Ask a question and displays answer buttons, usually Yes, No, and Cancel. 

input dialog  

Asks the user to type in a string. 

option dialogs  

The most general type—you pass it your own components, which are displayed in the 
dialog. 

A confirmation dialog is shown in Figure 14.10. 

Figure 14.10. Using a confirmation dialog 

 



Let's look at examples of each kind of dialog. The following code produces a message dialog: 

JOptionPane.showMessageDialog(f, "You have mail."); 

The first parameter to showMessageDialog( ) is the parent component (in this case f, an 
existing JFrame). The dialog will be centered on the parent component. If you pass null for the 
parent component, the dialog is centered in your screen. The dialogs that JOptionPane displays 
are modal, which means they block other input to your application while they are showing. 

Here's a slightly fancier message dialog. We've specified a title for the dialog and a message 
type, which affects the icon that is displayed: 

JOptionPane.showMessageDialog(f, "You are low on memory.", 
        "Apocalyptic message", JOptionPane.WARNING_MESSAGE); 

Here's how to display the confirmation dialog shown in Figure 14.10: 

int result = JOptionPane.showConfirmDialog(null, 
        "Do you want to remove Windows now?"); 

In this case, we've passed null for the parent component. Special values are returned from 
showConfirmDialog( ) to indicate which button was pressed. There's a full example below 
that shows how to use this return value. 

Sometimes you need to ask the user to type some input. The following code puts up a dialog 
requesting the user's name: 

String name = JOptionPane.showInputDialog(null, 
        "Please enter your name."); 

Whatever the user types is returned as a String, or null if the user presses the Cancel button. 

The most general type of dialog is the option dialog. You supply an array of objects that you wish 
to be displayed; JOptionPane takes care of formatting them and displaying the dialog. The 
following example displays a text label, a JTextField, and a JPasswordField. (Text 
components are described in the next chapter.) 

JTextField userField = new JTextField( ); 
JPasswordField passField = new JPasswordField( ); 
String message = "Please enter your user name and password."; 
result = JOptionPane.showOptionDialog(f, 
    new Object[] { message, userField, passField }, 
    "Login", JOptionPane.OK_CANCEL_OPTION, 
    JOptionPane.QUESTION_MESSAGE, 
    null, null, null); 

We've also specified a dialog title ("Login") in the call to showOptionDialog( ). We want OK 
and Cancel buttons, so we pass OK_CANCEL_OPTION as the dialog type. The 
QUESTION_MESSAGE argument indicates we'd like to see the question mark icon. The last three 
items are optional: an Icon, an array of different choices, and a current selection. Since the icon 
parameter is null, a default is used. If the array of choices and the current selection parameters 
were not null, JOptionPane might try to display the choices in a list or combo box. 



The following application includes all the examples we've covered: 

import javax.swing.*; 
 
public class ExerciseOptions { 
  public static void main(String[] args) { 
    JFrame f = new JFrame("ExerciseOptions v1.0"); 
    f.setSize(200, 200); 
    f.setLocation(200, 200); 
    f.setVisible(true); 
     
    JOptionPane.showMessageDialog(f, "You have mail."); 
    JOptionPane.showMessageDialog(f, "You are low on memory.", 
        "Apocalyptic message", JOptionPane.WARNING_MESSAGE); 
     
    int result = JOptionPane.showConfirmDialog(null, 
        "Do you want to remove Windows now?"); 
    switch (result) { 
      case JOptionPane.YES_OPTION: 
        System.out.println("Yes"); break; 
      case JOptionPane.NO_OPTION: 
        System.out.println("No"); break; 
      case JOptionPane.CANCEL_OPTION: 
        System.out.println("Cancel"); break; 
      case JOptionPane.CLOSED_OPTION: 
        System.out.println("Closed"); break; 
    } 
     
    String name = JOptionPane.showInputDialog(null, 
        "Please enter your name."); 
    System.out.println(name); 
     
    JTextField userField = new JTextField( ); 
    JPasswordField passField = new JPasswordField( ); 
    String message = "Please enter your user name and password."; 
    result = JOptionPane.showOptionDialog(f, 
        new Object[] { message, userField, passField }, 
        "Login", JOptionPane.OK_CANCEL_OPTION, 
        JOptionPane.QUESTION_MESSAGE, 
        null, null, null); 
    if (result == JOptionPane.OK_OPTION) 
      System.out.println(userField.getText( ) + 
          " " +  new String(passField.getPassword( ))); 
     
    System.exit(0); 
  } 
} 

14.11.1 File Selection Dialog 

A JFileChooser is a standard file-selection box. As with other Swing components, 
JFileChooser is implemented in pure Java, so it looks and acts the same on different 
platforms. 



Selecting files all day can be pretty boring without a greater purpose, so we'll exercise the 
JFileChooser in a mini-editor application. Editor provides a text area in which we can load 
and work with files. (The JFileChooser created by Editor is shown in Figure 14.11.) We'll 
stop just shy of the capability to save and let you fill in the blanks (with a few caveats): 

Figure 14.11. Using a JFileChooser 

 
import java.awt.*; 
import java.awt.event.*; 
import java.io.*; 
 
import javax.swing.*; 
 
public class Editor 
    extends JFrame 
    implements ActionListener { 
  public static void main(String[] s) { new Editor( ); } 
 
  private JEditorPane textPane = new JEditorPane( ); 
   
  public Editor( ) { 
    super("Editor v1.0"); 
    addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    Container content = getContentPane( ); 
    content.add(new JScrollPane(textPane), BorderLayout.CENTER); 
    JMenu menu = new JMenu("File"); 
    menu.add(makeMenuItem("Open")); 
    menu.add(makeMenuItem("Save")); 
    menu.add(makeMenuItem("Quit")); 
    JMenuBar menuBar = new JMenuBar( ); 
    menuBar.add(menu); 
    setJMenuBar(menuBar); 
    setSize(300, 300); 
    setLocation(200, 200); 
    setVisible(true); 
  } 
   
  public void actionPerformed(ActionEvent e) { 
    String command = e.getActionCommand( ); 
    if (command.equals("Quit")) System.exit(0); 
    else if (command.equals("Open")) loadFile( ); 
    else if (command.equals("Save")) saveFile( ); 



  } 
   
  private void loadFile ( ) { 
    JFileChooser chooser = new JFileChooser( ); 
    int result = chooser.showOpenDialog(this); 
    if (result == JFileChooser.CANCEL_OPTION) return; 
    try { 
      File file = chooser.getSelectedFile( ); 
      java.net.URL url = file.toURL( ); 
      textPane.setPage(url); 
    } 
    catch (Exception e) { 
      textPane.setText("Could not load file: " + e); 
    } 
  } 
   
  private void saveFile( ) { 
    JFileChooser chooser = new JFileChooser( ); 
    chooser.showSaveDialog(this); 
    // Save file data... 
  } 
   
  private JMenuItem makeMenuItem( String name ) { 
    JMenuItem m = new JMenuItem( name ); 
    m.addActionListener( this ); 
    return m; 
  } 
} 

Editor is a JFrame that lays itself out with a JEditorPane (which will be covered in the next 
chapter) and a pull-down menu. From the pull-down File menu, we can Open, Save, or Quit. The 
actionPerformed( ) method catches the events associated with these menu selections and 
takes the appropriate action. 

The interesting parts of Editor are the private methods loadFile( ) and saveFile( 
).loadFile( ) creates a new JFileChooser and calls its showOpen-Dialog( ) method. 

A JFileChooser does its work when the showOpenDialog( ) method is called. This method 
blocks the caller until the dialog completes its job, at which time the file chooser disappears. After 
that, we can retrieve the designated file with the getFile( ) method. In loadFile( ), we 
convert the selected File to a URL and pass it to the JEditorPane, which displays the selected 
file. As you'll learn in the next chapter, JEditorPane can display HTML and RTF files. 

You can fill out the unfinished saveFile( ) method if you wish, but it would be prudent to add 
the standard safety precautions. For example, you could use one of the confirmation dialogs we 
just looked at to prompt the user before overwriting an existing file. 

14.11.2 The Color Chooser 

Swing is chock full of goodies. JColorChooser is yet another ready-made dialog supplied with 
Swing; it allows your users to choose colors. The following very brief example shows how easy it 
is to use JColorChooser: 

import java.awt.*; 



import java.awt.event.*; 
 
import javax.swing.*; 
 
public class LocalColor { 
  public static void main(String[] args) { 
    final JFrame f = new JFrame("LocalColor v1.0"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(200, 200); 
    f.setLocation(200, 200); 
    final Container content = f.getContentPane( ); 
    content.setLayout(new GridBagLayout( )); 
    JButton button = new JButton("Change color..."); 
    content.add(button); 
     
    button.addActionListener(new ActionListener( ) { 
      public void actionPerformed(ActionEvent e) { 
        Color c = JColorChooser.showDialog(f, 
            "Choose a color", content.getBackground( )); 
        if (c != null) content.setBackground(c); 
      } 
    }); 
     
    f.setVisible(true); 
  } 
} 

This example shows a frame window with a single button. When you click on the button, a color 
chooser pops up. After you select a color, it becomes the background color of the frame window. 

Basically all we have to do is call JColorChooser's static method showDialog( ). In this 
example, we've specified a parent component, a dialog title, and an initial color value. But you 
can get away with just specifying a parent component. Whatever color the user chooses is 
returned; if the user presses the Cancel button, null is returned. 



Chapter 15. More Swing Components 

In the previous chapter, we described most of the components that Swing offers for building user 
interfaces. In this chapter, you'll find out about the rest. These include Swing's text components, 
trees, and tables. These types of components have considerable depth, but are quite easy to use 
if you accept their default options. We'll show you the easy way to use these components, and 
start to describe the more advanced features of each. The chapter ends with a brief description of 
how to implement your own components in Swing. 

15.1 Text Components 

Swing gives us sophisticated text components, from plain text entry boxes to HTML interpreters. 
For full coverage of Swing's text capabilities, see Java Swing, by Robert Eckstein, Marc Loy, and 
Dave Wood (O'Reilly & Associates). In that encyclopedic book, six meaty chapters are devoted to 
text. It's a huge subject; we'll just scratch the surface here. 

Let's begin by examining the simpler text components: JTextArea is a multiline text editor; 
JTextField is a simple, single-line text editor. Both JTextField and JTextArea derive from 
the JTextComponent class, which provides the functionality they have in common. This includes 
methods for setting and retrieving the displayed text, specifying whether the text is "editable" or 
read-only, manipulating the cursor position within the text, and manipulating text selections. 

Observing changes in text components requires an understanding of how the components 
implement the Model-View-Controller (MVC) architecture. You may recall from the last chapter 
that Swing components implement a true MVC architecture. It's in the text components that you 
first get an inkling of a clear separation between the M and VC parts of the MVC architecture. The 
model for text components is an object called a Document. When you add or remove text from a 
JTextField or a JTextArea, the corresponding Document is changed. It's the document itself, 
not the visual components, that generates text events when something changes. To receive 
notification of JTextArea changes, therefore, you register with the underlying Document, not 
with the JTextArea component itself: 

JTextArea textArea = new JTextArea( ); 
Document d = textArea.getDocument( ); 
d.addDocumentListener(someListener); 

As you'll see in an upcoming example, you can easily have more than one visual text component 
use the same underlying data model, or Document. 

In addition, JTextField components generate an ActionEvent whenever the user presses 
the Return key within the field. To get these events, implement the ActionListener interface, 
and call addActionListener( ) to register. 

The next sections contain a couple of simple applications that show you how to work with text 
areas and fields. 

15.1.1 The TextEntryBox Application 

Our first example, TextEntryBox, creates a JTextArea and ties it to a JTextField, as you 
can see in Figure 15.1. When the user hits Return in the JTextField, we receive an 
ActionEvent and add the line to the JTextArea's display. Try it out. You may have to click 



your mouse in the JTextField to give it focus before typing in it. If you fill up the display with 
lines, you can test drive the scrollbar: 

//file: TextEntryBox.java 
import java.awt.*;  
import java.awt.event.*; 
import javax.swing.*; 
  
public class TextEntryBox extends JFrame { 
   
  public TextEntryBox( ) { 
    super("TextEntryBox v1.0"); 
    setSize(200, 300); 
    setLocation(200, 200); 
     
    final JTextArea area = new JTextArea( ); 
    area.setFont(new Font("Serif", Font.BOLD, 18)); 
    area.setText("Howdy!\n"); 
    final JTextField field = new JTextField( ); 
     
    Container content = getContentPane( ); 
    content.add(new JScrollPane(area), BorderLayout.CENTER); 
    content.add(field, BorderLayout.SOUTH); 
    setVisible(true); 
    field.requestFocus( ); 
     
    field.addActionListener(new ActionListener( ) { 
      public void actionPerformed(ActionEvent ae) { 
        area.append(field.getText( ) + '\n'); 
        field.setText(""); 
      } 
    }); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new TextEntryBox( ); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setVisible(true); 
  } 
} 

Figure 15.1. The TextEntryBox application 

 



TextEntryBox is exceedingly simple; we've done a few things to make it more interesting. We 
give the text area a bigger font using Component 's setFont( ) method; fonts are discussed in 
Chapter 17. Finally, we want to be notified whenever the user presses Return in the text field, so 
we register an anonymous inner class as a listener for action events. 

Pressing Return in the JTextField generates an action event, and that's where the fun begins. 
We handle the event in the actionPerformed( ) method of our inner ActionListener 
implementation. Then we use the getText( ) and setText( ) methods to manipulate the text 
the user has typed. These methods can be used for both JTextField and JTextArea, 
because these components are derived from the JTextComponent class, and therefore have 
some common functionality. 

The event handler, actionPerformed( ), calls field.getText( ) to read the text that the 
user typed into our JTextField. It then adds this text to the JTextArea by calling 
area.append( ). Finally, we clear the text field by calling the method field.setText(""), 
preparing it for more input. 

Remember, the text components really are distinct from the text data model, the Document. 
When you call setText( ), getText( ), or append( ), these methods are shorthand for 
operations on an underlying Document. 

By default, JTextField and JTextArea are editable; you can type and edit in both text 
components. They can be changed to output-only areas by calling setEditable(false). Both 
text components also support selections. A selection is a range of text that is highlighted for 
copying and pasting in your windowing system. You select text by dragging the mouse over it; 
you can then copy and paste it into other text windows. The current text selection is returned by 
getSelected-Text( ). 

Notice how JTextArea fits neatly inside a JScrollPane. The scroll pane gives us the expected 
scrollbars and scrolling behavior if the text in the JTextArea becomes too large for the available 
space. 

15.1.2 Say the Magic Word 

Swing includes a class just for typing passwords, called JPasswordField. A JPasswordField 
behaves just like a JTextField (it's a subclass), except every character that's typed is echoed 
as a single character, typically an asterisk. Figure 15.2 shows the option dialog example that 
was presented in Chapter 14. The example includes a JTextField and a JPasswordField. 

Figure 15.2. Using a JPasswordField in a dialog 

 



The creation and use of JPasswordField is basically the same as for JTextField. If you find 
asterisks distasteful, you can tell the JPasswordField to use a different character using the 
setEchoChar( ) method. 

Normally, you would use getText( ) to retrieve the text typed into the JPasswordField. This 
method, however, is deprecated; you should use getPassword( ) instead. The 
getPassword( ) method returns a character array rather than a String object. This is done 
because character arrays are less vulnerable than Strings to discovery by memory-snooping 
password sniffer programs. If you're not that concerned, you can simply create a new String 
from the character array. Note that methods in the Java cryptographic classes accept passwords 
as character arrays, not strings, so it makes a lot of sense to pass the results of a 
getPassword( ) call directly to methods in the cryptographic classes, without ever creating a 
String. 

15.1.3 Sharing a Data Model 

Our next example shows how easy it is to make two or more text components share the same 
Document; Figure 15.3 shows what the application looks like. Anything the user types into any 
text area is reflected in all of them. All we had to do is make all the text areas use the same data 
model, like this: 

JTextArea areaFiftyOne = new JTextArea( ); 
JTextArea areaFiftyTwo = new JTextArea( ); 
areaFiftyTwo.setDocument(areaFiftyOne.getDocument( )); 
JTextArea areaFiftyThree = new JTextArea( ); 
areaFiftyThree.setDocument(areaFiftyOne.getDocument( )); 

Figure 15.3. Three views of the same data model 

 

We could just as easily make seven text areas sharing the same document, or seventy. While this 
example may not look very useful, keep in mind that you can scroll different text areas to different 
places in the same document. That's one of the beauties of putting multiple views on the same 
data—you get to examine different parts of it. Another useful technique is viewing the same data 
in different ways. You could, for example, view some tabular numerical data as both a 
spreadsheet and a pie chart. The MVC architecture that Swing uses means that it's possible to do 
this in an intelligent way, so that if numbers in a spreadsheet are updated, a pie chart that uses 
the same data will automatically be updated also. 



This example works because behind the scenes, there are a lot of events flying around. When 
you type in one of the text areas, the text area receives the keyboard events. It calls methods in 
the document to update its data. In turn, the document sends events to the other text areas telling 
them about the updates, so they can correctly display the document's new data. But you don't 
have to worry about any of this—you just tell the text areas to use the same data and Swing takes 
care of the rest: 

//file: SharedModel.java 
import java.awt.*;  
import java.awt.event.*; 
import javax.swing.*; 
  
public class SharedModel extends JFrame { 
   
  public SharedModel( ) { 
    super("SharedModel v1.0"); 
    setSize(300, 300); 
    setLocation(200, 200); 
     
    JTextArea areaFiftyOne = new JTextArea( ); 
    JTextArea areaFiftyTwo = new JTextArea( ); 
    areaFiftyTwo.setDocument(areaFiftyOne.getDocument( )); 
    JTextArea areaFiftyThree = new JTextArea( ); 
    areaFiftyThree.setDocument(areaFiftyOne.getDocument( )); 
     
    Container content = getContentPane( ); 
    content.setLayout(new GridLayout(3, 1)); 
    content.add(new JScrollPane(areaFiftyOne)); 
    content.add(new JScrollPane(areaFiftyTwo)); 
    content.add(new JScrollPane(areaFiftyThree)); 
    setVisible(true); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new SharedModel( ); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setVisible(true); 
  } 
} 

Setting up the display is simple. We use a GridLayout (discussed in the next chapter) and add 
three text areas to the layout. Then all we have to do is tell the text areas to use the same 
Document. 

15.1.4 HTML and RTF for Free 

Most user interfaces will use only two subclasses of JTextComponent. These are the simple 
JTextField and JTextArea classes that we just covered. That's just the tip of the iceberg, 
however. Swing offers sophisticated text capabilities through two other subclasses of 
JTextComponent: JEditorPane and JTextPane. 

The first of these, JEditorPane, can display HTML and RTF documents. It also fires one more 
type of event, a HyperlinkEvent. Subtypes of this event are fired off when the mouse enters, 



exits, or clicks on a hyperlink. Combined with JEditorPane's HTML display capabilities, it's very 
easy to build a simple browser. Here's one in fewer than 100 lines: 

//file: CanisMinor.java 
import java.awt.*; 
import java.awt.event.*; 
import java.net.*; 
import javax.swing.*; 
import javax.swing.event.*; 
  
public class CanisMinor extends JFrame { 
  protected JEditorPane mEditorPane; 
  protected JTextField mURLField; 
   
  public CanisMinor(String urlString) { 
    super("CanisMinor v1.0"); 
    createUI(urlString); 
    setVisible(true); 
  } 
  
  protected void createUI(String urlString) { 
    setSize(500, 600); 
    center( ); 
    Container content = getContentPane( ); 
    content.setLayout(new BorderLayout( )); 
  
    // add the URL control 
    JToolBar urlToolBar = new JToolBar( ); 
    mURLField = new JTextField(urlString, 40); 
    urlToolBar.add(new JLabel("Location:")); 
    urlToolBar.add(mURLField); 
    content.add(urlToolBar, BorderLayout.NORTH); 
     
    // add the editor pane 
    mEditorPane = new JEditorPane( ); 
    mEditorPane.setEditable(false); 
    content.add(new JScrollPane(mEditorPane), BorderLayout.CENTER); 
     
    // open the initial URL 
    openURL(urlString); 
     
    // go to a new location when enter is pressed in the URL field 
    mURLField.addActionListener(new ActionListener( ) { 
      public void actionPerformed(ActionEvent ae) { 
        openURL(ae.getActionCommand( )); 
      } 
    }); 
     
    // add the plumbing to make links work 
    mEditorPane.addHyperlinkListener(new LinkActivator( )); 
     
    // exit the application when the window is closed 
    addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
  } 



  
  protected void center( ) { 
    Dimension screen = Toolkit.getDefaultToolkit().getScreenSize( ); 
    Dimension us = getSize( ); 
    int x = (screen.width - us.width) / 2; 
    int y = (screen.height - us.height) / 2; 
    setLocation(x, y); 
  } 
   
  protected void openURL(String urlString) { 
    try { 
      URL url = new URL(urlString); 
      mEditorPane.setPage(url); 
      mURLField.setText(url.toExternalForm( )); 
    } 
    catch (Exception e) { 
      System.out.println("Couldn't open " + urlString + ":" + e); 
    } 
  } 
 
  class LinkActivator implements HyperlinkListener { 
    public void hyperlinkUpdate(HyperlinkEvent he) { 
      HyperlinkEvent.EventType type = he.getEventType( ); 
      if (type == HyperlinkEvent.EventType.ENTERED) 
        mEditorPane.setCursor( 
            Cursor.getPredefinedCursor(Cursor.HAND_CURSOR)); 
      else if (type == HyperlinkEvent.EventType.EXITED) 
        mEditorPane.setCursor(Cursor.getDefaultCursor( )); 
      else if (type == HyperlinkEvent.EventType.ACTIVATED) 
        openURL(he.getURL().toExternalForm( )); 
    } 
  } 
 
  public static void main(String[] args) { 
    String urlString = "http://www.oreilly.com/catalog/java2d/"; 
    if (args.length > 0) 
       urlString = args[0]; 
    new CanisMinor(urlString); 
  } 
} 

This browser is shown in Figure 15.4. 

Figure 15.4. The CanisMinor application, a simple web browser 



 

JEditorPane is the center of this little application. Passing a URL to setPage( ) causes the 
JEditorPane to load a new page, either from a local file or from somewhere across the Internet. 
To go to a new page, enter it in the text field at the top of the window and press Return. This fires 
an ActionEvent which sets the new page location of the JEditorPane. It can display RTF 
files, too. (RTF is the text or non-binary storage format for Microsoft Word documents.) 

Responding to hyperlinks correctly is simply a matter of responding to the HyperlinkEvents 
thrown by the JEditorPane. This behavior is encapsulated in the LinkActivator inner class. 
If the mouse enters a hyperlink area, the cursor is changed to a hand. It's changed back when the 
mouse exits a hyperlink. If the user "activates" the hyperlink by clicking on it, we set the location 
of the JEditorPane to the location given under the hyperlink. Surf away! 

Behind the scenes, something called an EditorKit handles displaying documents for the 
JEditorPane. Different kinds of EditorKits are used to display different kinds of documents. 
For HTML, the HTMLEditorKit class (in the javax.swing.text.html package) handles the 
display. Currently, this class supports HTML 3.2. Subsequent releases of the SDK will contain 
enhancements to the capabilities of HTMLEditorKit; eventually, it will support HTML 4.0. 

There's another component here that we haven't covered before—the JToolBar . This nifty 
container houses our URL text field. Initially, the JToolBar starts out at the top of the window. 
But you can pick it up by clicking on the little dotted box near its left edge, then drag it around to 



different parts of the window. You can place this toolbar at the top, left, right, or bottom of the 
window, or you can drag it outside the window entirely. It will then inhabit a window of its own. All 
this behavior comes for free from the JToolBar class. All we had to do was create a JToolBar 
and add some components to it. The JToolBar is just a container, so we add it to the content 
pane of our window to give it an initial location. 

15.1.5 Managing Text Yourself 

Swing offers one last subclass of JTextComponent that can do just about anything you want: 
JTextPane. The basic text components, JTextField and JTextArea, are limited to a single 
font in a single style. But JTextPane, a subclass of JEditorPane, can display multiple fonts 
and multiple styles in the same component. It also includes support for a cursor (caret), 
highlighting, image embedding, and other advanced features. 

We'll just take a peek at JTextPane here by creating a text pane with some styled text. 
Remember, the text itself is stored in an underlying data model, the Document. To create styled 
text, we simply associate a set of text attributes with different parts of the document's text. Swing 
includes classes and methods for manipulating sets of attributes, like specifying a bold font or a 
different color for the text. Attributes themselves are contained in a class called 
SimpleAttributeSet ; these attribute sets are manipulated with static methods in the 
StyleConstants class. For example, to create a set of attributes that specifies the color red, 
you could do this: 

SimpleAttributeSet redstyle = new SimpleAttributeSet( ); 
StyleConstants.setForeground(redstyle, Color.red); 

To add some red text to a document, you would just pass the text and the attributes to the 
document's insertString( ) method, like this: 

document.insertString(6, "Some red text", redstyle); 

The first argument to insertString( ) is an offset into the text. An exception is thrown if you 
pass in an offset that's greater than the current length of the document. If you pass null for the 
attribute set, the text is added in the JTextPane's default font and style. 

Our simple example creates several attribute sets and uses them to add plain and styled text to a 
JTextPane, as shown in Figure 15.5. 

//file: Styling.java 
import java.awt.*;  
import java.awt.event.*; 
import javax.swing.*; 
import javax.swing.text.*; 
  
public class Styling extends JFrame { 
  private JTextPane textPane; 
   
  public Styling( ) { 
    super("Styling v1.0"); 
    setSize(300, 200); 
    setLocation(200, 200); 
     
    textPane = new JTextPane( ); 



    textPane.setFont(new Font("Serif", Font.PLAIN, 24)); 
     
    // create some handy attribute sets 
    SimpleAttributeSet red = new SimpleAttributeSet( ); 
    StyleConstants.setForeground(red, Color.red); 
    StyleConstants.setBold(red, true); 
    SimpleAttributeSet blue = new SimpleAttributeSet( ); 
    StyleConstants.setForeground(blue, Color.blue); 
    SimpleAttributeSet italic = new SimpleAttributeSet( ); 
    StyleConstants.setItalic(italic, true); 
    StyleConstants.setForeground(italic, Color.orange); 
 
    // add the text 
    append("In a ", null); 
    append("sky", blue); 
    append(" full of people\nOnly some want to ", null); 
    append("fly", italic); 
    append("\nIsn't that ", null); 
    append("crazy", red); 
    append("?", null); 
     
    Container content = getContentPane( ); 
    content.add(new JScrollPane(textPane), BorderLayout.CENTER); 
    setVisible(true); 
  } 
   
  protected void append(String s, AttributeSet attributes) { 
    Document d = textPane.getDocument( ); 
    try { d.insertString(d.getLength( ), s, attributes); } 
    catch (BadLocationException ble) {} 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new Styling( ); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setVisible(true); 
  } 
} 

Figure 15.5. Using styled text in a JTextPane 

 

This example creates a JTextPane, which is saved away in a member variable. Three different 
attribute sets are created, using combinations of text styles and foreground colors. Then, using a 
helper method called append( ), text is added to the JTextPane. 



The append( ) method tacks a text String on the end of the JTextPane's document, using 
the supplied attributes. Remember that if the attributes are null, the text is displayed with the 
JTextPane's default font and style. 

You can go ahead and add your own text, if you wish. If you place the caret inside one of the 
differently styled words and type, the new text comes out in the appropriate style. Pretty cool, eh? 
You'll also notice that JTextPane gives us word-wrapping behavior for free. And since we've 
wrapped the JTextPane in a JScrollPane, we get scrolling for free, too. Swing allows you to 
do some really cool stuff without breaking a sweat. Just wait—there's plenty more to come. 

This simple example should give you some idea of what JTextPane can do. It's reasonably easy 
to build a simple word processor with JTextPane, and complex commercial-grade word 
processors are definitely possible. 

If JTextPane still isn't good enough for you, or you need some finer control over character, word, 
and paragraph layout, you can actually draw text, carets, and highlight shapes yourself. A class in 
the 2D API called TextLayout simplifies much of this work, but it's outside the scope of this 
book. For coverage of TextLayout and other advanced text drawing topics, see Java 2D 
Graphics by Jonathan Knudsen (O'Reilly & Associates). 

15.2 Trees 

One of Swing's advanced components is JTree. Trees are good for representing hierarchical 
information, like the contents of a disk drive or a company's organizational chart. As with all 
Swing components, the data model is distinct from the visual representation. This means you can 
do things like update the data model and trust that the visual component will be updated properly. 

JTree is powerful and complex. It's so complicated, in fact, that the classes that support JTree 
have their own package, javax.swing.tree. However, if you accept the defaults options for 
almost everything, JTree is very easy to use. Figure 15.6 shows a JTree running in a Swing 
application that we'll describe a little later. 

Figure 15.6. The JTree class in action 

 

15.2.1 Nodes and Models 

A tree's data model is made up of interconnected nodes. A node has a name, typically, a parent, 
and some number of children (possibly 0). In Swing, a node is represented by the TreeNode 
interface. Nodes that can be modified are represented by MutableTreeNode. A concrete 



implementation of this interface is DefaultMutableTreeNode. One node, called the root node, 
usually resides at the top of the hierarchy. 

A tree's data model is represented by the TreeModel interface. Swing provides an 
implementation of this interface called DefaultTreeModel . You can create a 
DefaultTreeModel by passing a root TreeNode to its constructor. 

You could create a TreeModel with just one node like this: 

TreeNode root = new DefaultMutableTreeNode("Root node"); 
TreeModel model = new DefaultTreeModel(root); 

Here's another example with a real hierarchy. The root node contains two nodes, Node 1 and 
Group. The Group node contains Node 2 and Node 3 as subnodes. 

MutableTreeNode root = new DefaultMutableTreeNode("Root node"); 
MutableTreeNode group = new DefaultMutableTreeNode("Group"); 
root.insert(group, 0); 
root.insert(new DefaultMutableTreeNode("Node 1"), 1); 
group.insert(new DefaultMutableTreeNode("Node 2"), 0); 
group.insert(new DefaultMutableTreeNode("Node 3"), 1); 

Once you've got your nodes organized, you can create a TreeModel in the same way as before: 

TreeModel model = new DefaultTreeModel(root); 

15.2.2 Save a Tree 

Once you have a tree model, creating a JTree is simple: 

JTree tree = new JTree(model); 

The JTree behaves like a souped-up JList. As Figure 15.6 shows, the JTree automatically 
shows nodes with no children as a sheet of paper, while nodes that contain other nodes are 
shown as folders. You can expand and collapse nodes by clicking on the little knobs to the left of 
the folder icons. You can also expand and collapse nodes by double-clicking on them. You can 
select nodes; multiple selections are possible using the Shift and Ctrl keys. And, like a JList, 
you should put a JTree in a JScrollPane if you want it to scroll. 

15.2.3 Tree Events 

A tree fires off several flavors of events. You can find out when nodes have been expanded and 
collapsed, when nodes are about to be expanded or collapsed (because the user has clicked on 
them), and when selections occur. Three distinct event listener interfaces handle this information: 
TreeExpansionListener, TreeWillExpandListener, and TreeSelectionListener. 

Tree selections are a tricky business. You can select any combination of nodes by using the 
Control key and clicking on nodes. Tree selections are described by a TreePath, which 
describes how to get from the root node to the selected nodes. 

The following example registers an event listener that prints out the last selected node: 



tree.addTreeSelectionListener(new TreeSelectionListener( ) { 
  public void valueChanged(TreeSelectionEvent e) { 
    TreePath tp = e.getNewLeadSelectionPath( ); 
    System.out.println(tp.getLastPathComponent( )); 
  } 
}); 

15.2.4 A Complete Example 

This section contains a complete example that showcases the following tree techniques: 

• Construction of a tree model, using DefaultMutableTreeNode 
• Creation and display of a JTree 
• Listening for tree selection events 
• Modifying the tree's data model while the JTree is showing 

Here's the source code for the example: 

//file: PartsTree.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
import javax.swing.event.*; 
import javax.swing.tree.*; 
 
public class PartsTree { 
  public static void main(String[] args) { 
    // create a hierarchy of nodes 
    MutableTreeNode root = new DefaultMutableTreeNode("Parts"); 
    MutableTreeNode beams = new DefaultMutableTreeNode("Beams"); 
    MutableTreeNode gears = new DefaultMutableTreeNode("Gears"); 
    root.insert(beams, 0); 
    root.insert(gears, 1); 
    beams.insert(new DefaultMutableTreeNode("1x4 black"), 0); 
    beams.insert(new DefaultMutableTreeNode("1x6 black"), 1); 
    beams.insert(new DefaultMutableTreeNode("1x8 black"), 2); 
    beams.insert(new DefaultMutableTreeNode("1x12 black"), 3); 
    gears.insert(new DefaultMutableTreeNode("8t"), 0); 
    gears.insert(new DefaultMutableTreeNode("24t"), 1); 
    gears.insert(new DefaultMutableTreeNode("40t"), 2); 
    gears.insert(new DefaultMutableTreeNode("worm"), 3); 
    gears.insert(new DefaultMutableTreeNode("crown"), 4); 
     
    // create a JFrame to hold the tree 
    JFrame f = new JFrame("PartsTree v1.0"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(200, 200); 
    f.setLocation(200, 200); 
     
    // create the JTree 
    final DefaultTreeModel model = new DefaultTreeModel(root); 
    final JTree tree = new JTree(model); 
     



    // create a text field and button to modify the data model 
    final JTextField nameField = new JTextField("16t"); 
    final JButton button = new JButton("Add a part"); 
    button.setEnabled(false); 
    button.addActionListener(new ActionListener( ) { 
      public void actionPerformed(ActionEvent e) { 
        TreePath tp = tree.getSelectionPath( ); 
        MutableTreeNode insertNode = 
            (MutableTreeNode)tp.getLastPathComponent( ); 
        int insertIndex = 0; 
        if (insertNode.getParent( ) != null) { 
          MutableTreeNode parent = 
              (MutableTreeNode)insertNode.getParent( ); 
          insertIndex = parent.getIndex(insertNode) + 1; 
          insertNode = parent; 
        } 
        MutableTreeNode node = 
            new DefaultMutableTreeNode(nameField.getText( )); 
        model.insertNodeInto(node, insertNode, insertIndex); 
      } 
    }); 
    JPanel addPanel = new JPanel(new GridLayout(2, 1)); 
    addPanel.add(nameField); 
    addPanel.add(button); 
     
    // listen for selections 
    tree.addTreeSelectionListener(new TreeSelectionListener( ) { 
      public void valueChanged(TreeSelectionEvent e) { 
        TreePath tp = e.getNewLeadSelectionPath( ); 
        button.setEnabled(tp != null); 
      } 
    }); 
     
    // put it all together 
    f.getContentPane( ).add(new JScrollPane(tree)); 
    f.getContentPane( ).add(addPanel, BorderLayout.SOUTH); 
    f.setVisible(true); 
  } 
} 

The example begins by creating a node hierarchy. The root node is called Parts. It contains two 
subnodes, Beams and Gears, as shown: 

MutableTreeNode root = new DefaultMutableTreeNode("Parts"); 
MutableTreeNode beams = new DefaultMutableTreeNode("Beams"); 
MutableTreeNode gears = new DefaultMutableTreeNode("Gears"); 
root.insert(beams, 0); 
root.insert(gears, 1); 

The Beams and Gears nodes contain a handful of items each. 

The Add a part button inserts a new item into the tree at the level of the current node, and just 
after it. You can specify the name of the new node by typing it in the text field above the button. 
To determine where the node should be added, the current selection is first obtained, in the 
anonymous inner ActionListener: 



TreePath tp = tree.getSelectionPath( ); 
MutableTreeNode insertNode = 
  (MutableTreeNode)tp.getLastPathComponent( ); 

The new node should be added to the parent node of the current node, so it ends up being a 
sibling of the current node. The only hitch here is that if the current node is the root node, it won't 
have a parent. If a parent does exist, we determine the index of the currently selected node, and 
then add the new node at the next index: 

int insertIndex = 0; 
if (insertNode.getParent( ) != null) { 
  MutableTreeNode parent = 
      (MutableTreeNode)insertNode.getParent( ); 
  insertIndex = parent.getIndex(insertNode) + 1; 
  insertNode = parent; 
} 
MutableTreeNode node = 
    new DefaultMutableTreeNode(nameField.getText( )); 
model.insertNodeInto(node, insertNode, insertIndex); 

You must add the new node to the tree's data model, using insertNodeInto( ), not to the 
MutableTableNode itself. The model notifies the JTree that it needs to update itself. 

We have another event handler in this example, one that listens for tree selection events. 
Basically, we want to enable our Add a part button only if a current selection exists: 

tree.addTreeSelectionListener(new TreeSelectionListener( ) { 
  public void valueChanged(TreeSelectionEvent e) { 
    TreePath tp = e.getNewLeadSelectionPath( ); 
    button.setEnabled(tp != null); 
  } 
}); 

When you first start this application, the button is disabled. As soon as you select something, it is 
enabled and you can add nodes to the tree with abandon. If you want to see the button disabled 
again, you can unselect everything by holding the Control key and clicking on the current 
selection. 

15.3 Tables 

Tables present information in orderly rows and columns. This is useful for presenting financial 
figures or representing data from a relational database. Like trees, tables in Swing are incredibly 
powerful. If you go with the default options, however, they're also pretty easy to use. 

The JTable class represents a visual table component. A JTable is based on a TableModel , 
one of a dozen or so supporting interfaces and classes in the javax.swing.table package. 

15.3.1 A First Stab: Freeloading 

JTable has one constructor that creates a default table model for you from arrays of data. You 
just need to supply it with the names of your column headers and a two-dimensional array of 
Objects representing the table's data. The first index selects the table's row; the second index 



selects the column. The following example shows how easy it is to get going with tables using this 
constructor: 

//file: DullShipTable.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
import javax.swing.table.*; 
 
public class DullShipTable { 
  public static void main(String[] args) { 
    // create some tabular data 
    String[] headings =  
      new String[] {"Number", "Hot?", "Origin", 
                    "Destination", "Ship Date", "Weight" }; 
    Object[][] data = new Object[][] { 
      { "100420", Boolean.FALSE, "Des Moines IA", "Spokane WA", 
          "02/06/2000", new Float(450) }, 
      { "202174", Boolean.TRUE, "Basking Ridge NJ", "Princeton NJ",  
          "05/20/2000", new Float(1250) }, 
      { "450877", Boolean.TRUE, "St. Paul MN", "Austin TX", 
          "03/20/2000", new Float(1745) }, 
      { "101891", Boolean.FALSE, "Boston MA", "Albany NY", 
          "04/04/2000", new Float(88) } 
    }; 
 
    // create a JFrame to hold the table 
    JFrame f = new JFrame("DullShipTable v1.0"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(500, 200); 
    f.setLocation(200, 200); 
     
    // create the data model and the JTable 
    JTable table = new JTable(data, headings); 
     
    // put it all together 
    f.getContentPane( ).add(new JScrollPane(table)); 
    f.setVisible(true); 
  } 
} 

This small application produces the display shown in Figure 15.7. 

Figure 15.7. A rudimentary JTable 

 



For very little typing, we've gotten some pretty impressive stuff. Here are a few things that come 
for free: 

Column headings  

The JTable has automatically formatted the column headings differently than the table 
cells. It's clear that they are not part of the table's data area. 

Cell overflow  

If a cell's data is too long to fit in the cell, it is automatically truncated and shown with an 
ellipses (...). This is shown in the "Origin" cell in the first two rows in Figure 15.7. 

Row selection  

You can click on any cell in the table to select its entire row. This behavior is controllable; 
you can select single cells, entire rows, entire columns, or some combination of these. To 
configure the JTable's selection behavior, use the setCellSelectionEnabled( ), 
setColumnSelectionAllowed( ), and set-RowSelectionAllowed( ) methods. 

Cell editing  

Double-clicking on a cell opens it for editing; you'll get a little cursor in the cell. You can 
type directly into the cell to change the cell's data. 

Column sizing  

If you position the mouse cursor between two column headings, you'll get a little left-right 
arrow cursor. Click and drag to change the size of the column to the left. Depending on 
how the JTable is configured, the other columns may also change size. The resizing 
behavior is controlled with the setAutoResizeMode( ) method. 

Column reordering  

If you click and drag on a column heading, you can move the entire column to another 
part of the table. 

Play with this for a while; it's fun. 

15.3.2 Round Two: Creating a Table Model 

JTable is a very powerful component. You get a lot of very nice behavior for free. However, the 
default settings are not quite what we wanted for this simple example. In particular, we intended 
the table entries to be read-only; they should not be editable. Also, we'd like entries in the "Hot?" 
column to be checkboxes instead of words. Finally, it would be nice if the "Weight" column were 
formatted appropriately for numbers rather than for text. 

To achieve more flexibility with JTable, we'll write our own data model by implementing the 
TableModel interface. Fortunately, Swing makes this easy by supplying a class that does most 
of the work, AbstractTableModel . To create a table model, we'll just subclass 
AbstractTableModel and override whatever behavior we want to change. 



At a minimum, all AbstractTableModel subclasses have to define the following three 
methods. 

public int  
getRowCount 
( )  
public int  
getColumnCount 
( )  

These methods return the number of rows and columns in this data model. 

public Object    
getValueAt 
(int   row, int   column)    

This method returns the value for the given cell. 

When the JTable needs data values, it calls the getValueAt( ) method in the table model. To 
get an idea of the total size of the table, JTable calls the getRowCount( ) and 
getColumnCount( ) methods in the table model. 

A very simple table model looks like this: 

public static class ShipTableModel extends AbstractTableModel { 
  private Object[][] data = new Object[][] { 
    { "100420", Boolean.FALSE, "Des Moines IA", "Spokane WA", 
        "02/06/2000", new Float(450) }, 
    { "202174", Boolean.TRUE, "Basking Ridge NJ", "Princeton NJ",  
        "05/20/2000", new Float(1250) }, 
    { "450877", Boolean.TRUE, "St. Paul MN", "Austin TX", 
        "03/20/2000", new Float(1745) }, 
    { "101891", Boolean.FALSE, "Boston MA", "Albany NY", 
        "04/04/2000", new Float(88) } 
  }; 
 
  public int getRowCount( ) { return data.length; } 
  public int getColumnCount( ) { return data[0].length; } 
 
  public Object getValueAt(int row, int column) { 
    return data[row][column]; 
  } 
} 

We'd like to use the same column headings we used in the previous example. The table model 
supplies these through a method called getColumnName( ). We could add column headings to 
our simple table model like this: 

private String[] headings = new String[] { 
  "Number", "Hot?", "Origin", "Destination", "Ship Date", "Weight" 
}; 
 
public String getColumnName(int column) { 
  return headings[column]; 



} 

By default, AbstractTableModel makes all its cells non-editable, which is what we wanted. No 
changes need to be made for this. 

The final modification is to have the "Hot?" column and the "Weight" column show up formatted 
specially. To do this, we give our table model some knowledge about the column types. JTable 
automatically generates checkbox cells for Boolean column types and specially formatted 
number cells for Number types. To give the table model some intelligence about its column types, 
we override the getColumnClass( ) method. The JTable calls this method to determine the 
data type of each column. It may then represent the data in a special way. This table model 
returns the class of the item in the first row of its data: 

public Class getColumnClass(int column) { 
  return data[0][column].getClass( ); 
} 

That's really all there is to do. The following complete example illustrates how you can use your 
own table model to create a JTable, using the techniques just described. The running 
application is shown in Figure 15.8. 

//file: ShipTable.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
import javax.swing.table.*; 
 
public class ShipTable { 
  public static class ShipTableModel extends AbstractTableModel { 
    private String[] headings = new String[] { 
      "Number", "Hot?", "Origin", "Destination", "Ship Date", "Weight" 
    }; 
    private Object[][] data = new Object[][] { 
      { "100420", Boolean.FALSE, "Des Moines IA", "Spokane WA", 
          "02/06/2000", new Float(450) }, 
      { "202174", Boolean.TRUE, "Basking Ridge NJ", "Princeton NJ",  
          "05/20/2000", new Float(1250) }, 
      { "450877", Boolean.TRUE, "St. Paul MN", "Austin TX", 
          "03/20/2000", new Float(1745) }, 
      { "101891", Boolean.FALSE, "Boston MA", "Albany NY", 
          "04/04/2000", new Float(88) } 
    }; 
     
    public int getRowCount( ) { return data.length; } 
    public int getColumnCount( ) { return data[0].length; } 
 
    public Object getValueAt(int row, int column) { 
      return data[row][column]; 
    } 
 
    public String getColumnName(int column) { 
      return headings[column]; 
    } 
 
    public Class getColumnClass(int column) { 



      return data[0][column].getClass( ); 
    } 
  } 
 
  public static void main(String[] args) { 
    // create a JFrame to hold the table 
    JFrame f = new JFrame("ShipTable v1.0"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(500, 200); 
    f.setLocation(200, 200); 
     
    // create the data model and the JTable 
    TableModel model = new ShipTableModel( ); 
    JTable table = new JTable(model); 
     
    table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF); 
     
    // put it all together 
    f.getContentPane( ).add(new JScrollPane(table)); 
    f.setVisible(true); 
  } 
} 

Figure 15.8. Customizing a table 

 

15.3.3 Round Three: A Simple Spreadsheet 

To illustrate just how powerful and flexible the separation of the data model from the GUI can be, 
we'll show a more complex model. In the following example, we'll implement a very slim but 
functional spreadsheet (see Figure 15.9) using almost no customization of the JTable. All of 
the data processing is in a TableModel called SpreadSheetModel. 

Our spreadsheet will do the expected stuff—allowing you to enter numbers or mathematical 
expression like (A1*B2)+C3 into each cell. All of the cell editing and updating is driven by the 
standard JTable. We implement the methods necessary to set and retrieve cell data. Of course 
we don't do any real validation here, so it's easy to break our table. (For example, there is no 
check for circular dependencies, which may be undesirable.) 

As you will see, the bulk of the code in this example is in the inner class used to parse the value 
of the equations in the cells. If you don't find this part interesting you might want to skip ahead. 
But if you have never seen an example of this kind of parsing before, we think you will find it to be 
very cool. Through the magic of recursion and Java's powerful String manipulation, it will take 
us only about fifty lines of code to implement a parser capable of handling basic arithmetic with 
arbitrarily nested parentheses.[1]  



[1] You may need to double-click on a cell to edit it. 

Figure 15.9. A simple spreadsheet 

 

Here is the code: 

//file: SpreadsheetModel.java 
import java.util.StringTokenizer; 
import javax.swing.*; 
import javax.swing.table.AbstractTableModel; 
import java.awt.event.*; 
 
public class SpreadsheetModel extends AbstractTableModel { 
  Expression [][] data; 
 
  public SpreadsheetModel( int rows, int cols ) {  
    data = new Expression [rows][cols]; 
  } 
   
  public void setValueAt(Object value, int row, int col) { 
    data[row][col] = new Expression( (String)value ); 
    fireTableDataChanged( ); 
  } 
 
  public Object getValueAt( int row, int col ) { 
    if ( data[row][col] != null ) 
      try { return data[row][col].eval( ) + ""; } 
      catch ( BadExpression e ) { return "Error"; } 
    return ""; 
  } 
  public int getRowCount( ) { return data.length; } 
  public int getColumnCount( ) { return data[0].length; } 
  public boolean isCellEditable(int row, int col) { return true; } 
   
  class Expression { 
    String text; 
    StringTokenizer tokens; 
    String token; 
     
    Expression( String text ) { this.text = text.trim( ); } 
     
    float eval( ) throws BadExpression { 
      tokens = new StringTokenizer( text, " */+-( )", true ); 
      try { return sum( ); } 
      catch ( Exception e ) { throw new BadExpression( ); } 
    } 



     
    private float sum( ) { 
      float value = term( ); 
      while( more( ) && match("+-") ) 
        if ( match("+") ) { consume(); value = value + term( ); } 
        else { consume(); value = value - term( ); } 
      return value; 
    } 
    private float term( ) { 
      float value = element( ); 
      while( more( ) && match( "*/") )  
        if ( match("*") ) { consume(); value = value * element( ); } 
        else { consume(); value = value / element( ); } 
      return value; 
    } 
    private float element( ) { 
      float value; 
      if ( match( "(") ) { consume(); value = sum( ); }  
      else { 
        String svalue; 
        if ( Character.isLetter( token( ).charAt(0) ) ) { 
        int col = findColumn( token( ).charAt(0) + "" ); 
        int row = Character.digit( token( ).charAt(1), 10 ); 
        svalue = (String)getValueAt( row, col ); 
      } else  
        svalue = token( ); 
        value = Float.valueOf( svalue ).floatValue( );; 
      } 
      consume( ); // ")" or value token 
      return value; 
    } 
    private String token( ) { 
      if ( token == null )  
        while ( (token=tokens.nextToken( )).equals(" ") );  
      return token; 
    } 
    private void consume( ) { token = null; } 
    private boolean match( String s ) { return s.indexOf( token( ) )!=-
1; } 
    private boolean more() { return tokens.hasMoreTokens( ); } 
  } 
   
  class BadExpression extends Exception { } 
   
  public static void main( String [] args ) { 
    JFrame frame = new JFrame("Excelsior!"); 
    frame.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    JTable table = new JTable( new SpreadsheetModel(15, 5) ); 
    table.setPreferredScrollableViewportSize( 
        table.getPreferredSize( ) ); 
    table.setCellSelectionEnabled(true); 
    frame.getContentPane( ).add( new JScrollPane( table ) ); 
    frame.pack(); frame.show( ); 
  } 
} 



Our model extends AbstractTableModel and overrides just a few methods. As you can see, 
our data is stored in a two-dimensional array of Expression objects. The setValueAt( ) 
method of our model creates Expression objects from the strings typed by the user and stores 
them in the array. The getValueAt( ) method returns a value for a cell by calling the 
expression's eval( ) method. If the user enters some invalid text in a cell, a BadExpression 
exception is thrown and the word "error" is placed in the cell as a value. The only other methods 
of TableModel that we must override are getRowCount( ), getColumnCount( ) and 
isCellEditable( ) to determine the dimensions of the spreadsheet and to allow the user to 
edit the fields. That's it! 

Now on to the good stuff. We'll employ our old friend StringTokenizer to read the expression 
string as separate values and the mathematical symbols +-*/( ) one by one. These tokens will 
then be processed by the three parser methods: sum( ), term( ), and element( ). The 
methods call one another generally in that order (from the top down), but it might be easier to 
read them in reverse to see what's happening. 

At the bottom level, element( ) reads individual numeric values or cell names, e.g., 5.0 or B2. 
Above that, the term( ) method operates on the values supplied by element( ) and applies 
any multiplication or division operations. And at the top, sum( ) operates on the values that are 
returned by term( ) and applies addition or subtraction to them. If the element( ) method 
encounters parentheses, it makes a call to sum( ) to handle the nested expression. Eventually 
the nested sum will return (possibly after further recursion) and the parenthesized expression will 
have been reduced to a single value, which is returned by element( ). The magic of recursion 
has untangled the nesting for us. The other small piece of magic here is in the ordering of the 
three parser methods. Having sum( ) call term( ) and term( ) call element( ) imposes 
the precedence of operators; i.e., "atomic" values are parsed first (at the bottom), then 
multiplications happen, and finally addition or subtraction of terms is applied. 

The grammar parsing relies on four simple helper methods; token( ), consume( ), match( 
), and more( ) make the code more manageable. token( ) calls the string tokenizer to get 
the next value and match( ) compares it with a specified value. consume( ) is used to move 
to the next token, and more( ) indicates when the final token has been processed. 

15.4 Desktops 

At this point, you might be thinking that there's nothing more that Swing could possibly do. But it 
just keeps getting better. If you've ever wished that you could have windows within windows in 
Java, Swing now makes it possible with JDesktopPane and JInternalFrame. Figure 15.10 
shows how this works. 

Figure 15.10. Using internal frames on a JDesktopPane 



 

You get a lot of behavior for free from JInternalFrame. Internal frames can be moved by 
clicking and dragging the title bar. They can be resized by clicking and dragging on the window's 
borders. Internal frames can be iconified, which means reducing them to a small icon 
representation on the desktop. Internal frames may also be made to fit the entire size of the 
desktop (maximized). To you, the programmer, the internal frame is just a kind of special 
container. You can put your application's data inside an internal frame. 

The following brief example shows how to create the windows shown in Figure 15.10. 

//file: Desktop.java 
import java.awt.*;  
import java.awt.event.*; 
import javax.swing.*; 
import javax.swing.border.*; 
 
public class Desktop { 
  public static void main(String[] args) { 
    // create a JFrame to hold everything 
    JFrame f = new JFrame("Desktop"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setSize(300, 300); 
    f.setLocation(200, 200); 
 
    JDesktopPane desktop = new JDesktopPane( ); 
    for (int i = 0; i < 5; i++) { 
      JInternalFrame internal = 
          new JInternalFrame("Frame " + i, true, true, true, true); 
      internal.setSize(180, 180); 
      internal.setLocation(i * 20, i * 20); 
      internal.setVisible(true); 
      desktop.add(internal); 
    } 
     
    f.setContentPane(desktop); 
    f.setVisible(true); 
  } 
} 



All we've done here is to create a JDesktopPane and add internal frames to it. When each 
JInternalFrame is constructed, we specify a window title. The four true values passed in the 
constructor specify that the new window should be resizable, closable, maximizable, and 
iconifiable. 

JInternalFrames fire off their own set of events. However, InternalFrameEvent and 
InternalFrameListener are just like WindowEvent and WindowListener, with the names 
changed. If you want to hear about a JInternalFrame closing, just register an 
InternalFrameListener and define the internal-FrameClosing( ) method. This is just 
like defining the windowClosing( ) method for a JFrame. 

15.5 Pluggable Look-and-Feel 

We mentioned before that Swing's peerless components can easily change their appearance, like 
master spies or thespians. Generally, different kinds of components have appearances that are 
similar in some way. For example, they probably use the same font and the same basic color 
scheme. The collection of appearances for different components is called a look-and-feel (L&F). 

Part of the job of designing a GUI for an operating system is designing the L&F. MacOS, 
therefore, has its own distinctive L&F, as does Windows. Java 2 offers not one, not two, but three 
different L&F schemes for Swing components. If you're adept at graphic design, you can write 
your own L&F schemes and easily convince Swing to use them. This chameleon-like ability to 
change appearance is called pluggable look-and-feel, sometimes abbreviated PLAF. 

Seeing is believing. Here's an example that creates a handful of Swing components. Menu items 
allow you to change the L&F dynamically, as the application is running: 

//file: QuickChange.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
  
public class QuickChange extends JFrame { 
   
  public QuickChange( ) { 
    super("QuickChange v1.0"); 
    createUI( ); 
    setVisible(true); 
  } 
  
  protected void createUI( ) { 
    setSize(300, 200); 
    setLocation(200, 200); 
 
    // create a simple File menu 
    JMenu file = new JMenu("File", true); 
    JMenuItem quit = new JMenuItem("Quit"); 
    file.add(quit); 
    quit.addActionListener(new ActionListener( ) { 
      public void actionPerformed(ActionEvent e) { System.exit(0); } 
    }); 
     
    // create the Look & Feel menu 
    JMenu lnf = new JMenu("Look & Feel", true); 



    ButtonGroup buttonGroup = new ButtonGroup( ); 
    final UIManager.LookAndFeelInfo[] info = 
        UIManager.getInstalledLookAndFeels( ); 
    for (int i = 0; i < info.length; i++) { 
      JRadioButtonMenuItem item = new 
          JRadioButtonMenuItem(info[i].getName( ), i == 0); 
      final String className = info[i].getClassName( ); 
      item.addActionListener(new ActionListener( ) { 
        public void actionPerformed(ActionEvent ae) { 
          try { UIManager.setLookAndFeel(className); } 
          catch (Exception e) { System.out.println(e); } 
          SwingUtilities.updateComponentTreeUI(QuickChange.this); 
        } 
      }); 
      buttonGroup.add(item); 
      lnf.add(item); 
    } 
 
    // add the menu bar 
    JMenuBar mb = new JMenuBar( ); 
    mb.add(file); 
    mb.add(lnf); 
    setJMenuBar(mb); 
 
    // add some components 
    JPanel jp = new JPanel( ); 
    jp.add(new JCheckBox("JCheckBox")); 
    String[] names = 
      new String[] { "Tosca", "Cavaradossi", "Scarpia", 
                     "Angelotti", "Spoletta", "Sciarrone", 
                     "Carceriere", "Il sagrestano", "Un pastore" }; 
    jp.add(new JComboBox(names)); 
    jp.add(new JButton("JButton")); 
    jp.add(new JLabel("JLabel")); 
    jp.add(new JTextField("JTextField")); 
    JPanel main = new JPanel(new GridLayout(1, 2)); 
    main.add(jp); 
    main.add(new JScrollPane(new JList(names))); 
    setContentPane(main); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new QuickChange( ); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setVisible(true); 
  } 
} 

The interesting part of this application is creating a menu of the available L& Fs. First, we ask a 
class called UIManager to tell us all about the available L&Fs on our computer: 

final UIManager.LookAndFeelInfo[] info = 
        UIManager.getInstalledLookAndFeels( ); 



Information about L&Fs is returned as instances of UIManager.LookAndFeelInfo. Despite 
the long name, there's not much to this class—it just associates a name, like "Metal," and the 
name of the class that implements the L&F, like javax.swing.plaf.metal.MetalLookAndFeel. In the 
QuickChange example, we create a menu item from each L&F name. If the menu item is 
selected, we tell the UIManager to use the selected L&F class. Then, to make sure all the 
components are redrawn with the new L&F, we call a static method in the SwingUtilities 
class called updateComponentTreeUI( ). 

The regular SDK includes three L&Fs, one that resembles Windows, one that resembles Motif, 
and an entirely new L&F called Metal. Metal is used by default; you've been staring at it through 
all the examples in this chapter and the last chapter. 

If you're running Swing on MacOS, there's a MacOS L&F you can install and use. It does not, 
however, run on any other platforms. 

15.6 Creating Custom Components 

In this chapter and the previous chapter, we've worked with many different user interface objects 
and made a lot of new classes that are sort of like components. Our new classes do one 
particular thing well; a number of them can be added to applets or other containers just like the 
standard Swing components; and several of them are lightweight components that use system 
resources efficiently because they don't rely on a peer. But we haven't created new components; 
we've just used Swing's impressive repertoire of components as building blocks. In this section, 
we'll create an entirely new component, a dial. 

Up until now, our new classes still haven't really been components. If you think about it, all our 
classes have been fairly self-contained; they know everything about what to do and don't rely on 
other parts of the program to do much processing. Therefore, they are overly specialized. Our 
menu example created a DinnerFrame class that had a menu of dinner options, but it included 
all the processing needed to handle the user's selections. If we wanted to process the selections 
differently, we'd have to modify the class. A true component separates the detection of user 
choices from the processing of those choices. It lets the user take some action and then calls 
another part of the program to process the action. 

15.6.1 Generating Events 

So we need a way for our new classes to communicate with other parts of the program. Since we 
want our new classes to be components, they should communicate the way components 
communicate: by generating event objects and sending those events to listeners. So far, we've 
written a lot of code that listened for events but haven't seen any examples that generated its own 
custom events. 

Generating events sounds like it ought to be difficult, but it isn't. You can either create new kinds 
of events by subclassing java.util.EventObject, or use one of the standard event types. In 
either case, you need to register listeners for your events and provide a means to deliver events 
to your listeners. Swing's JComponent class provides a protected member variable, 
listenerList, that you can use to keep track of event listeners. It's an instance of 
EventListenerList; basically it acts like the maître d' at a restaurant, keeping track of all 
event listeners, sorted by type. 

Often, you won't event need to worry about creating a custom event type. JComponent has 
methods that support firing off PropertyChangeEvents whenever one of the component's 



properties changes. The example we'll look at next uses this infrastructure to fire 
PropertyChangeEvents whenever a value changes. 

15.6.2 A Dial Component 

The standard Swing classes don't have a component that's similar to an old fashioned dial—for 
example, the volume control on your radio. In this section, we implement a Dial class. The dial 
has a value that can be adjusted by clicking and dragging to "twist" the dial. As the value of the 
dial changes, DialEvents are fired off by the component. The dial can be used just like any 
other Java component. We even have a custom DialListener interface that matches the 
DialEvent class. Figure 15.11 shows what the dial looks like; it is followed by the Dial code. 

Figure 15.11. The Dial component 

 
//file: Dial.java 
import java.awt.*; 
import java.awt.event.*; 
import java.beans.*; 
import java.util.*; 
import javax.swing.*; 
 
public class Dial extends JComponent { 
  int minValue, value, maxValue, radius; 
   
  public Dial( ) { this(0, 100, 0); } 
   
  public Dial(int minValue, int maxValue, int value) { 
    this.minValue = minValue;  
    this.maxValue = maxValue; 
    this.value = value; 
    setForeground(Color.lightGray); 
 
    addMouseListener(new MouseAdapter( ) { 
      public void mousePressed(MouseEvent e) { spin(e); } 
    }); 
    addMouseMotionListener(new MouseMotionAdapter( ) { 
      public void mouseDragged(MouseEvent e) { spin(e); } 
    }); 
  } 
   
  protected void spin(MouseEvent e) { 
    int y = e.getY( ); 



    int x = e.getX( ); 
    double th = Math.atan((1.0 * y - radius) / (x - radius)); 
    int value=((int)(th / (2 * Math.PI) * (maxValue - minValue))); 
    if (x < radius) 
      setValue(value + maxValue / 2); 
    else if (y < radius) 
      setValue(value + maxValue); 
    else 
      setValue(value); 
  } 
 
  public void paintComponent(Graphics g) { 
    Graphics2D g2 = (Graphics2D)g; 
    int tick = 10; 
    radius = getSize( ).width / 2 - tick; 
    g2.setPaint(getForeground().darker( )); 
    g2.drawLine(radius * 2 + tick / 2, radius, 
        radius * 2 + tick, radius); 
    g2.setStroke(new BasicStroke(2)); 
    draw3DCircle(g2, 0, 0, radius, true); 
    int knobRadius = radius / 7; 
    double th = value * (2 * Math.PI) / (maxValue - minValue); 
    int x = (int)(Math.cos(th) * (radius - knobRadius * 3)), 
    y = (int)(Math.sin(th) * (radius - knobRadius * 3)); 
    g2.setStroke(new BasicStroke(1)); 
    draw3DCircle(g2, x + radius - knobRadius, 
                 y + radius - knobRadius, knobRadius, false ); 
  } 
 
  private void draw3DCircle( Graphics g, int x, int y, 
                             int radius, boolean raised) { 
    Color foreground = getForeground( ); 
    Color light = foreground.brighter( ); 
    Color dark = foreground.darker( ); 
    g.setColor(foreground); 
    g.fillOval(x, y, radius * 2, radius * 2); 
    g.setColor(raised ? light : dark); 
    g.drawArc(x, y, radius * 2, radius * 2, 45, 180); 
    g.setColor(raised ? dark : light); 
    g.drawArc(x, y, radius * 2, radius * 2, 225, 180); 
  } 
 
  public Dimension getPreferredSize( ) { 
    return new Dimension(100, 100); 
  } 
 
  public void setValue(int value) { 
    firePropertyChange( "value", this.value, value ); 
    this.value = value; 
    repaint( ); 
    fireEvent( ); 
  } 
  public int getValue( )  { return value; } 
  public void setMinimum(int minValue)  { this.minValue = minValue; } 
  public int getMinimum( )  { return minValue; } 
  public void setMaximum(int maxValue)  { this.maxValue = maxValue; } 
  public int getMaximum( )  { return maxValue; } 



 
  public void addDialListener(DialListener listener) { 
    listenerList.add( DialListener.class, listener ); 
  } 
  public void removeDialListener(DialListener listener) { 
    listenerList.remove( DialListener.class, listener ); 
  } 
 
  void fireEvent( ) { 
    Object[] listeners = listenerList.getListenerList( ); 
    for ( int i = 0; i < listeners.length; i += 2 ) 
      if ( listeners[i] == DialListener.class ) 
        ((DialListener)listeners[i + 1]).dialAdjusted(  
          new DialEvent(this, value) ); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("Dial v1.0"); 
    f.addWindowListener( new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(150, 150); 
     
    final JLabel statusLabel = new JLabel("Welcome to Dial v1.0"); 
    final Dial dial = new Dial( ); 
    JPanel dialPanel = new JPanel( ); 
    dialPanel.add(dial); 
    f.getContentPane( ).add(dialPanel, BorderLayout.CENTER); 
    f.getContentPane( ).add(statusLabel, BorderLayout.SOUTH); 
     
    dial.addDialListener(new DialListener( ) { 
      public void dialAdjusted(DialEvent e) { 
        statusLabel.setText("Value is " + e.getValue( )); 
      } 
    }); 
    f.setVisible( true ); 
  } 
} 

Here's DialEvent, a simple subclass of java.util.EventObject: 

//file: DialEvent.java 
import java.awt.*; 
 
public class DialEvent extends java.util.EventObject { 
    int value; 
 
    DialEvent( Dial source, int value ) { 
        super( source ); 
        this.value = value; 
    } 
 
    public int getValue( ) { 
        return value; 
    } 
} 



Finally, here's the code for DialListener: 

//file: DialListener.java 
public interface DialListener extends java.util.EventListener { 
    void dialAdjusted( DialEvent e ); 
} 

Let's start from the top of the Dial class. We'll focus on the structure and leave you to figure out 
the trigonometry on your own. 

Dial's main( ) method demonstrates how to use the dial to build a user interface. It creates a 
Dial and adds it to a JFrame. Then main( ) registers a dial listener on the dial. Whenever a 
DialEvent is received, the value of the dial is examined and displayed in a JLabel at the 
bottom of the frame window. 

The constructor for the Dial class stores the dial's minimum, maximum, and current values; a 
default constructor provides a minimum of 0, a maximum of 100, and a current value of 0. The 
constructor sets the foreground color of the dial and registers listeners for mouse events. If the 
mouse is pressed or dragged, Dial's spin( ) method is called to update the dial's value. 
spin( ) performs some basic trigonometry to figure out what the new value of the dial should 
be. 

paintComponent( ) and draw3DCircle( )do a lot of trigonometry to figure out how to 
display the dial. draw3DCircle( ) is a private helper method that draws a circle that appears 
either raised or depressed; we use this to make the dial look three-dimensional. 

The next group of methods provides ways to retrieve or change the dial's current setting and the 
minimum and maximum values. The important thing to notice here is the pattern of "getter" and 
"setter" methods for all of the important values used by the Dial. We will talk more about this in 
Chapter 19. Also, notice that the setValue( ) method does two important things: it repaints 
the component to reflect the new value and fires an event signifying the change. 

If you examine setValue( ) closely, you'll notice that Dial actually fires off two events when 
its value changes. The first of these is a PropertyChangeEvent, a standard event type in the 
Java Beans architecture. The second event is our custom DialEvent type. 

The final group of methods in the Dial class provide the plumbing that is necessary for event 
firing. addDialListener( ) and removeDialListener( ) take care of maintaining the 
listener list. Using the listenerList member variable we inherited from JComponent makes 
this an easy task. The fireEvent( ) method retrieves the registered listeners for this 
component. It sends a DialEvent to any registered DialListeners. 

15.6.3 Model and View Separation 

The Dial example is overly simplified. All Swing components, as we've discussed, keep their 
data model and view separate. In the Dial component, we've combined these elements in a 
single class, which limits its reusability. To have Dial implement the MVC paradigm, we would 
have developed a dial data model and something called a UI-delegate that handled displaying the 
component and responding to user events. For a full treatment of this subject, see the 
JogShuttle example in Java Swing, by Robert Eckstein, Marc Loy, and Dave Wood (O'Reilly & 
Associates). 



Chapter 16. Layout Managers 

A layout manager arranges the child components of a container, as shown in Figure 16.1. It 
positions and sets the size of components within the container's display area according to a 
particular layout scheme. The layout manager's job is to fit the components into the available 
area while maintaining the proper spatial relationships among the components. Swing comes with 
a few standard layout managers that will collectively handle most situations; you can make your 
own layout managers if you have special requirements. 

Figure 16.1. A layout manager at work 

 

Every container has a default layout manager; therefore, when you make a new container, it 
comes with a LayoutManager object of the appropriate type. You can install a new layout 
manager at any time with the setLayout( ) method. For example, we can set the layout 
manager of a container to a BorderLayout: 

setLayout (new BorderLayout( )); 

Notice that we call the BorderLayout constructor, but we don't even save a reference to the 
layout manager. This is typical; once you have installed a layout manager, it does its work behind 
the scenes, interacting with the container. You rarely call the layout manager's methods directly, 
so you don't usually need a reference (a notable exception is CardLayout). However, you do 
need to know what the layout manager is going to do with your components as you work with 
them. 

The LayoutManager is consulted whenever a container's doLayout( ) method is called to 
reorganize the contents. It does its job by calling the setLocation( ) and setBounds( ) 
methods of the individual child components to arrange them in the container's display area. A 
container is laid out the first time it is displayed, and thereafter whenever the container's 
revalidate( ) method is called. Containers that are a subclass of the Window class (Frame, 
JFrame, and JWindow) are automatically validated whenever they are packed or resized. Calling 
pack( ) sets the window's size as small as possible while holding all its components at their 
preferred sizes. 

Every component determines three important pieces of information used by the layout manager in 
placing and sizing it: a minimum size, a maximum size, and a preferred size. These sizes are 
reported by the getMinimumSize( ) , getMaximum-Size( ), and getPreferredSize( ) 
methods of Component, respectively. For example, a plain JButton object can normally be 
changed to any size. However, the button's designer can provide a preferred size for a good-
looking button. The layout manager might use this size when there are no other constraints, or it 



might ignore it, depending on its scheme. Now if we give the button a label, the button may need 
a new minimum size in order to display itself properly. The layout manager might show more 
respect for the button's minimum size and guarantee that it has at least that much space. 
Similarly, a particular component might not be able to display itself properly if it is too large 
(perhaps it has to scale up an image); it can use getMaximumSize( ) to report the largest size 
it considers acceptable. 

The preferred size of a Container object has the same meaning as for any other type of 
component. However, since a Container may hold its own components and want to arrange 
them in its own layout, its preferred size is a function of its layout manager. The layout manager is 
therefore involved in both sides of the issue. It asks the components in its container for their 
preferred (or minimum) sizes in order to arrange them. Based on those values, it calculates the 
preferred size of its own container (which can be communicated to the container's parent). 

When a layout manager is called to arrange its components, it is working within a fixed area. It 
usually begins by looking at its container's dimensions, and the preferred or minimum sizes of the 
child components. It then doles out screen area and sets the sizes of components according to its 
scheme. You can override the getMinimumSize( ), getMaximumSize( ), and 
getPreferredSize( ) methods of a component, but you should do this only if you are actually 
specializing the component, and it has new needs. If you find yourself fighting with a layout 
manager because it's changing the size of one of your components, you are probably using the 
wrong kind of layout manager or not composing your user interface properly. Remember that it's 
possible to use a number of JPanel objects in a given display, each one with its own 
LayoutManager. Try breaking down the problem: place related components in their own 
JPanel and then arrange the panels in the container. When that becomes too complicated, you 
can choose to use a constraint-based layout manager like GridBagLayout, which we'll discuss 
later in this chapter. 

16.1 FlowLayout 

FlowLayout is a simple layout manager that tries to arrange components with their preferred 
sizes, from left to right and top to bottom in the container. A FlowLayout can have a specified 
row justification of LEFT, CENTER, or RIGHT, and a fixed horizontal and vertical padding. By 
default, a flow layout uses CENTER justification, meaning that all components are centered within 
the area allotted to them. FlowLayout is the default for JPanels. 

The following example adds five buttons to the content pane of a JFrame using the default 
FlowLayout; the result is shown in Figure 16.2. 

//file: Flow.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class Flow extends JPanel { 
 
  public Flow( ) { 
    // FlowLayout is default layout manager for a JPanel 
    add(new JButton("One")); 
    add(new JButton("Two")); 
    add(new JButton("Three")); 
    add(new JButton("Four")); 
    add(new JButton("Five")); 



  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("Flow"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(400, 75); 
    f.setLocation(200, 200); 
    Flow flow = new Flow( ); 
    f.setContentPane(flow); 
    f.setVisible(true); 
  } 
} 

Figure 16.2. A flow layout 

 

If the window is narrow enough, some of the buttons will spill over to a second or third row. 

16.2 GridLayout 

GridLayout arranges components into regularly spaced rows and columns. The components 
are arbitrarily resized to fit the grid; their minimum and preferred sizes are consequently ignored. 
GridLayout is most useful for arranging identically sized objects—perhaps a set of JPanels, 
each using a different layout manager. 

GridLayout takes the number of rows and columns in its constructor. If you subsequently give it 
too many objects to manage, it adds extra columns to make the objects fit. You can also set the 
number of rows or columns to zero, which means that you don't care how many elements the 
layout manager packs in that dimension. For example, GridLayout(2,0) requests a layout 
with two rows and an unlimited number of columns; if you put ten components into this layout, 
you'll get two rows of five columns each.[1]  

[1] Calling new GridLayout(0, 0)causes a runtime exception; either the rows or columns parameter must 
be greater than zero. 

The following example sets a GridLayout with three rows and two columns as its layout 
manager; the results are shown in Figure 16.3. 

//file: Grid.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class Grid extends JPanel { 
 
  public Grid( ) { 



    setLayout(new GridLayout(3, 2)); 
    add(new JButton("One")); 
    add(new JButton("Two")); 
    add(new JButton("Three")); 
    add(new JButton("Four")); 
    add(new JButton("Five")); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("Grid"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(200, 200); 
    f.setLocation(200, 200); 
    f.setContentPane(new Grid( )); 
    f.setVisible(true); 
  } 
} 

Figure 16.3. A grid layout 

 

The five buttons are laid out, in order, from left to right, top to bottom, with one empty spot. 

16.3 BorderLayout 

BorderLayout is a little more interesting. It tries to arrange objects in one of five geographical 
locations, represented by constants in the BorderLayout class: NORTH, SOUTH, EAST, WEST, 
and CENTER, possibly with some padding between. BorderLayout is the default layout for the 
content panes of JWindow and JFrame objects. Because each component is associated with a 
direction, BorderLayout can manage at most five components; it squashes or stretches those 
components to fit its constraints. As we'll see in the second example, this means that you often 
want to have BorderLayout manage sets of components in their own panels. 

When we add a component to a border layout, we need to specify both the component and the 
position at which to add it. To do so, we use an overloaded version of the add( ) method that 
takes an additional argument as a constraint. This specifies the name of a position within the 
BorderLayout. 

The following application sets a BorderLayout layout and adds our five buttons again, named 
for their locations; the result is shown in Figure 16.4. 



//file: Border1.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class Border1 extends JPanel { 
 
  public Border1( ) { 
    setLayout(new BorderLayout( )); 
    add(new JButton("North"), BorderLayout.NORTH); 
    add(new JButton("South"), BorderLayout.SOUTH); 
    add(new JButton("East"), BorderLayout.EAST); 
    add(new JButton("West"), BorderLayout.WEST); 
    add(new JButton("Center"), BorderLayout.CENTER); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("Border1"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(300, 300); 
    f.setLocation(200, 200); 
    f.setContentPane(new Border1( )); 
    f.setVisible(true); 
  } 
} 

Figure 16.4. A border layout 

 

So, how exactly is the area divided up? Well, the objects at NORTH and SOUTH get their preferred 
height and fill the display area horizontally. EAST and WEST components, on the other hand, get 
their preferred width, and fill the remaining area between NORTH and SOUTH vertically. Finally, the 
CENTER object takes all of the rest of the space. As you can see in Figure 16.4, our buttons get 
distorted into interesting shapes. 

What if we don't want BorderLayout messing with the sizes of our components? One option 
would be to put each button in its own JPanel. The default layout for a JPanel is FlowLayout, 
which respects the preferred size of components. The preferred sizes of the panels are effectively 
the preferred sizes of the buttons, but if the panels are stretched, they won't pull their buttons with 
them. The following application illustrates this approach; the result is shown in Figure 16.5. 

//file: Border2.java 



import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class Border2 extends JPanel { 
 
  public Border2( ) { 
    setLayout(new BorderLayout( )); 
    JPanel p = new JPanel( ); 
    p.add(new JButton("North")); 
    add(p, BorderLayout.NORTH); 
    p = new JPanel( ); 
    p.add(new JButton("South")); 
    add(p, BorderLayout.SOUTH); 
    p = new JPanel( ); 
    p.add(new JButton("East")); 
    add(p, BorderLayout.EAST); 
    p = new JPanel( ); 
    p.add(new JButton("West")); 
    add(p, BorderLayout.WEST); 
    p = new JPanel( ); 
    p.add(new JButton("Center")); 
    add(p, BorderLayout.CENTER); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("Border2"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(225, 150); 
    f.setLocation(200, 200); 
    f.setContentPane(new Border2( )); 
    f.setVisible(true); 
  } 
} 

Figure 16.5. Another border layout 

 

In this example, we create a number of panels, put our buttons inside the panels, and put the 
panels into the frame window, which has the BorderLayout manager. Now, the JPanel for the 
CENTER button soaks up the extra space that comes from the BorderLayout. Each JPanel's 
FlowLayout centers the button in the panel and uses the button's preferred size. In this case, 
it's all a bit awkward. We'll see how we could accomplish this more directly using 
GridBagLayout shortly. 

16.4 BoxLayout 



Most layout managers were defined back when Java 1.0 was first released. Swing adds only one 
new general-purpose layout manager, BoxLayout. This layout manager is useful for creating 
toolbars or vertical button bars. It lays out components in a single row or column. 

Although you can use BoxLayout directly, Swing includes a handy container called Box that 
takes care of the details for you. Every Box uses BoxLayout, but you don't really have to worry 
about it; the Box class includes some very useful methods for laying out components. 

You can create a horizontal or vertical box using Box's static methods. 

Container horizontalBox = Box.createHorizontalBox( ); 
Container verticalBox = Box.createVerticalBox( ); 

Once the Box is created, you can just add( ) components as usual: 

Container box = Box.createHorizontalBox( ); 
box.add(new JButton("In the")); 

Box includes several other static methods that create special invisible components that are handy 
for BoxLayout. The first of these is glue; glue is really space between components in the Box. 
When the Box is resized, glue expands or contracts as more or less space is available. The other 
special invisible component type is a strut. Like glue, a strut represents space between 
components, but it doesn't resize. 

The following example creates a horizontal Box (shown in Figure 16.6) that includes both glue 
and struts. Play around by resizing the window to see the effect of the glue and the struts. 

//file: Boxer.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class Boxer extends JPanel { 
  public static void main(String[] args) { 
    JFrame f = new JFrame("Boxer"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(250, 250); 
    f.setLocation(200, 200); 
    Container box = Box.createHorizontalBox( ); 
    box.add(Box.createHorizontalGlue( )); 
    box.add(new JButton("In the")); 
    box.add(Box.createHorizontalGlue( )); 
    box.add(new JButton("clearing")); 
    box.add(Box.createHorizontalStrut(10)); 
    box.add(new JButton("stands")); 
    box.add(Box.createHorizontalStrut(10)); 
    box.add(new JButton("a")); 
    box.add(Box.createHorizontalGlue( )); 
    box.add(new JButton("boxer")); 
    box.add(Box.createHorizontalGlue( )); 
    f.getContentPane( ).add(box, BorderLayout.CENTER); 
    f.pack( ); 



    f.setVisible(true); 
  } 
} 

Figure 16.6. Using the Box class 

 

16.5 CardLayout 

CardLayout is a special layout manager for creating the effect of a stack of cards. Instead of 
arranging all of the container's components, it displays only one at a time. You might use this kind 
of layout to implement a hypercard stack or a Windows-style set of configuration screens. If 
CardLayout sounds interesting, you might also want to investigate the JTabbedPane 
component, described in Chapter 14. 

To add a component to a CardLayout, use a two-argument version of the container's add( ) 
method; the extra argument is an arbitrary string that serves as the card's name: 

add("netconfigscreen", myComponent); 

To bring a particular card to the top of the stack, call the CardLayout's show( ) method with 
two arguments: the parent Container and the name of the card you want to show. There are 
also methods like first( ) , last( ), next( ), and previous( ) for working with the 
stack of cards. These are all CardLayout instance methods. To invoke them, you need a 
reference to the CardLayout object itself, not to the container it manages. Each method takes a 
single argument: the parent Container. Here's a simple example: 

//file: Card.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class Card extends JPanel { 
  CardLayout cards = new CardLayout( ); 
   
  public Card( ) { 
    setLayout(cards); 
    ActionListener listener = new ActionListener( ) { 
      public void actionPerformed(ActionEvent e) { 
        cards.next(Card.this); 
      } 
    }; 
    JButton button; 
    button = new JButton("one"); 
    button.addActionListener(listener); 
    add(button, "one"); 
    button = new JButton("two"); 
    button.addActionListener(listener); 
    add(button, "two"); 
    button = new JButton("three"); 
    button.addActionListener(listener); 



    add(button, "three"); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("Card"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(200, 200); 
    f.setLocation(200, 200); 
    f.setContentPane(new Card( )); 
    f.setVisible(true); 
  } 
} 

We add three buttons to the layout and cycle through them as they are pressed. An anonymous 
inner class is used as an action listener for each button; it simply calls CardLayout's next( ) 
method whenever a button is pressed. In a more realistic example, we would build a group of 
panels, each of which might implement some part of a complex user interface, and add those 
panels to the layout. Each panel would have its own layout manager. The panels would be 
resized to fill the entire area available (i.e., the area of the Container they are in), and their 
individual layout managers would arrange their internal components. 

16.6 GridBagLayout 

GridBagLayout is a very flexible layout manager that allows you to position components 
relative to one another using constraints. With GridBagLayout (and a fair amount of effort), you 
can create almost any imaginable layout. Components are arranged at logical coordinates on an 
abstract grid. We'll call them "logical" coordinates because they really designate positions in the 
space of rows and columns formed by the set of components. Rows and columns of the grid 
stretch to different sizes, based on the sizes and constraints of the components they hold. 

A row or column in a GridBagLayout expands to accommodate the dimensions and constraints 
of the largest component it contains. Individual components may span more than one row or 
column. Components that aren't as large as their grid cell can be anchored within their cell. They 
can also be set to fill or to expand their size in either dimension. Extra area in the grid rows and 
columns can be parceled out according to the weight constraints of the components. In this way, 
you can control how various components will grow and stretch when a window is resized. 

GridBagLayout is much easier to use in a graphical WYSIWYG GUI builder environment. 
That's because working with GridBag is kind of like messing with the "rabbit ears" antennae on 
your television. It's not particularly difficult to get the results that you want through trial and error, 
but writing out hard and fast rules for how to go about it is difficult. In short, GridBagLayout is 
complex and has some quirks. It is also simply a bit ugly both in model and implementation. 
Remember that you can do a lot with nested panels and by composing simpler layout managers 
within one another. If you look back through this chapter, you'll see many examples of composite 
layouts; it's up to you to determine how far you should go before making the break from simpler 
layout managers to a more complex all-in-one layout manager like GridBagLayout. 

16.6.1 The GridBagConstraints Class 



Having said that GridBagLayout is complex and a bit ugly, we're going to contradict ourselves 
and say that it's surprisingly simple. There is only one constructor with no arguments 
(GridBagLayout( )), and there aren't a lot of fancy methods to control how the display works. 

The appearance of a grid bag layout is controlled by sets of GridBagConstraints, and that's 
where things get hairy. Each component managed by a GridBagLayout is associated with a 
GridBagConstraints object. GridBagConstraints holds the following variables, which we'll 
describe in detail shortly: 

int gridx, gridy  

Controls the position of the component on the layout's grid. 

int weightx, weighty  

Controls how additional space in the row or column is allotted to the component. 

int fill  

Controls whether the component expands to fill the space allotted to it. 

int gridheight, gridwidth  

Controls the number of rows or columns the component spans. 

int anchor  

Controls the position of the component if there is extra room within the space allotted to 
it. 

int ipadx, ipady  

Controls padding between the component and the borders of its area. 

Insets insets  

Controls padding between the component and neighboring components. 

To make a set of constraints for a component or components, create a new instance of 
GridBagConstraints and set these public variables to the appropriate values. There are no 
pretty constructors, and there's not much else to the class at all. 

The easiest way to associate a set of constraints with a component is to use the version of add( 
) that takes both a component object and a layout object as arguments. This puts the component 
in the container and associates the GridBagConstraints object with it: 

Container content = getContentPane( ); 
JComponent component = new JLabel("constrain me, please...");  
GridBagConstraints constraints = new GridBagConstraints( );  
constraints.gridx = x;  
constraints.gridy = y;  



...  
content.add(component, constraints); 

You can also add a component to a GridBagLayout by using the single argument add( ) 
method, and then later calling the layout's setConstraints( ) method directly, to pass it the 
GridBagConstraints object for that component: 

add(component);  
...  
myGridBagLayout.setConstraints(component, constraints); 

In either case, the set of constraints is copied when it is applied to the component. It's the 
individual constraints that apply to the component, not the GridBagConstraints object. 
Therefore, you're free to create a single set of GridBagConstraints, modify it as needed, and 
apply it as needed to different objects. You might want to create a helper method that sets the 
constraints appropriately, then adds the component, with its constraints, to the layout. That's the 
approach we'll take in our examples; our helper method is called addGB( ), and it takes a 
component plus a pair of coordinates as arguments. These coordinates become the gridx and 
gridy values for the constraints. We could expand upon this later and overload addGB( ) to 
take more parameters for other constraints that we often change from component to component. 

16.6.2 Grid Coordinates 

One of the biggest surprises in the GridBagLayout is that there's no way to specify the size of 
the grid. There doesn't have to be. The grid size is determined implicitly by the constraints of all 
the objects; the layout manager picks dimensions large enough so that everything fits. Thus, if 
you put one component in a layout and set its gridx and gridy constraints to 25, the layout 
manager creates a 25 × 25 grid, with rows and columns both numbered from 0 to 24. If you then 
add a second component with a gridx of 30 and a gridy of 13, the grid's dimensions change to 
30 × 25. You don't have to worry about setting up an appropriate number of rows and columns. 
The layout manager does it automatically, as you add components. 

With this knowledge, we're ready to create some simple displays. We'll start by arranging a group 
of components in a cross shape. We maintain explicit x and y local variables, setting them as we 
add the components to our grid. This is partly for clarity, but it can be a handy technique when 
you want to add a number of components in a row or column. You can simply increment gridx 
or gridy before adding each component. This is a simple and problem-free way to achieve 
relative placement. (Later, we'll describe GridBagConstraints's RELATIVE constant, which 
does relative placement automatically.) Here's our first layout (see Figure 16.7): 

//file: GridBag1.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class GridBag1 extends JPanel { 
  GridBagConstraints constraints = new GridBagConstraints( ); 
 
  public GridBag1( ) { 
    setLayout(new GridBagLayout( )); 
    int x, y;  // for clarity 
    addGB(new JButton("North"),  x = 1, y = 0); 
    addGB(new JButton("West"),   x = 0, y = 1); 



    addGB(new JButton("Center"), x = 1, y = 1); 
    addGB(new JButton("East"),   x = 2, y = 1); 
    addGB(new JButton("South"),  x = 1, y = 2); 
  } 
 
  void addGB(Component component, int x, int y) { 
    constraints.gridx = x; 
    constraints.gridy = y; 
    add(component, constraints); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("GridBag1"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(225, 150); 
    f.setLocation(200, 200); 
    f.setContentPane(new GridBag1( )); 
    f.setVisible(true); 
  } 
} 

Figure 16.7. A simple GridBagLayout 

 

The buttons in this example are "clumped" together in the center of their display area. Each 
button is displayed at its preferred size, without stretching to fill the available space. This is how 
the layout manager behaves when the "weight" constraints are left unset. We'll talk more about 
weights in the next two sections. 

16.6.3 The fill Constraint 

Let's make the buttons expand to fill the entire JFrame window. To do so, we must take two 
steps: we must set the fill constraint for each button to the value BOTH, and we must set the 
weightx and weighty to nonzero values, as shown in the following example. Figure 16.8 
shows the resulting layout. 

//file: GridBag2.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class GridBag2 extends JPanel { 
  GridBagConstraints constraints = new GridBagConstraints( ); 
 
  public GridBag2( ) { 



    setLayout(new GridBagLayout( )); 
    constraints.weightx = 1.0; 
    constraints.weighty = 1.0; 
    constraints.fill = GridBagConstraints.BOTH; 
    int x, y;  // for clarity 
    addGB(new JButton("North"),  x = 1, y = 0); 
    addGB(new JButton("West"),   x = 0, y = 1); 
    addGB(new JButton("Center"), x = 1, y = 1); 
    addGB(new JButton("East"),   x = 2, y = 1); 
    addGB(new JButton("South"),  x = 1, y = 2); 
  } 
 
  void addGB(Component component, int x, int y) { 
    constraints.gridx = x; 
    constraints.gridy = y; 
    add(component, constraints); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("GridBag2"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(225, 150); 
    f.setLocation(200, 200); 
    f.setContentPane(new GridBag2( )); 
    f.setVisible(true); 
  } 
} 

Figure 16.8. Making buttons fill the available space 

 

BOTH is one of the constants of the GridBagConstraints class; it tells the component to fill the 
available space in both directions. Here are the constants you can use to set the fill field: 

HORIZONTAL  

Fill the available horizontal space. 

VERTICAL  

Fill the available vertical space. 

BOTH  



Fill the available space in both directions. 

NONE  

Don't fill the available space; display the component at its preferred size. 

We set the weight constraints to 1.0; in this example it doesn't matter what they are, provided that 
each component has the same nonzero weight. Filling doesn't occur if the component weights in 
the direction you're filling are 0, which is the default value. 

16.6.4 Spanning Rows and Columns 

One of the most important features of GridBaglayout is that it lets you create arrangements in 
which components span two or more rows or columns. To do so, set the gridwidth and 
gridheight variables of the GridBagConstraints . Here's an example that creates such a 
display; button one spans two columns vertically, and button four spans two horizontally (see 
Figure 16.9): 

//file: GridBag3.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class GridBag3 extends JPanel { 
  GridBagConstraints constraints = new GridBagConstraints( ); 
 
  public GridBag3( ) { 
    setLayout(new GridBagLayout( )); 
    constraints.weightx = 1.0; 
    constraints.weighty = 1.0; 
    constraints.fill = GridBagConstraints.BOTH; 
    int x, y;  // for clarity 
    constraints.gridheight = 2; // span two rows 
    addGB(new JButton("one"),   x = 0, y = 0); 
    constraints.gridheight = 1; // set it back 
    addGB(new JButton("two"),   x = 1, y = 0); 
    addGB(new JButton("three"), x = 2, y = 0); 
    constraints.gridwidth = 2; // span two columns 
    addGB(new JButton("four"),  x = 1, y = 1); 
    constraints.gridwidth = 1; // set it back 
  } 
 
  void addGB(Component component, int x, int y) { 
    constraints.gridx = x; 
    constraints.gridy = y; 
    add(component, constraints); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("GridBag3"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(200, 200); 
    f.setLocation(200, 200); 



    f.setContentPane(new GridBag3( )); 
    f.setVisible(true); 
  } 
} 

Figure 16.9. Making components span rows and columns 

 

The size of each element is controlled by the gridwidth and gridheight values of its 
constraints. For button one, we set gridheight to 2. Therefore, it is two cells high; its gridx 
and gridy positions are both zero, so it occupies cell (0,0) and the cell directly below it, (0,1). 
Likewise, button four has a gridwidth of 2 and a gridheight of 1, so it occupies two cells 
horizontally. We place this button in cell (1,1), so it occupies that cell and its neighbor, (2,1). 

In this example, we set the fill to BOTH and weightx and weighty to 1 for all components. 
By doing so, we told each button to occupy all the space available. Strictly speaking, this isn't 
necessary. However, it makes it easier to see exactly how much space each button occupies.  

16.6.5 Weighting 

The weightx and weighty variables of a GridBagConstraints object determine how "extra" 
space in the container is distributed among the columns or rows in the layout. As long as you 
keep things simple, the effect these variables have is fairly intuitive: the larger the weight, the 
greater the amount of space allocated to the component. Figure 16.10 shows what happens if 
we vary the weightx constraint from 0.1 to 1.0 as we place three buttons in a row. 

//file: GridBag4.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class GridBag4 extends JPanel { 
  GridBagConstraints constraints = new GridBagConstraints( ); 
 
  public GridBag4( ) { 
    setLayout(new GridBagLayout( )); 
    constraints.fill = GridBagConstraints.BOTH; 
    constraints.weighty = 1.0; 
    int x, y; // for clarity 
    constraints.weightx = 0.1; 
    addGB(new JButton("one"),   x = 0, y = 0); 
    constraints.weightx = 0.5; 
    addGB(new JButton("two"),   ++x,   y); 
    constraints.weightx = 1.0; 



    addGB(new JButton("three"), ++x,   y); 
  } 
 
  void addGB(Component component, int x, int y) { 
    constraints.gridx = x; 
    constraints.gridy = y; 
    add(component, constraints); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("GridBag4"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(300, 100); 
    f.setLocation(200, 200); 
    f.setContentPane(new GridBag4( )); 
    f.setVisible(true); 
  } 
} 

Figure 16.10. Using weight to control component size 

 

The specific values of the weights are not meaningful; it is only their relative proportions that 
matter. After the preferred sizes of the components (including padding and insets—see the next 
section) are determined, any extra space is doled out in proportion to the component's weights. 
So, for example, if each of our three components had the same weight each would receive a third 
of the extra space. To make this more obvious, you may prefer to express the weights for a row 
or column as fractions totaling 1.0—for example: 0.25, 0.25, 0.50. Components with a weight of 0 
receive no extra space. 

The situation is a bit more complicated when there are multiple rows or columns and when there 
is even the possibility of components spanning more than one cell. In the general case, 
GridBagLayout calculates an effective overall weight for each for each row and each column 
and then distributes the extra space to them proportionally. Note that our single row example 
above is just a special case where the columns each have one component. The gory details of 
the calculations follow. 

16.6.5.1 Calculating the weights of rows and columns 

For a given row or column ("rank"), GridBagLayout first considers the weights of all of the 
components contained strictly within that rank—ignoring those that span more than one cell. The 
greatest individual weight becomes the overall weight of the row or column. Intuitively this means 
that GridBagLayout is trying to accommodate the needs of the weightiest component in that 
rank. 

Next, GridBagLayout considers the components that occupy more than one cell. Here things 
get a little weird. GridbagLayout wants to evaluate them like the others, to see whether they 



affect the determination of the largest weight in a row or column. However, because these 
components occupy more than one cell, GridBagLayout divides their weight among the ranks 
(rows or columns) that they span. 

GridBagLayout tries to calculate an effective weight for the portion of the component that 
occupies each of its rows or columns. It does this by trying to divide the weight of the component 
among the ranks in the same proportions that the length (or height) of the component will be 
shared by the ranks. But how does it know what the proportions will be before the whole grid is 
determined? That's what it's trying to calculate after all. It simply guesses based on the row or 
column weights already determined. GridbagLayout uses the weights determined by the first 
round of calculations to split up the weight of the component over the ranks that it occupies. For 
each row or column, it then considers that fraction of the weight to be the component's weight for 
that rank. That weight then contends for the "heaviest weight" in the row or column, possibly 
changing the overall weight of that row or column, as we described earlier. 

16.6.6 Anchoring 

If a component is smaller than the space available for it, it is centered by default. But centering 
isn't the only possibility. The anchor constraint tells a grid bag layout how to position a 
component within its cell in the grid. Possible values are: GridBagConstraints.CENTER, 
NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST, and NORTHWEST. For 
example, an anchor of GridBagConstraints.NORTH centers a component at the top of its 
display area; SOUTHEAST places a component at the bottom-right corner of its area. 

16.6.7 Padding and Insets 

Another way to control the behavior of a component in a grid bag layout is to use padding and 
insets. Padding is determined by the ipadx and ipady fields of GridBagConstraints. They 
specify horizontal and vertical "growth factors" for the component. In Figure 16.11, the West 
button is larger because we have set the ipadx and ipady values of its constraints to 25. 
Therefore, the layout manager gets the button's preferred size and adds 25 pixels in each 
direction to determine the button's actual size. The sizes of the other buttons are unchanged 
because their padding is set to 0 (the default), but their spacing is different. The West button is 
unnaturally tall, which means that the middle row of the layout must be taller than the others. 

//file: GridBag5.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class GridBag5 extends JPanel { 
  GridBagConstraints constraints = new GridBagConstraints( ); 
 
  public GridBag5( ) { 
    setLayout(new GridBagLayout( )); 
    int x, y;  // for clarity 
    addGB(new JButton("North"),  x = 1, y = 0); 
    constraints.ipadx = 25;  // add padding 
    constraints.ipady = 25; 
    addGB(new JButton("West"),   x = 0, y = 1); 
    constraints.ipadx = 0;   // remove padding 
    constraints.ipady = 0; 
    addGB(new JButton("Center"), x = 1, y = 1); 
    addGB(new JButton("East"),   x = 2, y = 1); 



    addGB(new JButton("South"),  x = 1, y = 2); 
  } 
 
  void addGB(Component component, int x, int y) { 
    constraints.gridx = x; 
    constraints.gridy = y; 
    add(component, constraints); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("GridBag5"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(250, 250); 
    f.setLocation(200, 200); 
    f.setContentPane(new GridBag5( )); 
    f.setVisible(true); 
  } 
} 

Figure 16.11. Using padding and insets in a layout 

 

Notice that the horizontal padding, ipadx, is added on both the left and right sides of the button. 
Therefore, the button grows horizontally by twice the value of ipadx. Likewise, the vertical 
padding, ipady, is added on both the top and the bottom. 

Insets add space between the edges of the component and its cell. They are stored in the 
insets field of GridBagConstraints, which is an Insets object. An Insets object has four 
fields, to specify the margins on the top, bottom, left, and right of the component. The 
relationship between insets and padding can be confusing. As shown in Figure 16.12, padding 
is added to the component itself, increasing its size. Insets are external to the component and 
represent the margin between the component and its cell. 

Figure 16.12. The relationship between padding and insets 



 

Padding and weighting have an odd interaction with each other. If you use padding, it's best to 
use the default weightx and weighty values for each component. 

16.6.8 Relative Positioning 

In all of our grid bag layouts so far, we have specified the gridx and gridy coordinates of each 
component explicitly using its constraints. Another alternative is relative positioning. 

Conceptually, relative positioning is simple: we simply say "put this component to the left of (or 
below) the previous component." To do so, set gridx or gridy to the constant 
GridBagConstraints.RELATIVE. Unfortunately, it's not as simple as this. Here are a couple 
of warnings: 

• To place a component to the right of the previous one, set gridx to RELATIVE and use 
the same value for gridy as you used for the previous component. 

• Similarly, to place a component below the previous one, set gridy to RELATIVE and 
leave gridx unchanged. 

• Setting both gridx and gridy to RELATIVE places all the components in one row, not 
in a diagonal line, as you would expect. (This is the default.) 

In other words, if gridx or gridy is RELATIVE, you had better leave the other value 
unchanged. RELATIVE makes it easy to arrange a lot of components in a row or a column. That's 
what it was intended for; if you try to do something else, you're fighting against the layout 
manager, not working with it. 

GridBagLayout allows another kind of relative positioning, in which you specify where, in a row 
or a column, the component should be placed. To do so, you use the gridwidth and 
gridheight fields of GridBagConstraints. Setting either of these to the constant 
REMAINDER says that the component should be the last item in its row or column, and therefore 
should occupy all the remaining space. Setting either gridwidth or gridheight to RELATIVE 
says that it should be the second to the last item in its row or column. Unfortunately, you can use 
these constants to create constraints that can't possibly be met; for example, you can say that 
two components must be the last component in a row. In these cases, the layout manager tries to 
do something reasonable—but it will almost certainly do something you don't want. Again, relative 
placement works well as long as you don't try to twist it into doing something it wasn't designed 
for. 

16.6.9 Composite Layouts 



Sometimes things don't fall neatly into little boxes. This is true of layouts as well as life. For 
example, if you want to use some of GridBagLayout's weighting features for part of your GUI, 
you could create separate layouts for different parts of the GUI and combine them with yet 
another layout. That's how we'll build the pocket calculator interface in Figure 16.13. We will use 
three grid bag layouts: one for the first row of buttons (C, %, +), one for the last (0, ., =), and one 
for the window itself. The master layout (the window's) manages the text field we use for the 
display, the panels containing the first and last rows of buttons, and the twelve buttons in the 
middle.[2]  

[2] If you're curious, this calculator is based on the ELORG-801, encountered in an online "calculator 
museum"; see http://www.taswegian.com/MOSCOW/elorg801.html. 

Figure 16.13. The Calculator application 

 

Here's the code for the Calculator example. It implements only the user interface (i.e., the 
keyboard); it collects everything you type in the display field, until you press C (clear). Figuring 
out how to connect the GUI to some other code that would perform the operations is up to you. 
One strategy would be to send an event to the object that does the computation whenever the 
user presses the equals sign. That object could read the contents of the text field, parse it, do the 
computation, and display the results. 

//file: Calculator.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class Calculator extends JPanel implements ActionListener { 
  GridBagConstraints gbc = new GridBagConstraints( ); 
  JTextField theDisplay = new JTextField( );  
 
  public Calculator( ) { 
    gbc.weightx = 1.0;  gbc.weighty = 1.0;  
    gbc.fill = GridBagConstraints.BOTH; 
    ContainerListener listener = new ContainerAdapter( ) { 
      public void componentAdded(ContainerEvent e) { 
        Component comp = e.getChild( ); 
        if (comp instanceof JButton) 
          ((JButton)comp).addActionListener(Calculator.this); 
      } 
    };  
    addContainerListener(listener);  



    gbc.gridwidth = 4;  
    addGB(this, theDisplay, 0, 0);  
    // make the top row  
    JPanel topRow = new JPanel( );   
    topRow.addContainerListener(listener);  
    gbc.gridwidth = 1;  
    gbc.weightx = 1.0;  
    addGB(topRow, new JButton("C"), 0, 0);  
    gbc.weightx = 0.33;  
    addGB(topRow, new JButton("%"), 1, 0);  
    gbc.weightx = 1.0;  
    addGB(topRow, new JButton("+"), 2, 0 );  
    gbc.gridwidth = 4;  
    addGB(this, topRow, 0, 1);  
    gbc.weightx = 1.0;  gbc.gridwidth = 1;  
    // make the digits  
    for(int j=0; j<3; j++)  
        for(int i=0; i<3; i++)  
            addGB(this, new JButton("" + ((2-j)*3+i+1) ), i, j+2);  
    // -, x, and divide  
    addGB(this, new JButton("-"), 3, 2);  
    addGB(this, new JButton("x"), 3, 3);  
    addGB(this, new JButton("\u00F7"), 3, 4);  
    // make the bottom row  
    JPanel bottomRow = new JPanel( );   
    bottomRow.addContainerListener(listener);  
    gbc.weightx = 1.0;  
    addGB(bottomRow, new JButton("0"), 0, 0);  
    gbc.weightx = 0.33;  
    addGB(bottomRow, new JButton("."), 1, 0);  
    gbc.weightx = 1.0;  
    addGB(bottomRow, new JButton("="), 2, 0);  
    gbc.gridwidth = 4;  
    addGB(this, bottomRow, 0, 5); 
  } 
 
  void addGB(Container cont, Component comp, int x, int y) { 
    if ((cont.getLayout( ) instanceof GridBagLayout) == false) 
      cont.setLayout(new GridBagLayout( )); 
    gbc.gridx = x; gbc.gridy = y; 
    cont.add(comp, gbc); 
  } 
 
  public void actionPerformed(ActionEvent e) {  
    if (e.getActionCommand( ).equals("C"))  
      theDisplay.setText("");  
    else   
      theDisplay.setText(theDisplay.getText( ) 
                         + e.getActionCommand( )); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("Calculator"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setSize(200, 250); 



    f.setLocation(200, 200); 
    f.setContentPane(new Calculator( )); 
    f.setVisible(true); 
  } 
} 

Once again, we use an addGB( ) helper method to add components with their constraints to the 
layout. Before discussing how to build the layout, let's look at addGB( ). We said earlier that 
three layout managers are in our user interface: one for the application panel itself, one for the 
panel containing the first row of buttons (topRow), and one for the panel containing the bottom 
row of buttons (bottomRow). We use addGB( ) for all three layouts; its first argument specifies 
the container to add the component to. Thus, when the first argument is this, we're adding an 
object to the content pane of the JFrame. When the first argument is topRow, we're adding a 
button to the first row of buttons. addGB( ) first checks the container's layout manager, and sets 
it to GridBagLayout if it isn't already set properly. It sets the object's position by modifying a set 
of constraints, gbc, and then uses these constraints to add the object to the container. 

We use a single set of constraints throughout the example, modifying fields as we see fit. The 
constraints are initialized in Calculator's constructor. Before calling addGB( ), we set any 
fields of gbc for which the defaults are inappropriate. Thus, for the answer display, we set the 
grid width to 4, and add the answer display directly to the application panel (this). The add( ) 
method, which is called by addGB( ), makes a copy of the constraints, so we're free to reuse 
gbc throughout the application. 

The first and last rows of buttons motivate the use of multiple GridBagLayout containers, each 
with its own grid. These buttons appear to straddle grid lines, but you really can't accomplish this 
using a single grid. Therefore, topRow has its own layout manager, with three horizontal cells, 
allowing each button in the row to have a grid width of 1. To control the size of the buttons, we set 
the weightx variables so that the clear and plus buttons take up more space than the percent 
button. We then add the topRow as a whole to the application, with a grid width of 4. The bottom 
row is built similarly. 

To build the buttons for the digits 1 through 9, we use a doubly nested loop. There's nothing 
particularly interesting about this loop, except that it's probably a bit too clever for good taste. The 
minus, multiply, and divide buttons are also simple: we create a button with the appropriate label 
and use addGB( ) to place it in the application. It's worth noting that we used a Unicode 
constant to request a real division sign, rather than wimping out and using a slash. 

That's it for the user interface; what's left is event handling. Each button generates action events; 
we need to register listeners for these events. We'll make the application panel, the 
Calculator, the listener for all the buttons. To register the Calculator as a listener, we'll be 
clever. Whenever a component is added to a container, the container generates a 
ContainerEvent . We use an anonymous inner ContainerListener to register listeners for 
our buttons. This means that the Calculator must register as a ContainerListener for 
itself, and for the two panels, topRow and bottomRow. The componentAdded( ) method is 
very simple. It calls getChild( ) to find out what component caused the event (i.e., what 
component was added). If that component is a button, it registers the Calculator as an 
ActionListener for that button. 

actionPerformed( ) is called whenever the user presses any button. It clears the display if 
the user pressed the C button; otherwise, it appends the button's action command (in this case, 
its label) to the display. 



Combining layout managers is an extremely useful trick. Granted, this example verges on overkill. 
You won't often need to create a composite layout using multiple grid bags. Composite layouts 
are most common with BorderLayout; you'll frequently use different layout managers for each 
of a border layout's regions. For example, the CENTER region might be a ScrollPane, which 
has its own special-purpose layout manager; the EAST and SOUTH regions might be panels 
managed by grid layouts or flow layouts, as appropriate. 

16.7 Nonstandard Layout Managers 

We've covered the basic layout managers; with them, you should be able to create just about any 
user interface you like. 

But that's not all, folks. If you want to experiment with layout managers that are undocumented, 
may change, and may not be available locally on all platforms, look in the sun.awt classes. 
You'll find a HorizBagLayout, a VerticalBagLayout, an OrientableFlowLayout, and a 
VariableGridLayout. Furthermore, public domain layout managers of all descriptions are on 
the Net; keep your eye on Gamelan (http://www.gamelan.com) and the other Java archives if 
you need something exotic. 

16.8 Absolute Positioning 

It's possible to set the layout manager to null: no layout control. You might do this to position an 
object on the display at some absolute coordinates. This is almost never the right approach. 
Components might have different minimum sizes on different platforms, and your interface would 
not be very portable. 

The following example doesn't use a layout manager and works with absolute coordinates 
instead: 

//file: MoveButton.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class MoveButton extends JPanel { 
  JButton button = new JButton("I Move");   
 
  public MoveButton( ) { 
    setLayout(null);   
    add(button); 
    button.setSize(button.getPreferredSize( ));   
    button.setLocation(20, 20); 
    addMouseListener(new MouseAdapter( ) { 
      public void mousePressed(MouseEvent e) { 
      button.setLocation(e.getX(), e.getY( )); 
      } 
    }); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("MoveButton"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 



    }); 
    f.setSize(250, 200); 
    f.setLocation(200, 200); 
    f.setContentPane(new MoveButton( )); 
    f.setVisible(true); 
  } 
} 

Click in the window area, outside of the button, to move the button to a new location. Try resizing 
the window and note that the button stays at a fixed position relative to the window's upper left 
corner.  



Chapter 17. Drawing with the 2D API 

In the last few chapters, you've caught a glimpse of how graphics operations are performed in 
Java. This chapter goes into more depth about drawing techniques and the tools for working with 
images in Java. In the next chapter, we'll explore image-processing tools in more detail, and we'll 
look at the classes that let you generate images, pixel by pixel, on the fly. 

17.1 The Big Picture 

The classes you'll use for drawing come from six packages: java.awt, java.awt.color, 
java.awt.font, java.awt.geom, java.awt.image, and java.awt.print. Collectively, 
these classes make up most of the 2D API, a comprehensive API for drawing shapes, text, and 
images. Figure 17.1 shows a bird's-eye view of these classes. There's much more in the 2D API 
than we can cover in two chapters. For a full treatment, see Jonathan Knudsen's Java 2D 
Graphics (O'Reilly & Associates). 

Figure 17.1. Graphics classes of the 2D API 

 



An instance of java.awt.Graphics2D is called a graphics context. It represents a drawing 
surface such as a component's display area, a page on a printer, or an offscreen image buffer. A 
graphics context provides methods for drawing three kinds of graphics objects: shapes, text, and 
images. Graphics2D is called a graphics context because it also holds contextual information 
about the drawing area. This information includes the drawing area's clipping region, painting 
color, transfer mode, text font, and geometric transformation. If you consider the drawing area to 
be a painter's canvas, you might think of a graphics context as an easel that holds a set of tools 
and marks off the work area. 

There are four ways you normally acquire a Graphics2D object. Roughly, from most common to 
least, they are as follows: 

• From AWT or Swing, as the result of a painting request on a component. In this case, a 
new graphics context for the appropriate area is acquired and passed to your 
component's paint( ) or update( ) method. (The update( ) method really applies 
only to AWT components, not the newer Swing components.) 

• Directly from an offscreen image buffer. In this case, we ask the image buffer for a 
graphics context directly. We'll use this when we discuss techniques like double 
buffering. 

• By copying an existing Graphics2D object. Duplicating a graphics object can be useful 
for more elaborate drawing operations; different copies of a Graphics2D object can 
draw on same area, but with different attributes and clipping regions. A Graphics2D can 
be copied by calling the create( ) method. 

• Directly from an onscreen component. It's possible to ask a component to give you a 
Graphics2D object for its display area. However, this is almost always a mistake; if you 
feel tempted to do this, think about why you're trying to circumvent the normal paint( ) 
/repaint( ) mechanism. 

Each time a component's paint( ) method is called, the windowing system provides the 
component with a new Graphics2D object for drawing in the display area. This means that 
attributes we set during one painting session, such as the drawing color or clipping region, are 
reset the next time paint( )is called. (Each call to paint( ) starts with a tidy new easel.) For 
the most common attributes, like foreground color, background color, and font, we can set 
defaults in the component itself. Thereafter, the graphics contexts for painting in that component 
come with those properties initialized appropriately. 

If we are working in an AWT component's update( ) method, we can assume our onscreen 
artwork is still intact, and we need to make only whatever changes are needed to bring the 
display up to date. One way to optimize drawing operations in this case is by setting a clipping 
region, as we'll see shortly. If our paint( ) method is called, however, we have to assume the 
worst and redraw the entire display. 

For backwards compatibility, a graphics context is always passed to the paint( ) method as a 
Graphics object. If you want to take advantage of the nifty features in the 2D API (as you almost 
undoubtedly will), you will need to cast this reference to a Graphics2D. You'll see how this 
works in the upcoming examples. 

17.2 The Rendering Pipeline 

One of the strengths of the 2D API is that shapes, text, and images are manipulated in many of 
the same ways. In this section, we'll describe what happens to shapes, text, and images after you 
give them to a Graphics2D. Rendering is the process of taking some collection of shapes, text, 



and images and figuring out how to represent them by coloring pixels on a screen or printer. 
Graphics2D supports four rendering operations: 

1. Draw the outline of a shape, with the draw( ) method. 
2. Fill the interior of a shape, with the fill( ) method. 
3. Draw some text, with the drawString( ) method. 
4. Draw an image, with any of the many forms of the drawImage( ) method. 

The graphics context instantiated by a Graphics2D object consists of the following fields, whose 
values are controlled by various accessor methods: 

paint  

The current paint (an object of type java.awt.Paint) determines what colors will be 
used to fill a shape. This affects shape outlines and text, as well. You can change the 
current paint using Graphics2D's setPaint( ) method. Note that the Color class 
implements the Paint interface, so you can pass Colors to setPaint( ) if you want 
to use solid colors. 

stroke  

Graphics2D uses the current stroke for shapes that are passed to its draw( ) method. 
The outline of the shape is represented by another shape that is determined by the 
current stroke. The resulting shape (the stroked outline) is then filled. Suppose you 
wanted to draw the outline of a circle. If the current stroke called for a solid line, the 
stroked outline of a circle would look like a washer or ring. You can set the current stroke 
using setStroke( ) . The 2D API comes with a handy class, 
java.awt.BasicStroke, that implements different line widths, end styles, join styles, 
and dashing. 

font  

Text is rendered by creating a shape that represents the characters to be drawn. The 
current font determines what shapes are created for a given set of characters. The 
resulting text shape is then filled. The current font is set using setFont( ). The 2D API 
gives applications access to all the TrueType and PostScript Type 1 fonts that are 
installed on your machine. 

transformation  

Shapes, text, and images are geometrically transformed before they are rendered. This 
means that they may be moved, rotated, and stretched. Graphics2D's transformation 
converts coordinates from user space to device space. By default, Graphics2D uses a 
transformation that maps 72 units in user space to one inch on the output device. If you 
draw a line from point 0, 0 to point 72, 0 using the default transformation, it will be one 
inch long, regardless of whether it is drawn on your monitor or your printer. The current 
transformation can be modified using the translate( ) , rotate( ), scale( ), and 
shear( ) methods. 

compositing rule  



A compositing rule is used to determine how the colors of a primitive should be combined 
with existing colors on the Graphics2D's drawing surface. This attribute is set using 
setComposite( ), which accepts an instance of java.awt.AlphaComposite. 
Compositing allows you to make parts of a drawing or image completely or partially 
transparent, or to combine them in other interesting ways. 

clipping shape  

All rendering operations are limited to the interior of the clipping shape. No pixels outside 
this shape will be modified. By default, the clipping shape allows rendering on the entire 
drawing surface (usually, the rectangular area of a Component). However, you can 
further limit this using any simple or complex shape, including text shapes. 

rendering hints  

There are different techniques that can be used to render graphics primitives. Usually 
these represent a tradeoff between rendering speed and visual quality or vice versa. 
Rendering hints (constants defined in the RenderingHints class) specify which 
techniques to use. 

Graphics primitives (shapes, text, and images) pass through the rendering engine in a series of 
operations called the rendering pipeline. Let's walk through the pipeline. It can be reduced to four 
steps, where the first step depends heavily on the rendering operation: 

1. Transform the shape. For shapes that will be filled, the shape is simply transformed using 
the Graphics2D's current transformation. For shapes whose outlines are drawn using 
draw( ), the current stroke is used to stroke the shape's outline. Then the stroked 
outline is transformed, just like any other filled shape. Text is displayed by mapping 
characters to shapes using the current font. The resulting text shapes are transformed, 
just like any other filled shape. For images, the outline of the image is transformed using 
the current transformation. 

2. Determine the colors to be used. For a filled shape, the current paint object determines 
what colors should be used to fill the shape. For an image, the colors are taken from the 
image itself. 

3. Combine the colors with the existing drawing surface using the current compositing rule. 
4. Clip the results using the current clipping shape. 

The rendering hints are used throughout to control the rendering quality. 

17.3 A Quick Tour of Java 2D 

17.3.1 Filling Shapes 

The simplest path through the rendering pipeline is for filling shapes. For example, the following 
code creates an ellipse and fills it with a solid color. (This code would live inside a paint( ) 
method somewhere. We'll present a complete, ready-to-run example a little later.) 

Shape c = new Ellipse2D.Float(50, 25, 150, 150); 
g2.setPaint(Color.blue); 
g2.fill(c); 



The Ellipse2D class is abstract, but is implemented by concrete inner subclasses, called 
Float and Double. The Rectangle2D class, for example, has concrete subclasses 
Rectangle2D.Float and Rectangle2D.Double. 

In the call to setPaint( ), we tell the Graphics2D to use a solid color, blue, for all subsequent 
filling operations. Then, the call to fill( ) tells Graphics2D to fill the given shape. 

All geometric shapes in the 2D API are represented by implementations of the 
java.awt.geom.Shape interface. This interface defines methods that are common to all 
shapes, like returning a rectangle bounding box or testing if a point is inside the shape. The 
java.awt.geom package is a smorgasbord of useful shape classes, including Rectangle2D, 
RoundRectangle2D (a rectangle with rounded corners), Arc2D, Ellipse2D, and others. In 
addition, a few classes in java.awt are Shapes: Rectangle, Polygon, and Area. 

17.3.2 Drawing Shape Outlines 

Drawing a shape's outline is only a little bit more complicated. Consider this example: 

Shape r = new Rectangle2D.Float(100, 75, 100, 100); 
g2.setStroke(new BasicStroke(4)); 
g2.setPaint(Color.yellow); 
g2.draw(r); 

Here, we tell the Graphics2D to use a stroke that is four units wide and a solid color, yellow, for 
filling the stroke. When we call draw( ), Graphics2D uses the stroke to create a new shape, 
the outline, from the given rectangle. The outline shape is then filled, just as before; this 
effectively draws the rectangles's outline. The rectangle itself is not filled. 

17.3.3 Convenience Methods 

Graphics2D includes quite a few convenience methods for drawing and filling common shapes; 
these methods are actually inherited from the Graphics class. Table 17.1 summarizes these 
methods. It's a little easier to just call fillRect( ), rather than instantiating a rectangle shape 
and passing it to fill( ). 

Table 17.1. Shape-Drawing Methods in the Graphics Class  
Method Description 

draw3DRect( ) Draws a highlighted, 3D rectangle 
drawArc( ) Draws an arc 
drawLine( ) Draws a line 
drawOval( ) Draws an oval 
drawPolygon( ) Draws a polygon, closing it by connecting the endpoints 
drawPolyline( ) Draws a line connecting a series of points, without closing it 
drawRect( ) Draws a rectangle 
drawRoundRect( ) Draws a rounded-corner rectangle 
fill3DRect( ) Draws a filled, highlighted, 3D rectangle 
fillArc( ) Draws a filled arc 
fillOval( ) Draws a filled oval 
fillPolygon( ) Draws a filled polygon 



fillRect( ) Draws a filled rectangle 
fillRoundRect( ) Draws a filled, rounded-corner rectangle 

As you can see, for each of the fill( ) methods in the table, there is a corresponding draw( 
) method that renders the shape as an unfilled line drawing. With the exception of fillArc( ) 
and fillPolygon( ), each method takes a simple x, y specification for the top left corner of 
the shape and a width and height for its size. 

The most flexible convenience method draws a polygon, which is specified by two arrays that 
contain the x and y coordinates of the vertices. Methods in the Graphics class take two such 
arrays and draw the polygon's outline, or fill the polygon. 

The methods listed in Table 17.1 are shortcuts for more general methods in Graphics2D. The 
more general procedure is to first create a java.awt.geom.Shape object, and then pass it to 
the draw( ) or fill( ) method of Graphics2D. For example, you could create a Polygon 
object from coordinate arrays. Since a Polygon implements the Shape interface, you can pass it 
to Graphics2D's general draw( ) or fill( ) method. 

The fillArc( ) method requires six integer arguments. The first four specify the bounding box 
for an oval—just like the fillOval( ) method. The final two arguments specify what portion of 
the oval we want to draw, as a starting angular position and an offset. Both the starting angular 
position and the offset are specified in degrees. Zero degrees is at three o'clock; a positive angle 
is clockwise. For example, to draw the right half of a circle, you might call: 

g.fillArc(0, 0, radius * 2, radius * 2, -90, 180); 

draw3DRect( ) automatically chooses colors by "darkening" the current color. So you should 
set the color to something other than black, which is the default (maybe gray or white); if you 
don't, you'll just get black rectangle with a thick outline. 

17.3.4 Drawing Text 

Like drawing a shape's outline, drawing text is just a simple variation on filling a shape. When you 
ask a Graphics2D to draw text, it determines the shapes that need to be drawn and fills them. 
The shapes that represent characters are called glyphs . A font is a collection of glyphs. Here's 
an example of drawing text: 

g2.setFont(new Font("Times New Roman", Font.PLAIN, 64)); 
g2.setPaint(Color.red); 
g2.drawString("Hello, 2D!", 50, 150); 

When we call drawString( ), the Graphics2D uses the current font to retrieve the glyphs that 
correspond to the characters in the string. Then the glyphs (which are really just Shapes) are 
filled using the current Paint. 

17.3.5 Drawing Images 

Images are treated a little differently than shapes. In particular, the current Paint is not used to 
render an image because the image contains its own color information. The following example 
loads an image from a file and displays it (you'll have to use your own file here): 



Image i = Toolkit.getDefaultToolkit( ).getImage("camel.gif"); 
g2.drawImage(i, 75, 50, this); 

In this case, the call to drawImage( ) tells the Graphics2D to place the image at the given 
location. 

17.3.6 Go Crazy 

Four parts of the pipeline affect every graphics operation. In particular, all rendering is 
transformed, composited, and clipped. Rendering hints are used to affect all of a Graphics2D's 
rendering. 

This example shows how to modify the current transformation with a translation and a rotation : 

g2.translate(50, 0); 
g2.rotate(Math.PI / 6); 

Every graphics primitive drawn by g2 will now have this transformation applied to it. We can have 
a similarly global effect on compositing: 

AlphaComposite ac = AlphaComposite.getInstance( 
    AlphaComposite.SRC_OVER, (float).5); 
g2.setComposite(ac); 

Now every graphics primitive we draw will be half transparent—we'll explain more about this later. 

All drawing operations are clipped by the current clipping shape, which is any object 
implementing the Shape interface. In the following example, the clipping shape is set to an 
ellipse: 

Shape e = new Ellipse2D.Float(50, 25, 250, 150); 
g2.clip(e); 

You can obtain the current clipping shape using getClip( ); this is handy if you want to restore 
it later using the setClip( ) method. 

Finally, the rendering hints are used for all drawing operations. In the following example, we tell 
the Graphics2D to use antialiasing, a technique that smooths out the rough pixel edges of 
shapes and text: 

g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, 
    RenderingHints.VALUE_ANTIALIAS_ON); 

The RenderingHints class contains other keys and values, representing other rendering hints. 
If you really like to fiddle with knobs and dials, this is a good class to check out. 

17.3.7 The Whole Iguana 

Let's put everything together now, just to show how graphics primitives travel through the 
rendering pipeline. The following example demonstrates the use of Graphics2D from the 
beginning to the end of the rendering pipeline. With very few lines of code, we are able to draw 
some pretty complicated stuff (see Figure 17.2): 



Figure 17.2. Exercising the 2D API 

 
//file: Iguana.java 
import java.awt.*; 
import java.awt.event.*; 
import java.awt.geom.*; 
import javax.swing.*; 
 
public class Iguana extends JComponent { 
  private Image image; 
  private int theta; 
 
  public Iguana( ) { 
    image = Toolkit.getDefaultToolkit( ).getImage( 
        "Piazza di Spagna.small.jpg"); 
    theta = 0; 
    addMouseListener(new MouseAdapter( ) { 
      public void mousePressed(MouseEvent me) { 
        theta = (theta + 15) % 360; 
        repaint( ); 
      } 
    }); 
  } 
   
  public void paint(Graphics g) { 
    Graphics2D g2 = (Graphics2D)g; 
     
    g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, 
        RenderingHints.VALUE_ANTIALIAS_ON); 
     
    int cx = getSize( ).width / 2; 
    int cy = getSize( ).height / 2; 
     
    g2.translate(cx, cy); 
    g2.rotate(theta * Math.PI / 180); 
     
    Shape oldClip = g2.getClip( ); 
    Shape e = new Ellipse2D.Float(-cx, -cy, cx * 2, cy * 2); 
    g2.clip(e); 
     



    Shape c = new Ellipse2D.Float(-cx, -cy, cx * 3 / 4, cy * 2); 
    g2.setPaint(new GradientPaint(40, 40, Color.blue, 
        60, 50, Color.white, true)); 
    g2.fill(c); 
     
    g2.setPaint(Color.yellow); 
    g2.fillOval(cx / 4, 0, cx, cy); 
 
    g2.setClip(oldClip); 
     
    g2.setFont(new Font("Times New Roman", Font.PLAIN, 64)); 
    g2.setPaint(new GradientPaint(-cx, 0, Color.red, 
        cx, 0, Color.black, false)); 
    g2.drawString("Hello, 2D!", -cx * 3 / 4, cy / 4); 
     
    AlphaComposite ac = AlphaComposite.getInstance( 
        AlphaComposite.SRC_OVER, (float).75); 
    g2.setComposite(ac); 
     
    Shape r = new RoundRectangle2D.Float(0, -cy * 3 / 4, 
        cx * 3 / 4, cy * 3 / 4, 20, 20); 
    g2.setStroke(new BasicStroke(4)); 
    g2.setPaint(Color.magenta); 
    g2.fill(r); 
    g2.setPaint(Color.green); 
    g2.draw(r); 
     
    g2.drawImage(image, -cx / 2, -cy / 2, this); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("Iguana"); 
    Container c = f.getContentPane( ); 
    c.setLayout(new BorderLayout( )); 
    c.add(new Iguana( ), BorderLayout.CENTER); 
    f.setSize(300, 300); 
    f.setLocation(100, 100); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setVisible(true); 
  } 
} 

The Iguana class itself is a subclass of JComponent with a fancy paint( ) method. The 
main( ) method takes care of creating a JFrame that holds the Iguana component. 

Iguana's constructor loads a small image (we'll talk more about this later) and sets up a mouse 
event handler. This handler changes a member variable, theta, and repaints the component. 
Each time you click, the entire drawing is rotated by 15 degrees. 

Iguana's paint( ) method does some pretty tricky stuff, but none of it is very difficult. First, 
user space is transformed so that the origin is at the center of the component. Then user space is 
rotated by theta: 



g2.translate(cx, cy); 
g2.rotate(theta * Math.PI / 180); 

Iguana saves the current (default) clipping shape before setting it to a large ellipse. Then 
Iguana draws two filled ellipses. The first is drawn by instantiating an Ellipse2D and filling it; 
the second is drawn using the fillOval( ) convenience method. (We'll talk about the color 
gradient in the first ellipse in the next section.) As you can see in Figure 17.2, both ellipses are 
clipped by the elliptical clipping shape. After filling the two ellipses, Iguana restores the old 
clipping shape. 

Iguana draws some text next; we'll talk about this in more detail later. The next action is to 
modify the compositing rule as follows: 

AlphaComposite ac = AlphaComposite.getInstance( 
    AlphaComposite.SRC_OVER, (float).75); 
g2.setComposite(ac); 

All this means is that we want everything to be drawn with transparency. The AlphaComposite 
class defines constants representing different compositing rules, much the way the Color class 
contains constants representing different predefined colors. In this case, we're asking for the 
source over destination rule (SRC_OVER), but with an additional alpha multiplier of 0.75. Source 
over destination means that whatever we're drawing (the source) should be placed on top of 
whatever's already there (the destination). The alpha multiplier means that everything we draw 
will be treated at 0.75 or three quarters of its normal opacity, allowing the existing drawing to 
"show through." 

You can see the effect of the new compositing rule in the rounded rectangle and the image, which 
both allow previously drawn elements to show through. 

17.4 Filling Shapes 

Iguana fills its shapes with a number of colors, using the setPaint( ) method of 
Graphics2D. setPaint( ) sets the current color in the graphics context, so we set it to a 
different color before each drawing operation. This method accepts any object that implements 
the Paint interface. The 2D API includes three implementations of this interface, representing 
solid colors, color gradients, and textures. 

17.4.1 Solid Colors 

The java.awt.Color class handles color in Java. A Color object describes a single color. You 
can create an arbitrary Color by specifying the red, green, and blue values, either as integers 
between 0 and 255 or as floating-point values between 0.0 and 1.0. You can also use 
getColor( ) to look up a named color in the system properties table, as described in Chapter 
9. getColor( ) takes a String color property name, retrieves the integer value from the 
Properties list, and returns the Color object that corresponds to that color. 

The Color class also defines a number of static final color values; these are what we used 
in the Iguana example. These constants, such as Color.black and Color.red, provide a 
convenient set of basic color objects for your drawings. 

17.4.2 Color Gradients 



A color gradient is a smooth blend from one color to another. The GradientPaint class 
encapsulates this idea in a handy implementation of the Paint interface. All you need to do is 
specify two points and the color at each point. The GradientPaint will take care of the details 
so that the color fades smoothly from one point to the other. For example, in the previous 
example, the ellipse is filled with a gradient this way: 

g2.setPaint(new GradientPaint(40, 40, Color.blue, 
    60, 50, Color.white, true)); 

The last parameter in GradientPaint's constructor determines whether the gradient is cyclic. In 
a cyclic gradient, the colors keep fluctuating beyond the two points that you've specified. 
Otherwise, the gradient just draws a single blend from one point to the other. Beyond each 
endpoint, the color is solid. 

17.4.3 Textures 

A texture is simply an image that is repeated over and over like a floor tile. This concept is 
represented in the 2D API with the TexturePaint class. To create a texture, just specify the 
image to be used and the rectangle that will be used to reproduce it. But to do this, you need to 
know how to create and use images, which we'll get to a little later. 

17.4.4 Desktop Colors 

The Color class makes it easy to construct a particular color; however, that's not always what 
you want to do. Sometimes you want to match a preexisting color scheme. This is particularly 
important when you are designing a user interface; you might want your components to have the 
same colors as other components on that platform, and to change automatically if the user 
redefines his or her color scheme. 

That's what the SystemColor class is for. A system color represents the color used by the local 
windowing system in a certain context. The SystemColor class holds lots of predefined system 
colors, just like the Color class holds some predefined basic colors. For example, the field 
activeCaption represents the color used for the background of the title bar of an active 
window; activeCaptionText represents the color used for the title itself. menu represents the 
background color of menu selections; menuText represents the color of a menu item's text when 
it is not selected; textHighlightText is the color used when the menu item is selected; and 
so on. You could use the window value to set the color of a Window to match the other windows 
on the user's screen—whether or not they're generated by Java programs. 

myWindow.setBackground( SystemColor.window ); 

Because the SystemColor class is a subclass of Color, you can use it wherever you would use 
a Color. However, the SystemColor constants are tricky. They are constants as far as you, the 
programmer, are concerned; your code is not allowed to modify them. However, they can be 
modified at runtime. If the user changes his color scheme, the system colors are automatically 
updated to follow suit; as a result, anything displayed with system colors will also change color 
the next time it is redrawn. For example, the window myWindow would automatically change its 
background color to the new background color. 

The SystemColor class has one noticeable shortcoming. You can't compare a system color to a 
Color directly; the Color.equals( ) method doesn't return reliable results. For example, if 
you want to find out whether the window background color is red, you can't call: 



Color.red.equals(SystemColor.window); 

Instead, you should use getRGB( ) to find the color components of both objects and compare 
them, rather than comparing the objects themselves. 

17.5 Stroking Shape Outlines 

Just as a Graphics2D object's current paint determines how its shapes are filled, its current 
stoke determines how its shapes are outlined. The current stroke includes information about line 
thickness, line dashing, and end styles. (If you struggled with drawing in earlier versions of Java, 
you'll be very grateful that there's now a way to change the line thickness.) 

To set the current stroke in a Graphics2D, just call setStroke( ) with any implementation of 
the Stroke interface. Fortunately, the 2D API includes a BasicStroke class that probably does 
everything you need. Using BasicStroke, you can create dashed lines, control what decoration 
is added to line ends, and decide how the corners in an outline should be drawn. 

By default, a Graphics2D uses a solid stroke with a width of 1. In the previous Iguana example, 
the line width is changed just before the outline of the rounded rectangle is drawn, like so: 

g2.setStroke(new BasicStroke(4)); 

17.6 Using Fonts 

Text fonts in Java are represented by instances of the java.awt.Font class. A Font object is 
constructed from a name, style identifier, and a point size. We can create a Font at any time, but 
it's meaningful only when applied to a particular component on a given display device. Here are a 
couple of fonts: 

Font smallFont = new Font("Monospaced", Font.PLAIN, 10);   
Font bigFont = new Font("Serif", Font.BOLD, 18); 

Font names come in three varieties: family names, face names (also called font names), and 
logical names. Family and font names are closely related. For example, Garamond Italic is a font 
name for a font whose family name is Garamond. 

A logical name is a generic name for the font family. The following logical font names should be 
available on all platforms: 

• Serif (generic name for TimesRoman) 
• SansSerif (generic name for Helvetica) 
• Monospaced (generic name for Courier) 
• Dialog 
• DialogInput 

The logical font name is mapped to an actual font on the local platform. Java's fonts.properties 
files map the font names to the available fonts, covering as much of the Unicode character set as 
possible. If you request a font that doesn't exist, you get the default font. 

One of the big wins in the 2D API is that it can use most of the fonts you have installed on your 
computer. The following program prints out a full list of the fonts that are available to the 2D API: 



//file: ShowFonts.java 
import java.awt.*; 
 
public class ShowFonts { 
  public static void main(String[] args) { 
    Font[] fonts; 
    fonts = 
     GraphicsEnvironment.getLocalGraphicsEnvironment().getAllFonts( ); 
    for (int i = 0; i < fonts.length; i++) { 
      System.out.print(fonts[i].getFontName( ) + " : "); 
      System.out.print(fonts[i].getFamily( ) + " : "); 
      System.out.print(fonts[i].getName( )); 
      System.out.println( ); 
    } 
  } 
} 

Note, however, that the fonts installed on your system may not match the fonts installed on 
someone else's system. For true portability, you can use one of the logical names (although your 
application won't look exactly the same on all platforms) or go with the defaults. You can also 
allow your users to configure the application by choosing fonts themselves. 

The static method Font.getFont( )looks up a font name in the system properties list. 
getFont( ) takes a String font property name, retrieves the font name from the Properties 
table, and returns the Font object that corresponds to that font. You can use this mechanism, as 
with Colors, to define fonts with properties from outside your application. 

The Font class defines three static style identifiers: PLAIN, BOLD, and ITALIC. You can use 
these values on all fonts. The point size determines the size of the font on a display. If a given 
point size isn't available, Font substitutes a default size. 

You can retrieve information about an existing Font with a number of routines. The getName( 
), getSize( ), and getStyle( ) methods retrieve the logical name, point size, and style, 
respectively. You can use the getFamily( ) method to find out the family name, while 
getFontName( ) returns the face name of the font. 

Finally, to actually use a Font object, you can simply specify it as an argument to the setFont( 
) method of a Component or Graphics object. Subsequent text- drawing commands like 
drawString( ) for that component or in that graphics context use the specified font. 

17.6.1 Font Metrics 

To get detailed size and spacing information for text rendered in a font, we can ask for a 
java.awt.font.LineMetrics object. Different systems will have different real fonts available; 
the available fonts may not match the font you request. Furthermore, the measurements of 
different characters within a single font may be different, especially in multilingual text. Thus, a 
LineMetrics object presents information about a particular set of text in a particular font on a 
particular system, not general information about a font. For example, if you ask for the metrics of 
a nine-point Monospaced font, what you get isn't some abstract truth about Monospaced fonts; 
you get the metrics of the font that the particular system uses for nine-point Monospaced—which 
may not be exactly nine-point or even fixed-width. 



Use the getLineMetrics( ) method for a Font to retrieve the metrics for text as it would 
appear for that component. This method also needs to know some information about how you 
plan to render the text—if you're planning to use antialiasing, for instance, which affects the text 
measurements. This extra information is encapsulated in the FontRenderContext class. 
Fortunately, you can just ask Graphics2D for its current FontRenderContext rather than 
having to create one yourself: 

public void paint(Graphics g) {  
  Graphics2D g2 = (Graphics2D)g; 
  ... 
  FontRenderContext frc = g2.getFontRenderContext( ); 
  LineMetrics metrics = font.getLineMetrics("Monkey", frc); 
  ... 
} 

The Font class also has a getStringBounds( ) method that returns the bounding box of a 
piece of text: 

public void paint(Graphics g) {  
  Graphics2D g2 = (Graphics2D)g; 
  ... 
  FontRenderContext frc = g2.getFontRenderContext( ); 
  float messageWidth =  
      (float)font.getStringBounds("Monkey", frc).getWidth( ); 
  ... 
} 

The following application, FontShow, displays a word and draws reference lines showing certain 
characteristics of its font, as shown in Figure 17.3. Clicking in the application window toggles 
the point size between a small and a large value. 

Figure 17.3. The FontShow application 

 
//file: FontShow.java 
import java.awt.*;  
import java.awt.event.*; 
import java.awt.font.*; 
import javax.swing.*; 
 
public class FontShow extends JComponent { 



  private static final int PAD = 25;   // frilly line padding 
  private boolean bigFont = true; 
  private String message;  
   
  public FontShow(String message) { 
    this.message = message; 
    addMouseListener(new MouseAdapter( ) {  
      public void mouseClicked(MouseEvent e) {  
        bigFont = !bigFont;  
        repaint( );  
      }  
    });  
  } 
   
  public void paint(Graphics g) {  
    Graphics2D g2 = (Graphics2D)g; 
     
    g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, 
        RenderingHints.VALUE_ANTIALIAS_ON); 
     
    int size = bigFont ? 96 : 64; 
    Font font = new Font("Dialog", Font.PLAIN, size); 
    g2.setFont(font); 
    int width = getSize( ).width; 
    int height = getSize( ).height; 
     
    FontRenderContext frc = g2.getFontRenderContext( ); 
    LineMetrics metrics = font.getLineMetrics(message, frc); 
    float messageWidth =  
        (float)font.getStringBounds(message, frc).getWidth( ); 
 
    // center text 
    float ascent = metrics.getAscent( ); 
    float descent = metrics.getDescent( ); 
    float x = (width - messageWidth) / 2;  
    float y = (height + metrics.getHeight( )) / 2 - descent; 
 
    g2.setPaint(getBackground( )); 
    g2.fillRect(0, 0, width, height);  
     
    g2.setPaint(getForeground( )); 
    g2.drawString(message, x, y); 
     
    g2.setPaint(Color.white);  // Base lines 
    drawLine(g2, x - PAD, y, x + messageWidth + PAD, y);  
    drawLine(g2, x, y + PAD, x, y - ascent - PAD);  
    g2.setPaint(Color.green);  // Ascent line  
    drawLine(g2, x - PAD, y - ascent,   
             x + messageWidth + PAD, y - ascent);  
    g2.setPaint(Color.red);    // Descent line  
    drawLine(g2, x - PAD, y + descent,   
             x + messageWidth + PAD, y + descent);  
  } 
   
  private void drawLine(Graphics2D g2, 
      double x0, double y0, double x1, double y1) { 
    Shape line = new java.awt.geom.Line2D.Double(x0, y0, x1, y1); 



    g2.draw(line); 
  } 
 
  public static void main(String args[]) { 
    String message = "Lemming"; 
    if (args.length > 0) message = args[0]; 
     
    JFrame f = new JFrame("FontShow"); 
    f.setSize(420, 300); 
    f.setLocation(100, 100); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.getContentPane( ).add(new FontShow(message)); 
    f.setVisible(true); 
  } 
} 

You can specify the text to be displayed as a command-line argument: 

java FontShow "When in the course of human events ..." 

FontShow may look a bit complicated, but there's really not much to it. The bulk of the code is in 
paint( ), which sets the font, draws the text, and adds a few lines to illustrate some of the 
font's characteristics (metrics). For fun, we also catch mouse clicks (using an event handler 
defined in the constructor) and alternate the font size by setting the bigFont toggle variable and 
repainting. 

By default, text is rendered above and to the right of the coordinates specified in the 
drawString( ) method. Think of that starting point as the origin of a coordinate system; the 
axes are the baselines of the font. FontShow draws these lines in white. The greatest height the 
characters stretch above the baseline is called the ascent and is shown by a green line. Some 
fonts also have parts of letters that fall below the baseline. The farthest distance any character 
reaches below the baseline is called the descent. FontShow illustrates this with a red line. 

We ask for the ascent and descent of our font with the LineMetrics class's getAscent( ) 
and getDescent( ) methods. We also ask for the width of our string (when rendered in this 
font) with Font's getStringBounds( ) method. This information is used to center the word in 
the display area. To center the word vertically, we use the height and adjust with the descent to 
calculate the baseline location. Table 17.2 provides a short list of methods that return useful font 
metrics. 

Table 17.2. LineMetrics Methods  
Method Description 

getAscent( ) Height above baseline 
getDescent( ) Depth below baseline 
getLeading( ) Standard vertical spacing between lines 
getHeight( ) Total line height (ascent + descent + leading)  

Leading space is the padding between lines of text. The getHeight( ) method reports the total 
height of a line of text, including the leading space. 



17.7 Displaying Images 

So far, we've worked with methods for drawing simple shapes and displaying text. For more 
complex graphics, we'll be working with images. The 2D API has a powerful set of tools for 
generating and displaying image data. These tools address the problems of working in a 
distributed and multithreaded application environment. We'll start with the basics of the 
java.awt.Image class and see how to get an image into an applet or application and draw it on 
a display. This job isn't quite as simple as it sounds; the browser might have to retrieve the image 
from a networked source when we ask for it. Fortunately, if we're just interested in getting the 
image on the screen whenever it's ready, we can let the graphics system handle the details for 
us. In the next chapter, we'll discuss how to manage image loading manually, as well as how to 
create raw image data and feed it efficiently to the rest of an application. 

17.7.1 The Image Class 

The java.awt.Image class represents a view of an image. The view is created from an image 
source that produces pixel data. Images can be from a static source, such a GIF, JPEG, or PNG 
data file, or a dynamic one, such as a video stream or a graphics engine. The Image class in 
Java 2 also handles GIF89a animations, so that you can work with simple animations as easily as 
static images. 

An applet can ask its viewer to retrieve an image by calling the getImage( ) method. The 
location of the image to be retrieved is given as a URL, either absolute or fetched from an 
applet's resources: 

//file: MyApplet.java 
import java.net.*; 
import java.awt.Image; 
 
public class MyApplet extends javax.swing.JApplet {   
  public void init( ) {   
    try {   
      // absolute URL   
      URL monaURL = 
          new URL( "http://myserver/images/mona_lisa.gif"); 
      Image monaImage = getImage( monaURL );   
      // applet resource URL   
      URL daffyURL = 
          getClass( ).getResource("cartoons/images/daffy.gif"); 
      Image daffyDuckImage = getImage( daffyURL );  
    }    
    catch ( MalformedURLException e ) { 
        // unintelligable url 
    } 
  } 
  // ... 
} 

We usually want to package an applet's images with the applet itself, so using getResource( ) 
is preferred; it looks for the image in the applet's JAR file (if there is one), before looking 
elsewhere in the server's filesystem. 

For a standalone application, where we don't have the applet's getImage( ) method available, 
we can use a convenience method in the java.awt.Toolkit class: 



Image dukeImage = getToolkit( ).getImage( url ); 

As with the previous example, this works both for URLs that we construct and for those returned 
by getResource( ). 

Once we have an Image object, we can draw it into a graphics context with the drawImage( ) 
method of the Graphics2D class. The simplest form of the drawImage( ) method takes four 
parameters: the Image object, the x, y coordinates at which to draw it, and a reference to a 
special image observer object. We'll show an example involving drawImage( ) soon, but first 
let's find out about image observers. 

17.7.2 Image Observers 

Images are processed asynchronously, which means that Java performs image operations like 
loading and scaling on its own time. For example, the getImage( ) method always returns 
immediately, even if the image data has to be retrieved over the network from Mars and isn't 
available yet. In fact, if it's a new image, Java won't even begin to fetch it until we try to try to 
display or manipulate it. The advantage of this technique is that Java can do the work of a 
powerful, multithreaded image-processing environment for us. However, it also introduces several 
problems. If Java is loading an image for us, how do we know when it's completely loaded? What 
if we want to work with the image as it arrives? What if we need to know properties of the image 
(like its dimensions) before we can start working with it? What if there's an error in loading the 
image? 

These problems are handled by image observers—designated objects that implement the 
ImageObserver interface. All operations that draw or examine Image objects return 
immediately, but they take an image-observer object as a parameter. The ImageObserver 
monitors the image's status and can make that information available to the rest of the application. 
When image data is loaded from its source by the graphics system, your image observer is 
notified of its progress, including when new pixels are available, when a complete frame of the 
image is ready, and if there is an error during loading. The image observer also receives attribute 
information about the image, such as its dimensions and properties, as soon as they are known. 

The drawImage( ) method, like other image operations, takes a reference to an 
ImageObserver object as a parameter. drawImage( ) returns a boolean value specifying 
whether or not the image was painted in its entirety. If the image data has not yet been loaded or 
is only partially available, drawImage( ) paints whatever fraction of the image it can and 
returns. In the background, the graphics system starts (or continues) loading the image data. The 
image-observer object is registered as being interested in information about the image. It's then 
called repeatedly as more pixel information is available and again when the entire image is 
complete. The image observer can do whatever it wants with this information. Most often it calls 
repaint( ) to prompt the applet to draw the image again with the updated data; a call to 
repaint( ) initiates a call to paint( ) to be scheduled. In this way, an applet can redraw the 
image as it arrives, for a progressive loading effect. Alternatively, it could wait until the entire 
image is loaded before displaying it. 

We'll discuss creating image observers a bit later. For now, we can avoid the issue by using a 
prefabricated image observer. It just so happens that the Component class implements the 
ImageObserver interface and provides some simple repainting behavior for us. This means that 
every component can serve as its own default image observer; we simply pass a reference to our 
applet (or other component) as the image-observer parameter of a drawImage( ) call. Hence 
the mysterious this we've occasionally seen when working with graphics: 



class MyApplet extends java.applet.Applet {   
    ...   
    public void paint( Graphics g ) {   
        drawImage( monaImage, x, y, this );   
        ... 

Our applet serves as the image observer and calls repaint( ) for us to redraw the image as 
necessary. If the image arrives slowly, our applet is notified repeatedly, as new chunks become 
available. As a result, the image appears gradually, as it's loaded. The 
awt.image.incrementaldraw and awt.image.redrawrate system properties control this 
behavior. redrawrate limits how often repaint( ) is called; the default value is every 100 
milliseconds. incrementaldraw's default value, true, enables this behavior. Setting it to 
false delays drawing until the entire image has arrived. 

17.7.3 Scaling and Size 

Another version of drawImage( ) renders a scaled version of the image: 

drawImage( monaImage, x, y, x2, y2, this ); 

This draws the entire image within the rectangle formed by the points x, y and x2, y2, scaling as 
necessary. (Cool, eh?) drawImage( ) behaves the same as before; the image is processed by 
the component as it arrives, and the image observer is notified as more pixel data and the 
completed image are available. Several other overloaded versions of drawImage( ) provide 
more complex options: you can scale, crop, and perform some simple transpositions. 

If you want to actually make a scaled copy of an image (as opposed to simply painting one at 
draw-time), you can call getScaledInstance( ). Here's how: 

Image scaledDaffy = 
  daffyImage.getScaledInstance(100,200,SCALE_AREA_ AVERAGING); 

This method scales the original image to the given size; in this case, 100 by 200 pixels. It returns 
a new Image that you can draw like any other image. SCALE_ AREA_AVERAGING is a constant 
that tells getScaledImage( ) what scaling algorithm to use. The algorithm used here tries to 
do a decent job of scaling, at the expense of time. Some alternatives that take less time are 
SCALE_REPLICATE, which scales by replicating scan lines and columns (which is fast, but 
probably not pretty). You can also specify either SCALE_FAST or SCALE_SMOOTH and let the 
implementation choose an appropriate algorithm that optimizes for time or quality. If you don't 
have specific requirements, you should use SCALE_DEFAULT, which, ideally, would be set by a 
preference in the user's environment. 

Scaling an image before calling drawImage( ) can improve performance, because the image 
loading and scaling can take place before the image is actually needed. The same amount of 
work is required, but in most situations, prescaling will make the program appear faster, because 
it takes place while other things are going on; the user doesn't have to wait as long for the image 
to display. 

The Image getHeight( ) and getWidth( ) methods retrieve the dimensions of an image. 
Since this information may not be available until the image data is completely loaded, both 
methods also take an ImageObserver object as a parameter. If the dimensions aren't yet 
available, they return values of -1 and notify the observer when the actual value is known. We'll 



see how to deal with these and other problems a bit later. For now, we'll use Component as an 
image observer to get by, and move on to some general painting techniques. 

17.8 Using Drawing Techniques 

Having learned to walk, let's try a jog. In this section, we'll look at some techniques for doing fast 
and flicker-free drawing and painting. If you're interested in animation or smooth updating, this is 
for you. 

Drawing operations take time, and time spent drawing leads to delays and imperfect results. Our 
goal is to minimize the amount of drawing work we do and, as much as possible, to do that work 
away from the eyes of the user. To see how to eliminate flicker and blinking problems, we'll look 
at an application that animates very badly. The good news is that Swing automatically solves a lot 
of flicker problems. 

TerribleFlicker illustrates some of the problems of updating a display. Like many 
animations, it has two parts: a constant background and a changing object in the foreground. In 
this case, the background is a checkerboard pattern and the object is a small, scaled image we 
can drag around on top of it, as shown in Figure 17.4. Our first version of TerribleFlicker 
lives up to its name, doing a very poor job of updating. 

Figure 17.4. The TerribleFlicker application 

 
//file: TerribleFlicker.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class TerribleFlicker extends JComponent 
                             implements MouseMotionListener { 
  int grid = 10; 
  int imageX, imageY; 
  Image image; 
  int imageWidth = 60, imageHeight = 60; 
   
  public TerribleFlicker(Image i) { 
    image = i; 
    addMouseMotionListener(this); 
  } 
   
  public void mouseDragged(MouseEvent e) { 



    imageX = e.getX( ); 
    imageY = e.getY( ); 
    repaint( ); 
  } 
   
  public void mouseMoved(MouseEvent e) {} 
 
  public void paint(Graphics g) { 
    Graphics2D g2 = (Graphics2D)g; 
     
    int w = getSize( ).width / grid; 
    int h = getSize( ).height / grid; 
    boolean black = false; 
    for (int y = 0; y <= grid; y++) 
      for (int x = 0; x <= grid; x++) { 
        g2.setPaint(black ? Color.black : Color.white); 
        black = !black; 
        g2.fillRect(x * w, y * h, w, h); 
      } 
    g2.drawImage(image, imageX, imageY, 
                 imageWidth, imageHeight, this); 
  } 
 
  public static void main(String[] args) { 
    String imageFile = "L1-Light.jpg"; 
    if (args.length > 0) 
      imageFile = args[0]; 
    Image i = Toolkit.getDefaultToolkit( ).getImage( 
        TerribleFlicker.class.getResource(imageFile)); 
    JFrame f = new JFrame("TerribleFlicker"); 
    Container content = new Panel(new BorderLayout( )); 
    content.add(new TerribleFlicker(i), BorderLayout.CENTER); 
    f.setContentPane(content); 
    f.setSize(300, 300); 
    f.setLocation(100, 100); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setVisible(true); 
  } 
} 

Run the application by specifying an image file as a command-line argument. Try dragging the 
image; you'll notice both the background and foreground flicker as they are repeatedly redrawn. 
What is TerribleFlicker doing, and what is it doing wrong? 

TerribleFlicker is a custom component that is shown in the content pane of a JFrame. In 
the main( ) method, a TerribleFlicker is created and put in a Panel. The Panel is set to 
be the content pane of the applet. A Panel is used in place of one of the Swing containers for the 
purposes of illustration. At the end of this section, we'll use a JPanel, which will take care of all 
of our problems in one dramatic step. 

As the mouse is dragged, TerribleFlicker keeps track of its position in two instance 
variables, imageX and imageY. On each call to mouseDragged( ), the coordinates are 
updated, and repaint( ) is called to ask that the display be updated. When paint( ) is 



called, it looks at some parameters, draws the checkerboard pattern to fill the applet's area, and 
finally paints a small version of the image at the latest coordinates. 

Our first, and biggest, problem is that we are updating, but we have neglected to implement a 
good strategy. The panel that contains TerribleFlicker is using the default implementation of 
the update( ) method, which looks something like this: 

public void update( Graphics g ) {   
    setColor ( backgroundColor );   
    fillRect( 0, 0, getSize().width, getSize( ).height );   
    paint ( g );   
} 

This method simply clears the display to the background color and calls the paint( ) method, 
which eventually calls the paint( ) method of TerribleFlicker. This is almost never the 
best strategy, but is the only appropriate default for update( ), which doesn't know how much 
of the screen we're really going to paint. 

Our application paints its own background in its entirety, so we can provide a simpler version of 
update( ) that doesn't bother to clear the display. Here's another example that uses the 
TerribleFlicker class. This time, we create a Panel with a modified update( ) method: 

//file: UpdateFlicker.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class UpdateFlicker { 
  public static void main(String[] args) { 
    String imageFile = "L1-Light.jpg"; 
    if (args.length > 0) imageFile = args[0]; 
    Image i = Toolkit.getDefaultToolkit( ).getImage( 
        TerribleFlicker.class.getResource(imageFile)); 
    JFrame f = new JFrame("UpdateFlicker"); 
    Container content = new Panel(new BorderLayout( )) { 
        public void update(Graphics g) { paint(g); } 
    }; 
    content.add(new TerribleFlicker(i), BorderLayout.CENTER); 
    f.setContentPane(content); 
    f.setSize(300, 300); 
    f.setLocation(100, 100); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setVisible(true); 
  } 
} 

This application works better because we have eliminated one large, unnecessary, and (in fact) 
annoying graphics operation. However, although we have eliminated a fillRect( ) call, we're 
still doing a lot of wasted drawing. Most of the background stays the same each time it's drawn. 
You might think of trying to make paint( ) smarter, so that it wouldn't redraw these areas, but 
remember that paint( ) has to be able to draw the entire scene, because it might be called in 



situations when the display isn't intact. The solution is to draw only part of the picture whenever 
the mouse moves. 

17.8.1 Limited Redrawing 

Whenever the mouse is dragged, TerribleFlicker responds by updating its coordinates and 
calling repaint( ). But repaint( ) draws the entire component. Most of this drawing is 
unnecessary. It turns out that there's another version of repaint( ) that lets you specify a 
rectangular area that should be drawn—in essence, a clipping region. 

Why does it help to restrict the drawing area? Well, foremost, drawing operations that fall outside 
of the clipping region are not displayed. If a drawing operation overlaps the clipping region, we 
see only the part that's inside. A second effect is that, in a good implementation, the graphics 
context can recognize drawing operations that fall completely outside the clipping region and 
ignore them altogether. Eliminating unnecessary operations can save time if we're doing 
something complex, like filling a bunch of polygons. This doesn't save the time our application 
spends calling the drawing methods, but the overhead of calling these kinds of drawing methods 
is usually negligible compared to the time it takes to execute them. (If we were generating an 
image pixel by pixel, this would not be the case, as the calculations would be the major time sink, 
not the drawing.) 

So we can save time in our application by redrawing only the affected portion of the display. We 
can pick the smallest rectangular area that includes both the old image position and the new 
image position, as shown in Figure 17.5. This is the only portion of the display that really needs 
to change; everything else stays the same. 

Figure 17.5. Determining the clipping region 

 

A smarter algorithm could save even more time by redrawing only those regions that have 
changed. However, the simple clipping strategy we've implemented here can be applied to many 
kinds of drawing, and gives quite good performance, particularly if the area being changed is 
small. 

One important thing to note is that, in addition to looking at the new position, our updating 
operation now has to remember the last position at which the image was drawn. Let's fix our 
application so it will use a specified clipping region. To keep this short and emphasize the 
changes, we'll take some liberties with design and make our next example a subclass of 
TerribleFlicker. Let's call it LimitedFlicker. 

//file: LimitedFlicker.java 



import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class LimitedFlicker extends TerribleFlicker { 
  int oldX, oldY; 
   
  public LimitedFlicker(Image i) { super(i); } 
   
  public void mouseDragged(MouseEvent e) { 
    imageX = e.getX( ); 
    imageY = e.getY( ); 
    Rectangle r = getAffectedArea(oldX, oldY, imageX, imageY, 
        imageWidth, imageHeight); 
    // update just the affected part of the component 
    repaint(r); 
    oldX = imageX; 
    oldY = imageY; 
  } 
   
  private Rectangle getAffectedArea(int oldx, int oldy, 
      int newx, int newy, int width, int height) {  
    int x = Math.min(oldx, newx);  
    int y = Math.min(oldy, newy);  
    int w = (Math.max(oldx, newx) + width) - x;  
    int h = (Math.max(oldy, newy) + height) - y;  
    return new Rectangle(x, y, w, h);  
  } 
 
  public static void main(String[] args) { 
    String imageFile = "L1-Light.jpg"; 
    if (args.length > 0) 
      imageFile = args[0]; 
    Image i = Toolkit.getDefaultToolkit( ).getImage( 
        TerribleFlicker.class.getResource(imageFile)); 
    JFrame f = new JFrame("LimitedFlicker"); 
    Container content = new Panel(new BorderLayout( )) { 
        public void update(Graphics g) { paint(g); } 
    }; 
    content.add(new LimitedFlicker(i), BorderLayout.CENTER); 
    f.setContentPane(content); 
    f.setSize(300, 300); 
    f.setLocation(100, 100); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setVisible(true); 
  } 
} 

You may find that LimitedFlicker is significantly faster, though it still flickers. (You might not 
notice the speed-up on a fast machine.) We'll make one more change in the next section to 
eliminate that. 

So, what have we changed? First, we've overridden mouseDragged( ) so that instead of 
setting the current coordinates of the image, it figures out the area that has changed. A new, 



private method helps it do this. getAffectedArea( ) takes as arguments the new and old 
coordinates and the width and height of the image. It determines the bounding rectangle as 
shown in Figure 17.6, then calls repaint( ) to draw only the affected area of the screen. 
mouseDragged( ) also saves the current position away, by setting the oldX and oldY 
variables. 

17.8.2 Double Buffering 

Now let's get to the most powerful technique in our toolbox: double buffering. Double buffering is 
a technique that fixes our flickering problems completely. It's easy to do and gives us almost 
flawless updates. We'll combine it with our clipping technique for better performance. In general, 
you can use double buffering with or without clipping. 

Double buffering our display means drawing into an offscreen buffer and then copying our 
completed work to the display in a single painting operation, as shown in Figure 17.6. It takes 
the same amount of time to draw a frame, but double buffering instantaneously updates our 
display when it's ready. 

Figure 17.6. Double buffering 

 

Although you could implement this technique yourself, there's not much point—Swing supplies 
double buffering for free. All you need to do is use a Swing component in a Swing container. 
Swing takes care of the details. Instead of using an AWT Panel as a container, then, let's see 
how it works with a Swing JPanel: 

//file: Smoothie.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class Smoothie { 
  public static void main(String[] args) { 
    String imageFile = "L1-Light.jpg"; 
    if (args.length > 0) 
      imageFile = args[0]; 
    Image i = Toolkit.getDefaultToolkit( ).getImage( 
        TerribleFlicker.class.getResource(imageFile)); 
    JFrame f = new JFrame("Smoothie"); 
    Container content = new JPanel(new BorderLayout( )) { 
        public void update(Graphics g) { paint(g); } 
    }; 
    content.add(new LimitedFlicker(i), BorderLayout.CENTER); 
    f.setContentPane(content); 



    f.setSize(300, 300); 
    f.setLocation(100, 100); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    f.setVisible(true); 
  } 
} 

Now, when you drag the image, you shouldn't see any flickering. The update rate should be 
about the same as in the previous example (or marginally slower), but the image should move 
from position to position without noticeable repainting. 

Note that we're still limiting repaints, because we're still using LimitedFlicker. You could use 
TerribleFlicker if you want. It should perform a little more slowly but you still won't see any 
flickering. 

17.8.3 Offscreen Drawing 

In addition to serving as buffers for double buffering, offscreen images are useful for saving 
complex, hard-to-produce, background information. We'll look at a simple example: the "doodle 
pad." DoodlePad is a simple drawing tool that lets us scribble by dragging the mouse, as shown 
in Figure 17.7. It draws into an offscreen image; its paint( ) method simply copies the image 
to the display area. 

Figure 17.7. The DoodlePad application 

 
//file: DoodlePad.java 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class DoodlePad extends JFrame { 
 
  public DoodlePad( ) { 
    super("DoodlePad"); 
    Container content = getContentPane( ); 
    content.setLayout(new BorderLayout( )); 



    final DrawPad drawPad = new DrawPad( ); 
    content.add(drawPad, BorderLayout.CENTER); 
    JPanel p = new JPanel( ); 
    JButton clearButton = new JButton("Clear"); 
    clearButton.addActionListener(new ActionListener( ) { 
      public void actionPerformed(ActionEvent e) { 
        drawPad.clear( ); 
      } 
    }); 
    p.add(clearButton); 
    content.add(p, BorderLayout.SOUTH); 
    setSize(280, 300); 
    setLocation(100, 100); 
    addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { 
        System.exit(0); 
      } 
    }); 
    setVisible(true); 
  } 
 
  public static void main(String[] args) { 
    new DoodlePad( ); 
  } 
} // end of class DoodlePad 
 
class DrawPad extends JComponent { 
  Image image; 
  Graphics2D graphics2D; 
  int currentX, currentY, oldX, oldY; 
   
  public DrawPad( ) { 
    setDoubleBuffered(false); 
    addMouseListener(new MouseAdapter( ) { 
      public void mousePressed(MouseEvent e) { 
        oldX = e.getX( ); 
        oldY = e.getY( ); 
      } 
    }); 
    addMouseMotionListener(new MouseMotionAdapter( ) { 
      public void mouseDragged(MouseEvent e) { 
        currentX = e.getX( ); 
        currentY = e.getY( ); 
        if (graphics2D != null) 
          graphics2D.drawLine(oldX, oldY, currentX, currentY); 
        repaint( ); 
        oldX = currentX; 
        oldY = currentY; 
      } 
    }); 
  } 
   
  public void paintComponent(Graphics g) { 
    if (image == null) { 
      image = createImage(getSize().width, getSize( ).height); 
      graphics2D = (Graphics2D)image.getGraphics( ); 
      graphics2D.setRenderingHint(RenderingHints.KEY_ANTIALIASING, 



          RenderingHints.VALUE_ANTIALIAS_ON); 
      clear( ); 
    } 
    g.drawImage(image, 0, 0, null); 
  } 
   
  public void clear( ) { 
    graphics2D.setPaint(Color.white); 
    graphics2D.fillRect(0, 0, getSize().width, getSize( ).height); 
    graphics2D.setPaint(Color.black); 
    repaint( ); 
  } 
} 

Give it a try. Draw a nice moose, or a sunset. We just drew a lovely cartoon of Bill Gates. If you 
make a mistake, hit the Clear button and start over. 

The parts should be familiar by now. We have made a type of JComponent called DrawPad. The 
new DrawPad component uses inner classes to supply handlers for the MouseListener and 
MouseMotionListener interfaces. Mouse dragging is handled by drawing lines into an 
offscreen image and calling repaint( ) to update the display. DrawPad's paint( ) method 
simply does a drawImage( ) to copy the offscreen drawing area to the display. In this way, 
DrawPad saves our sketch information. 

What is unusual about DrawPad is that it does some drawing outside of paint( ). In this 
example, we want to let the user scribble with the mouse, so we should respond to every mouse 
movement. Therefore, we do our work in mouseDragged( ) itself. As a rule, we should be 
careful about doing heavy work in event-handling methods because we don't want to interfere 
with other tasks the windowing system's painting thread is performing. In this case, our line-
drawing option should not be a burden, and our primary concern is getting as close a coupling as 
possible between the mouse movement events and the sketch on the screen. 

In addition to drawing a line as the user drags the mouse, the mouseDragged( ) handler 
maintains a set of old coordinates, to be used as a starting point for the next line segment. The 
mousePressed( ) handler resets the old coordinates to the current mouse position whenever 
the user moves the mouse. Finally, DrawPad provides a clear( ) method that clears the 
offscreen buffer and calls repaint( ) to update the display. The DoodlePad application ties 
the clear( ) method to an appropriately labeled button through another anonymous inner 
class. 

What if we wanted to do something with the image after the user has finished scribbling on it? As 
we'll see in the next chapter, we could get the pixel data for the image and work with that. It 
wouldn't be hard to create a save facility that stores the pixel data and reproduces it later. Think 
about how you might go about creating a networked "bathroom wall," where people could scribble 
on your web pages. 

17.9 Printing 

Earlier in this chapter, we hinted at the possibility that you could draw the same stuff on the 
screen and the printer. It's true; all you really need to do is get a Graphics2D that represents a 
printer rather than an area of the screen. Java 2's Printing API provides the necessary plumbing. 
There isn't room here to describe the whole Printing API, but we will provide you with a short 
example that will let you get your feet wet (and your paper blackened). 



The printing classes are tucked away in the java.awt.print package. You can print anything 
that implements the Printable interface. This interface has only one method—you guessed it, 
print( ). This method, like the paint( ) methods we've already worked with, accepts a 
Graphics object that represents the drawing surface of the printer's page. It also accepts a 
PageFormat object that encapsulates information about the paper on which you're printing. 
Finally, print( ) is passed the number of the page that is being rendered. 

Your print( ) implementation should either render the requested page or state that it doesn't 
exist. You can do this by returning special values from print( ), either 
Printable.PAGE_EXISTS or Printable.NO_SUCH_PAGE. 

You can control a print job, including showing print and page setup dialogs, using the 
PrinterJob class. The following class will enable you to get something on paper: 

//file: UnbelievablySimplePrint.java 
import java.awt.*; 
import java.awt.print.*; 
 
public class UnbelievablySimplePrint implements Printable { 
  private static Font sFont = new Font("Serif", Font.PLAIN , 64); 
   
  public int print(Graphics g, PageFormat Pf, int pageIndex) 
      throws PrinterException { 
    if (pageIndex > 0) return NO_SUCH_PAGE; 
    Graphics2D g2 = (Graphics2D)g; 
    g2.setFont(sFont); 
    g2.setPaint(Color.black); 
    g2.drawString("Save a tree!", 96, 144); 
    return PAGE_EXISTS; 
  } 
 
  public static void main(String[] args) { 
    PrinterJob job = PrinterJob.getPrinterJob( ); 
    job.setPrintable(new UnbelievablySimplePrint( )); 
    if (job.printDialog( )) { 
      try { 
        job.print( ); 
      } 
      catch (PrinterException e) {} 
    } 
    System.exit(0); 
  } 
} 

There's not much to this example. We've created an implementation of Printable, called 
UnbelievablySimplePrint. It has a very simple print( ) method that draws some text. 

The rest of the work, in the main( ) method, has to do with setting up the print job. First, we 
create a new PrinterJob and tell it what we want to print: 

PrinterJob job = PrinterJob.getPrinterJob( ); 
job.setPrintable(new UnbelievablySimplePrint( )); 



Then we use the printDialog( ) method to show the standard print dialog. If the user presses 
the OK button, printDialog( ) returns true and main( ) goes ahead with the printing. 

Notice, in the print( ) method, how we perform the familiar cast from Graphics to 
Graphics2D. The full power of the 2D API is available for printing. In a real application, you'd 
probably have some subclass of Component that was also a Printable. The print( ) 
method could simply call the component's paint( ) method, to create a component that 
performs the same rendering to both the screen and the printer. 



Chapter 18. Working with Images and Other Media 

Up to this point, we've confined ourselves to working with the high-level drawing commands of 
the Graphics2D class, using images in a hands-off mode. In this section, we'll clear up some of 
the mystery surrounding images and see how they are created and used. The classes in the 
java.awt.image package handle images and their insides; Figure 18.1 shows the important 
classes in this package.[1]  

[1] Before Java 2, creating and modifying images was the domain of image producers and consumers. We 
won't be covering these topics in this chapter; instead, we'll stick to the "new stuff," which is more capable 
and easier to use in some cases. 

Figure 18.1. The java.awt.image package 

 

First, we'll return to our discussion of image observers and see how we can get more control over 
image data as it's processed asynchronously by GUI components. Then we'll open the hood and 
have a look at the inside of a BufferedImage. If you're interested in creating sophisticated 
graphics, such as rendered images or video streams, this will teach you about the foundations of 
image construction in Java. 

18.1 Implementing an ImageObserver 

The architects of Java realized that images might take some time to load over a slow network. 
Image observers implement the ImageObserver interface. They are effectively nosy neighbors 
of images that watch as the image data arrives. 



An image is simply a rectangle of pixels. A pixel has both a color and a transparency; the 
transparency specifies how pixels underneath the image show through. For a static image, such 
as a GIF or JPEG data file, the observer is notified when the entire image is complete, and 
production is finished. For a video source or animation, the image observer would be notified 
repeatedly (at the end of each frame) as a continuous stream of pixel data was received. 

The observer is notified as new portions of the image and new attributes are ready. Its job is to 
track this information and let another part of the application know its status. The image observer 
is essentially a callback that is notified asynchronously as the image is built. The default 
Component class image observer that we used in our previous examples called repaint( ) for 
us each time a new section of the image was available, so that the screen was updated more or 
less continuously as the data arrived. A different kind of image observer might wait for the entire 
image before telling the application to display it; yet another observer might update a loading 
meter showing how far the image loading had progressed. 

To be an image observer, you have to implement the single method, image-Update( ), 
defined by the java.awt.image.ImageObserver interface: 

public boolean imageUpdate(Image image, int flags, int x, int y, 
                           int width, int height) 

imageUpdate( ) is called by the graphics system, as needed, to pass the observer information 
about the construction of its view of the image. Essentially, any time the image changes, the 
observer is notified so it can perform any necessary actions, like repainting. image holds a 
reference to the Image object in question. flags is an integer whose bits specify what 
information about the image is now available. The values of the flags are defined as static 
variables in the ImageObserver interface, as shown in Table 18.1. 

Table 18.1. ImageObserver Information Flags  
Flag Description 

HEIGHT The height of the image is ready. 
WIDTH The width of the image is ready. 
FRAMEBITS A frame is complete. 
SOMEBITS Some new pixels have arrived. 
ALLBITS The image is complete. 
ABORT The image loading has been aborted. 
ERROR An error occurred during image processing; attempts to display the image will fail. 

The flags determine which of the other parameters, x, y, width, and height, hold valid data 
and what that data means. To test whether a particular flag in the flags integer is set, we have 
to resort to some binary shenanigans. The following class, MyObserver, implements the 
ImageObserver interface; it reports on the information it receives: 

//file: MyObserver.java 
import java.awt.*;   
import java.awt.image.*;   
 
class MyObserver implements ImageObserver {   
 
  public boolean imageUpdate( Image image, int flags, int x, int y,   
                              int width, int height) {   



 
    if ( (flags & HEIGHT) !=0 )   
      System.out.println("Image height = " + height );   
 
    if ( (flags & WIDTH ) !=0 )   
      System.out.println("Image width = " + width );   
 
    if ( (flags & FRAMEBITS) != 0 )   
      System.out.println("Another frame finished.");   
 
    if ( (flags & SOMEBITS) != 0 )   
      System.out.println("Image section :"   
             + new Rectangle( x, y, width, height ) ); 
   
    if ( (flags & ALLBITS) != 0 ) {   
      System.out.println("Image finished!");   
      return false;    
    }   
   
    if ( (flags & ABORT) != 0 ) {   
      System.out.println("Image load aborted...");   
      return false;    
    }  
    return true;    
  }   
} 

The imageUpdate( ) method of MyObserver is called by the consumer periodically, and prints 
simple status messages about the construction of the image. Notice that width and height play 
a dual role. If SOMEBITS is set, they represent the size of the chunk of the image that has just 
been delivered. If HEIGHT or WIDTH is set, however, they represent the overall image 
dimensions. Just for amusement, we have used the java.awt.Rectangle class to help us 
print the bounds of a rectangular region. (You may not want to create a new object each time you 
just need to report some coordinates.) 

imageUpdate( ) returns a boolean value indicating whether or not it's interested in future 
updates. If the image is finished or aborted, imageUpdate( ) returns false to indicate it isn't 
interested in further updates. Otherwise, it returns true. 

The following example uses a MyObserver object to generate information about an image as it 
is loaded. (To see the messages, enable your browser's Java console.) 

//file: ObserveImage.java 
import java.awt.*;   
   
public class ObserveImage extends java.applet.Applet {    
  Image img;   
 
  public void init( ) {   
    img = getImage( getClass( ).getResource(getParameter("img")) );   
    MyObserver mo = new MyObserver( );   
    img.getWidth( mo );   
    img.getHeight( mo );   
    prepareImage( img, mo );   
  }   



 
  public void paint(Graphics g) { 
    g.drawImage(img, 0, 0, null); 
  } 
} 

After requesting the Image object with getImage( ) , we perform three operations on it to kick-
start the loading process. getWidth( ) and getHeight( ) ask for the image's width and 
height. If the image hasn't been loaded yet, or its size can't be determined until loading is 
finished, our observer will be called when the data is ready. prepareImage( ) asks that the 
image be readied for display on the component. It's a general mechanism for starting the process 
of loading, converting, and possibly scaling the image. If the image hasn't been otherwise 
prepared or displayed, this happens asynchronously, and our image observer will be notified as 
the data is constructed. 

You should be able to see how we could implement all sorts of sophisticated image loading and 
tracking schemes. The two most obvious strategies, however, are to draw an image 
progressively, as it's constructed, or to wait until it's complete and draw it in its entirety. We have 
already seen that the Component class implements the first scheme. Another class, 
java.awt.MediaTracker, is a general utility that tracks the loading of a number of images or 
other media types for us. We'll look at it next. 

18.2 Using a MediaTracker 

java.awt.MediaTracker is a utility class that simplifies life if we have to wait for one or more 
images to be loaded before they're displayed. A MediaTracker monitors the preparation of an 
image or a group of images and lets us check on them periodically, or wait until they are 
completed. MediaTracker uses the ImageObserver interface internally to receive image 
updates. 

The following applet, TrackImage, uses a MediaTracker to wait while an image is prepared. It 
shows a "Loading . . ." message while it's waiting. (If you are retrieving the image from a local 
disk or very fast network, this message might go by quickly, so pay attention.) 

//file: TrackImage.java 
import java.awt.*; 
 
public class TrackImage extends javax.swing.JApplet 
                        implements Runnable { 
  final int MAIN_IMAGE = 0; 
  Image image; 
  MediaTracker tracker; 
  boolean loaded = false; 
  Thread thread = null; 
  String message = "Loading..."; 
   
  public void init( ) { 
    image = getImage(getClass( ).getResource(getParameter("image"))); 
    tracker = new MediaTracker(this); 
    tracker.addImage(image, MAIN_IMAGE); 
  } 
   
  public void start( ) { 
    if (!tracker.checkID(MAIN_IMAGE)) { 



      thread = new Thread(this); 
      thread.start( ); 
    } 
  } 
   
  public void stop( ) { 
    thread.interrupt( ); 
    thread = null; 
  } 
   
  public void run( ) { 
    repaint( ); 
    try { tracker.waitForID(MAIN_IMAGE); } 
    catch(InterruptedException e) {} 
    if (tracker.isErrorID(MAIN_IMAGE)) message = "Error"; 
    else loaded = true; 
    repaint( ); 
  } 
   
  public void paint(Graphics g) { 
    if (loaded) g.drawImage(image, 0, 0, this); 
    else { 
      g.drawRect(0, 0, getSize().width - 1, getSize( ).height - 1); 
      g.drawString(message, 20, 20); 
    } 
  }  
} 

From its init( ) method, TrackImage requests its image and creates a MediaTracker to 
manage it. Later, after the applet is started, TrackImage fires up a thread to wait while the 
image is loaded. Note that we do not do this in init( ) because it would be rude to do anything 
time-consuming there; it would take up time in a thread that we don't own. In this case, waiting in 
init( ) would be especially bad because paint( ) would never get called and our "loading" 
message wouldn't be displayed; the applet would just hang until the image loaded. It's often 
better to create a new thread for initialization and display a startup message in the interim. (If 
you're not familiar with applets, you may want to take a look at Chapter 20, at this point.) 

When we construct a MediaTracker, we give it a reference to our component (this). After 
creating a MediaTracker, we assign it images to manage. Each image is associated with an 
integer identifier we'll use later for checking on its status. Multiple images can be associated with 
the same identifier, letting us manage them as a group. The value of the identifier is also used to 
prioritize loading when waiting on multiple sets of images; lower IDs have higher priority. In this 
case, we want to manage only a single image, so we created one identifier called MAIN_IMAGE 
and passed it as the ID for our image in the call to addImage( ). 

In our applet's start( ) method, we call the MediaTracker's checkID( ) routine with the ID 
of the image to see whether it's already been loaded. If it hasn't, the applet fires up a new thread 
to fetch it. The thread executes the run( ) method, which calls the MediaTracker 
waitforID( ) routine and blocks on the image, waiting for it to finish loading. The loaded flag 
tells paint( ) whether to display our status message or the actual image. We do a repaint( 
) immediately upon entering run( ) to display the "Loading . . ." status, and again upon exiting 
to change the display. We test for errors during image preparation with isErrorID( ) and 
change the status message if we find one.[2]  



[2] In early Java 2 releases, appletviewer may throw an access exception when you close down the 
applet. The exception occurs when TrackImage's stop() method attempts to call the interrupt( 
)method on the image-loading thread. This is a problem with appletviewer—the example runs fine as a 
Java Plug-in applet. (See Chapter 20 for more information about the Java Plug-in.) 

This may seem like a lot of work to go through just to put up a status message while loading a 
single image. MediaTracker is more valuable when we are working with many images that 
have to be available before we can begin parts of our application. It saves us from implementing 
a custom ImageObserver for every application. In the future, MediaTracker should also be 
able to track the status of audio clips and other kinds of media (as its name suggests). 

18.3 Producing Image Data 

There are two different approaches to generating image data. The easiest way is to treat the 
image as a drawing surface and use the methods of Graphics2D to render things into the 
image. The second way is to twiddle the bits of the image data yourself. This is harder, but it can 
be useful in specific cases: loading and saving images in files or mathematically analyzing image 
data are two examples. 

18.3.1 Drawing Animations 

Let's begin with the simpler approach, rendering on an image. We'll throw in a twist, to make 
things interesting: we'll build an animation. Each frame will be rendered as we go along. This is 
very similar to the double buffering we examined in the last chapter, but this time we'll use a 
timer, instead of mouse events, as the signal to generate new frames. 

Swing performs double buffering automatically, so we don't even have to worry about the 
animation flickering. Although it looks like we're drawing directly to the screen, we're really 
drawing into an image that Swing uses for double buffering. All we need to do is draw the right 
thing at the right time. 

Let's look at an example, Hypnosis, that illustrates the technique. This example shows a 
constantly shifting shape that bounces around the inside of a component. When screen savers 
first came of age, this kind of thing was pretty hot stuff. Hypnosis is shown in Figure 18.2; here 
is its source code: 

//file: Hypnosis.java 
import java.awt.*; 
import java.awt.event.*; 
import java.awt.geom.GeneralPath; 
import javax.swing.*; 
 
public class Hypnosis extends JComponent implements Runnable { 
  private int[] coordinates; 
  private int[] deltas; 
  private Paint paint; 
   
  public Hypnosis(int numberOfSegments) { 
    int numberOfCoordinates = numberOfSegments * 4 + 2; 
    coordinates = new int[numberOfCoordinates]; 
    deltas = new int[numberOfCoordinates]; 
    for (int i = 0 ; i < numberOfCoordinates; i++) { 
      coordinates[i] = (int)(Math.random( ) * 300); 
      deltas[i] = (int)(Math.random( ) * 4 + 3); 



      if (deltas[i] > 4) deltas[i] = -(deltas[i] - 3); 
    } 
    paint = new GradientPaint(0, 0, Color.blue, 
        20, 10, Color.red, true); 
     
    Thread t = new Thread(this); 
    t.start( ); 
  } 
   
  public void run( ) { 
    try { 
      while (true) { 
        timeStep( ); 
        repaint( ); 
        Thread.sleep(1000 / 24); 
      } 
    } 
    catch (InterruptedException ie) {} 
  } 
 
  public void paint(Graphics g) { 
    Graphics2D g2 = (Graphics2D)g; 
    g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING, 
        RenderingHints.VALUE_ANTIALIAS_ON); 
    Shape s = createShape( ); 
    g2.setPaint(paint); 
    g2.fill(s); 
    g2.setPaint(Color.white); 
    g2.draw(s); 
  } 
   
  private void timeStep( ) { 
    Dimension d = getSize( ); 
    if (d.width == 0 || d.height == 0) return; 
    for (int i = 0; i < coordinates.length; i++) { 
      coordinates[i] += deltas[i]; 
      int limit = (i % 2 == 0) ? d.width : d.height; 
      if (coordinates[i] < 0) { 
        coordinates[i] = 0; 
        deltas[i] = -deltas[i]; 
      } 
      else if (coordinates[i] > limit) { 
        coordinates[i] = limit - 1; 
        deltas[i] = -deltas[i]; 
      } 
    } 
  } 
   
  private Shape createShape( ) { 
    GeneralPath path = new GeneralPath( ); 
    path.moveTo(coordinates[0], coordinates[1]); 
    for (int i = 2; i < coordinates.length; i += 4) 
      path.quadTo(coordinates[i], coordinates[i + 1], 
          coordinates[i + 2], coordinates[i + 3]); 
    path.closePath( ); 
    return path; 
  } 



 
  public static void main(String[] args) { 
    JFrame f = new JFrame("Hypnosis"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    Container c = f.getContentPane( ); 
    c.setLayout(new BorderLayout( )); 
    c.add(new Hypnosis(4)); 
    f.setSize(300, 300); 
    f.setLocation(100, 100); 
    f.setVisible(true); 
  } 
} 

Figure 18.2. A simple animation 

 

The main( ) method does the usual grunt work of setting up a JFrame that will hold our 
animation component. 

The Hypnosis component has a very basic strategy for animation. It holds some number of 
coordinate pairs in its coordinates member variable. A corresponding array, deltas, holds 
"delta" amounts that are added to the coordinates each time the figure is supposed to change. To 
render the complex shape you see in Figure 18.2, Hypnosis creates the shape from the 
coordinates array each time the component is drawn. 

Hypnosis's constructor has two important tasks. First, it fills up the coordinates and deltas 
arrays with random values. The number of array elements is determined by an argument to the 
constructor. The constructor's second task is to start up a new thread that will drive the animation. 

The animation is done in the run( ) method. This method calls timeStep( ), which repaints 
the component and waits for a short time (details to follow). Each time timeStep( ) is called, 
the coordinates array is updated. Then repaint( ) is called. This results in a call to paint( ), 
which creates a shape from the coordinate array and draws it. 



The paint( ) method is relatively simple. It uses a helper method, called createShape( ) , 
to create a shape from the coordinate array. The shape is then filled, using a Paint stored as a 
member variable. The shape's outline is also drawn in white. 

The timeStep( ) method updates all the elements of the coordinate array by adding the 
corresponding element of deltas. If any coordinates are now out of the components bounds, they 
are adjusted and the corresponding delta is negated. This produces the effect of bouncing off the 
sides of the component. 

createShape( ) creates a shape from the coordinate array. It uses the GeneralPath class, a 
useful Shape implementation that allows you to build shapes using straight and curved line 
segments. In this case, we create a shape from a series of quadratic curves. 

18.3.2 BufferedImage Anatomy 

So far, we've talked about java.awt.Images and how they can be loaded and drawn. What if 
you really want to get inside the image to examine and update its data? Image doesn't give you 
access to its data. You'll need to use a more sophisticated class, 
java.awt.image.BufferedImage . These classes are closely related—BufferedImage, in 
fact, is a subclass of Image. But BufferedImage gives you all sorts of control over the actual 
data that makes up the image. You can think of BufferedImage as an Image on steroids. 
Because it's a subclass of Image, you can pass a BufferedImage to any of Graphics2D's 
methods that accept an Image. 

To create an image from raw data arrays, you need to understand exactly how a 
BufferedImage is put together. It's actually quite complex—the BufferedImage class was 
designed to support images in nearly any storage format you could imagine. Figure 18.3 shows 
the elements of a BufferedImage. 

Figure 18.3. Inside a BufferedImage 

 

An image is simply a rectangle of colored pixels, which is a simple enough concept. There's a lot 
of complexity underneath the BufferedImage class, because there are a lot of different ways to 
represent the colors of pixels. You might have, for instance, an image with RGB data where each 
pixel's red, green, and blue values were stored as the elements of byte arrays. Or you might have 
an RGB image where each pixel was represented by an integer that contained red, green, and 
blue values. Or you could have a 16-level grayscale image with 8 pixels stored in each element of 
an integer array. You get the idea—there are many different ways to store image data, and 
BufferedImage is designed to support all of them. 

A BufferedImage consists of two pieces, a Raster and a ColorModel. The Raster contains 
the actual image data. You can think of it as an array of pixel values. It can answer questions like 



"What are the data values for the pixel at 51, 17?" The Raster for an RGB image would return 
three values, while a Raster for a grayscale image would return a single value. A subclass of 
Raster, WritableRaster, also supports modifying pixel data values. 

The ColorModel's job is to interpret the image data as colors. The ColorModel can translate 
the data values that come from the Raster into Color objects. An RGB color model, for 
example, would know how to interpret three data values as red, green, and blue. A grayscale 
color model could interpret a single data value as a gray level. Conceptually, at least, this is how 
an image is displayed on the screen. The graphics system retrieves the data for each pixel of the 
image from the Raster. Then the ColorModel tells what color each pixel should be and the 
graphics system is able to set the color of each pixel. 

The Raster itself is made up of two pieces, a DataBuffer and a SampleModel. A 
DataBuffer is a wrapper for the raw data arrays, which are byte, short, or int arrays. 
DataBuffer has handy subclasses, DataBufferByte , DataBufferShort, and 
DataBufferInt, that allow you to create a DataBuffer from raw data arrays. You'll see an 
example of this technique later, in the StaticGenerator example. 

The SampleModel knows how to extract the data values for a particular pixel from the 
DataBuffer. It knows the layout of the arrays in the DataBuffer and can answer the question 
"What are the data values for pixel x, y?" SampleModels are a little tricky to work with, but 
fortunately you'll probably never need to create or use one directly. As we'll see, the Raster 
class has many static ("factory") methods that create preconfigured Rasters for you, including 
their DataBuffers and SampleModels. 

As Figure 18.1 shows, the 2D API comes with various flavors of ColorModels, 
SampleModels, and DataBuffers. These serve as handy building blocks that cover most 
common image storage formats. You'll rarely need to subclass any of these classes to create a 
BufferedImage. 

18.3.3 Color Models 

Everybody wants to work with color in their application, but using color raises problems. The most 
important problem is simply how to represent a color. There are many different ways to encode 
color information: red, green, blue (RGB) values; hue, saturation, value (HSV); hue, lightness, 
saturation (HLS); and more. In addition, you can provide full-color information for each pixel, or 
you can just specify an index into a color table (palette) for each pixel. The way you represent a 
color is called a color model. The 2D API provides tools to support any color model you could 
imagine. Here, we'll just cover two broad groups of color models: direct and indexed. 

As you might expect, you must specify a color model in order to generate pixel data; the 
abstract class java.awt.image.ColorModel represents a color model. By default, Java 2D 
uses a direct color model called ARGB. The A stands for "alpha," which is the historical name for 
transparency. RGB refers to the red, green, and blue color components that are combined to 
produce a single, composite color. In the default ARGB model, each pixel is represented by a 32-
bit integer that is interpreted as four 8-bit fields; in order, the fields represent the transparency (A), 
red, green, and blue components of the color, as shown in Figure 18.4. 

Figure 18.4. ARGB color encoding 



 

To create an instance of the default ARGB model, call the static getRGB-default( ) 
method in ColorModel. This method returns a DirectColorModel object; 
DirectColorModel is a subclass of ColorModel. You can also create other direct color 
models by calling a DirectColorModel constructor, but you shouldn't need to unless you have 
a fairly exotic application. 

In an indexed color model, each pixel is represented by a smaller piece of information: an index 
into a table of real color values. For some applications, generating data with an indexed model 
may be more convenient. If you have an 8-bit display or smaller, using an indexed model may be 
more efficient, since your hardware is internally using an indexed color model of some form. 

18.3.4 Creating an Image 

Let's take a look at producing some image data. A picture may be worth a thousand words, but 
fortunately, we can generate a picture in significantly fewer than a thousand words of Java. If we 
just want to render image frames byte by byte, you can put together a BufferedImage pretty 
easily. 

The following application, ColorPan, creates an image from an array of integers holding RGB 
pixel values: 

//file: ColorPan.java 
import java.awt.*; 
import java.awt.event.*; 
import java.awt.image.*; 
import javax.swing.*; 
 
public class ColorPan extends JComponent { 
  BufferedImage image; 
 
  public void initialize( ) { 
    int width = getSize( ).width; 
    int height = getSize( ).height; 
    int[] data = new int [width * height]; 
    int i = 0; 
    for (int y = 0; y < height; y++) { 
      int red = (y * 255) / (height - 1); 
      for (int x = 0; x < width; x++) { 
        int green = (x * 255) / (width - 1); 
        int blue = 128; 
        data[i++] = (red << 16) | (green << 8 ) | blue; 
      } 
    } 
     
    image = new BufferedImage(width, height, 
        BufferedImage.TYPE_INT_RGB); 
    image.setRGB(0, 0, width, height, data, 0, width); 



  } 
   
  public void paint(Graphics g) { 
    if (image == null) initialize( ); 
    g.drawImage(image, 0, 0, this); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("ColorPan"); 
    f.getContentPane().add(new ColorPan( )); 
    f.setSize(300, 300); 
    f.setLocation(100, 100); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { 
        System.exit(0); 
      } 
    }); 
    f.setVisible(true); 
  } 
} 

Give it a try. The size of the image is determined by the size of the application window when it 
starts up. You should get a very colorful box that pans from deep blue at the upper-left corner to 
bright yellow at the bottom right, with green and red at the other extremes. 

We create a BufferedImage in the initialize( ) method and then display the image in 
paint( ). The variable data is a one-dimensional array of integers that holds 32-bit RGB pixel 
values. In initialize( ) we loop over every pixel in the image and assign it an RGB value. 
The blue component is always 128, half its maximum intensity. The red component varies from 0 
to 255 along the y-axis; likewise, the green component varies from 0 to 255 along the x-axis. This 
statement combines these components into an RGB value: 

data[i++] = (red << 16) | (green << 8 ) | blue; 

The bitwise left-shift operator (<<) should be familiar to C programmers. It simply shoves the bits 
over by the specified number of positions. 

When we create the BufferedImage, all its data is zeroed out. All we specify in the constructor 
is the width and height of the image and its type. BufferedImage includes quite a few constants 
representing image storage types. We've chosen TYPE_INT_RGB here, which indicates we want 
to store the image as RGB data packed into integers. The constructor takes care of creating an 
appropriate ColorModel, Raster, SampleModel, and DataBuffer for us. Then we simply 
use a convenient method, setRGB( ), to assign our data to the image. In this way, we've side-
stepped the messy innards of BufferedImage. In the next example, we'll take a closer look at 
the details. 

Once we have the image, we can draw it on the display with the familiar drawImage( ) method. 

18.3.5 Updating a BufferedImage 

BufferedImage can also be used to update an image dynamically. Because the image's data 
arrays are directly accessible, you can change the data and redraw the picture whenever you 
want. This is probably the easiest way to build your own low-level animation software. The 
following example simulates the static on a television screen. It generates successive frames of 



random black and white pixels and displays each frame when it is complete. Figure 18.5 shows 
one frame of random static; the code follows: 

//file: StaticGenerator.java 
import java.awt.*; 
import java.awt.event.*; 
import java.awt.image.*; 
import java.util.Random; 
import javax.swing.*; 
 
public class StaticGenerator extends JComponent implements Runnable { 
  byte[] data; 
  BufferedImage image; 
  Random random; 
   
  public void initialize( ) { 
    int w = getSize().width, h = getSize( ).height; 
    int length = ((w + 7) * h) / 8; 
    data = new byte[length]; 
    DataBuffer db = new DataBufferByte(data, length); 
    WritableRaster wr = Raster.createPackedRaster(db, w, h, 1, null); 
    ColorModel cm = new IndexColorModel(1, 2, 
        new byte[] { (byte)0, (byte)255 }, 
        new byte[] { (byte)0, (byte)255 }, 
        new byte[] { (byte)0, (byte)255 }); 
    image = new BufferedImage(cm, wr, false, null); 
    random = new Random( ); 
    new Thread(this).start( ); 
  } 
   
  public void run( ) { 
    while (true) { 
      random.nextBytes(data); 
      repaint( ); 
      try { Thread.sleep(1000 / 24); } 
      catch( InterruptedException e ) { /* die */ } 
    } 
  } 
   
  public void paint(Graphics g) { 
    if (image == null) initialize( ); 
    g.drawImage(image, 0, 0, this); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new JFrame("StaticGenerator"); 
    f.getContentPane().add(new StaticGenerator( )); 
    f.setSize(300, 300); 
    f.setLocation(100, 100); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { 
        System.exit(0); 
      } 
    }); 
    f.setVisible(true); 
  } 



} 

Figure 18.5. A frame of random static 

 

The initialize( ) method sets up the BufferedImage that produces the sequence of 
images. We build this image from the bottom up, starting with the raw data array. Since we're 
only displaying two colors here, black and white, we need only one bit per pixel. We want a 0 bit 
to represent black and a 1 bit to represent white. This calls for an indexed color model, which 
we'll create a little later. 

The image data is stored as a byte array, where each array element holds eight pixels. The array 
length, then, is calculated by multiplying the width and height of the image and dividing by eight. 
We also have to adjust for the fact that each image row starts on a byte boundary. For example, 
an image that was 13 pixels wide would actually use 2 bytes (16 bits) for each row: 

int length = ((w + 7) * h) / 8; 

Next, the actual byte array is created. The member variable data holds a reference to this array. 
Later, we'll use data to change the image data dynamically. Once we have the image data array, 
it's easy to create a DataBuffer from it: 

data = new byte[length]; 
DataBuffer db = new DataBufferByte(data, length); 

DataBuffer has several subclasses, like DataBufferByte, that make it easy to create a data 
buffer from raw arrays. 

The next step, logically, is to create a SampleModel. Then we could create a Raster from the 
SampleModel and the DataBuffer. Lucky for us, though, the Raster class contains a bevy of 
useful static methods that create common types of Rasters. One of these methods creates a 
Raster from data that contains multiple pixels packed into array elements. We simply use this 
method, supplying the data buffer, the width and height, and indicating that each pixel uses one 
bit: 

WritableRaster wr = Raster.createPackedRaster(db, w, h, 1, null); 



The last argument to this method is a Point that indicates where the upper-left corner of the 
Raster should be. By passing null, we use the default of 0, 0. 

The last piece of the puzzle is the ColorModel. Each pixel is either 0or 1, but how should that 
be interpreted as color? In this case, we use an IndexColorModel with a very small palette. 
The palette has only two entries, one each for black and white: 

ColorModel cm = new IndexColorModel(1, 2, 
        new byte[] { (byte)0, (byte)255 }, 
        new byte[] { (byte)0, (byte)255 }, 
        new byte[] { (byte)0, (byte)255 }); 

The IndexColorModel constructor that we've used here accepts the number of bits per pixel 
(1), the number of entries in the palette(2), and three byte arrays that are the red, green, and blue 
components of the palette colors. Our palette consists of two colors: black (0, 0, 0) and white 
(255, 255, 255). 

Now that we've got all the pieces, we just need to create a BufferedImage. This image is also 
stored in a member variable so we can draw it later. To create the BufferedImage, we pass the 
color model and writable raster we just created: 

image = new BufferedImage(cm, wr, false, null); 

All the hard work is done now. Our paint( ) method just draws the image, using drawImage( 
). 

The init( ) method starts a thread that generates the pixel data. The run( ) method takes 
care of generating the pixel data. It uses a Random object to fill the data image data array with 
random values. Since the data array is the actual image data for our image, changing the data 
values changes the appearance of the image. Once we fill the array with random data, a call to 
repaint( ) shows the new image on the screen. 

That's about all there is. It's worth noting how simple it is to create this animation. Once we have 
the BufferedImage, we treat it like any other image. The code that generates the image 
sequence can be arbitrarily complex. But that complexity never infects the simple task of getting 
the image on the screen and updating it. 

18.4 Filtering Image Data 

An image filter is an object that performs transformations on image data. The Java 2D API 
supports image filtering through the BufferedImageOp interface. An image filter takes a 
BufferedImage as input (the source image ) and performs some processing on the image data, 
producing another BufferedImage (the destination image). 

The 2D API comes with a handy toolbox of BufferedImageOp implementations, as summarized 
in Table 18.2. 

Table 18.2. Image Operators in the 2D API  
Name Description 

AffineTransformOp Transforms an image geometrically 
ColorConvertOp Converts from one color space to another 



ConvolveOp Performs a convolution, a mathematical operation that can be used to 
blur, sharpen, or otherwise process an image 

LookupOp Uses one or more lookup tables to process image values 
RescaleOp Uses a multiplication to process image values 

Let's take a look at two of the simpler image operators. First, try the following application. It loads 
an image (the first command-line argument is the filename) and processes it in different ways as 
you select items from the combo box. The application is shown in Figure 18.6; the source code 
follows: 

//file: ImageProcessor.java 
import java.awt.*; 
import java.awt.event.*; 
import java.awt.geom.*; 
import java.awt.image.*; 
import javax.swing.*; 
 
public class ImageProcessor extends JComponent { 
  private BufferedImage source, destination; 
  private JComboBox options; 
   
  public ImageProcessor(BufferedImage image) { 
    source = destination = image; 
    setBackground(Color.white); 
    setLayout(new BorderLayout( )); 
    // create a panel to hold the combo box 
    JPanel controls = new JPanel( ); 
    // create the combo box with the names of the area operators 
    options = new JComboBox( 
      new String[] { "[source]", "brighten", 
          "darken", "rotate", "scale" } 
    ); 
    // perform some processing when the selection changes 
    options.addItemListener(new ItemListener( ) { 
      public void itemStateChanged(ItemEvent ie) { 
        // retrieve the selection option from the combo box 
        String option = (String)options.getSelectedItem( ); 
        // process the image according to the selected option 
        BufferedImageOp op = null; 
        if (option.equals("[source]")) 
          destination = source; 
        else if (option.equals("brighten")) 
          op = new RescaleOp(1.5f, 0, null); 
        else if (option.equals("darken")) 
          op = new RescaleOp(.5f, 0, null); 
        else if (option.equals("rotate")) 
          op = new AffineTransformOp( 
              AffineTransform.getRotateInstance(Math.PI / 6), null); 
        else if (option.equals("scale")) 
          op = new AffineTransformOp( 
              AffineTransform.getScaleInstance(.5, .5), null); 
        if (op != null) destination = op.filter(source, null); 
        repaint( ); 
      } 
    }); 



    controls.add(options); 
    add(controls, BorderLayout.SOUTH); 
  } 
   
  public void paintComponent(Graphics g) { 
    int imageWidth = destination.getWidth( ); 
    int imageHeight = destination.getHeight( ); 
    int width = getSize( ).width; 
    int height = getSize( ).height; 
    g.drawImage(destination, 
        (width - imageWidth) / 2, (height - imageHeight) / 2, null); 
  } 
 
  public static void main(String[] args) { 
    String filename = args[0]; 
    // load the image 
    Image i = Toolkit.getDefaultToolkit( ).getImage(filename); 
    Component c = new Component( ) {}; 
    MediaTracker tracker = new MediaTracker(c); 
    tracker.addImage(i, 0); 
    try { tracker.waitForID(0); } 
    catch (InterruptedException ie) {} 
 
    // draw the Image into a BufferedImage 
    int w = i.getWidth(null), h = i.getHeight(null); 
    BufferedImage bi = new BufferedImage(w, h, 
        BufferedImage.TYPE_INT_RGB); 
    Graphics2D imageGraphics = bi.createGraphics( ); 
    imageGraphics.drawImage(i, 0, 0, null); 
     
    // create a frame window 
    JFrame f = new JFrame("ImageProcessor"); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    Container content = f.getContentPane( ); 
    content.setLayout(new BorderLayout( )); 
    content.add(new ImageProcessor(bi)); 
    f.setSize(bi.getWidth(), bi.getHeight( )); 
    f.setLocation(100, 100); 
    f.setVisible(true); 
  } 
} 

Figure 18.6. The ImageProcessor application 



 

There's quite a bit packed into the ImageProcessor application. After you've played around with 
it, come back and read about the details. 

18.4.1 How ImageProcessor Works 

The basic operation of ImageProcessor is very straightforward. It loads a source image, 
specified with a command-line argument, in its main( ) method. The image is displayed along 
with a combo box. When you select different items from the combo box, ImageProcessor 
performs some image-processing operation on the source image and displays the result (the 
destination image). Most of this work occurs in the ItemListener event handler that is created 
in ImageProcessor's constructor. Depending on what option is selected, a BufferedImageOp 
(called op) is instantiated and used to process the source image, like this: 

destination = op.filter(source, null); 

The destination image is returned from the filter( ) method. If we already had a destination 
image of the right size, we could have passed it as the second argument to filter( ), which 
would improve the performance of the application a little bit. If you just pass null, as we have 
here, an appropriate destination image is created and returned to you. Once the destination 
image is created, paint( )'s job is very simple—it just draws the destination image, centered 
on the component. 

18.4.2 Converting an Image to a BufferedImage 

Image processing is performed on BufferedImage s, not Images. This example demonstrates 
an important technique: how to convert an Image to a BufferedImage. The main( ) method 
loads an Image from a file using Toolkit's getImage( ) method: 

Image i = Toolkit.getDefaultToolkit( ).getImage(filename); 

Next, main( ) uses a MediaTracker to make sure the image data is fully loaded. 



The trick of converting an Image to a BufferedImage is to draw the Image into the drawing 
surface of the BufferedImage. Since we know the Image is fully loaded, we just need to create 
a BufferedImage, get its graphics context, and draw the Image into it: 

BufferedImage bi = new BufferedImage(w, h, 
        BufferedImage.TYPE_INT_RGB); 
Graphics2D imageGraphics = bi.createGraphics( ); 
imageGraphics.drawImage(i, 0, 0, null); 

18.4.3 Using the RescaleOp Class 

Rescaling is an image operation that multiplies all the pixel values in the image by some constant. 
It doesn't affect the size of the image in any way (in case you thought rescaling meant scaling), 
but it does affect the colors of its pixels. In an RGB image, for example, each of the red, green, 
and blue values for each of the pixels would be multiplied by the rescaling multiplier. If you want, 
you can also adjust the results by adding an offset. In the 2D API, rescaling is performed by the 
java.awt.image.RescaleOp class. To create such an operator, specify the multiplier, offset, 
and a set of hints that control the quality of the conversion. In this case, we'll use a zero offset 
and not bother with the hints (by passing null): 

op = new RescaleOp(1.5f, 0, null); 

Here we've specified a multiplier of 1.5 and an offset of 0. All values in the destination image will 
be 1.5 times the values in the source image, which has the net result of making the image 
brighter. To perform the operation, we call the filter( ) method from the BufferedImageOp 
interface. 

18.4.4 Using the AffineTransformOp Class 

The java.awt.image.AffineTransformOp image operator geometrically transforms a 
source image to produce the destination image. To create an AffineTransformOp, specify the 
transformation you want, in the form of an java.awt.geom.AffineTransform. The 
ImageProcessor application includes two examples of this operator, one for rotation and one 
for scaling. As before, the AffineTransformOp constructor accepts a set of hints—we'll just 
pass null to keep things simple: 

else if (option.equals("rotate")) 
  op = new AffineTransformOp( 
      AffineTransform.getRotateInstance(Math.PI / 6), null); 
else if (option.equals("scale")) 
  op = new AffineTransformOp( 
      AffineTransform.getScaleInstance(.5, .5), null); 

In both of these cases, we obtain an AffineTransform by calling one of its static methods. In 
the first case, we get a rotational transformation by supplying an angle. This transformation is 
wrapped in an AffineTransformOp. This operator has the effect of rotating the source image 
around its origin to create the destination image. In the second case, a scaling transformation is 
wrapped in an AffineTransformOp. The two scaling values, .5 and .5, specify that the image 
should be reduced to half its original size in both the x and y axes. 

One interesting aspect of AffineTransformOp is that you may "lose" part of your image when 
it's transformed. In the rotational and image operator in the ImageProcessor application, the 
destination image has clipped some of the original image out. This has to do with how images are 



processed—both the source and destination need to have the same origin, so if any part of the 
image gets transformed into negative x or y space, it is lost. To work around this problem, you 
can structure your transformations such that no information will be lost. You could, for example, 
rotate the image around the bottom-left corner, or add a translational component to the rotation 
so that the entire destination image would be in positive coordinate space. 

18.5 Working with Audio 

So you've read all the material on drawing and image processing, and you're wondering what in 
the world audio has to do with images. Well, not much, actually, except that true multimedia 
presentations often combine image techniques such as animation with sound. So we're going to 
spend a few minutes here talking about audio, for lack of a better place to discuss it. 

The Java Sound API is a new core API in SDK 1.3. It provides fine-grained support for the 
creation and manipulation of both sampled audio and MIDI music. There's space here only to 
scratch the surface by examining how to play sampled sound and MIDI music files. 

java.applet.AudioClip defines an interface for objects that can play sound. An object that 
implements AudioClip can be told to play( ) its sound data, stop( ) playing the sound, or 
loop( ) continually. 

The Applet class provides a handy static method, newAudioClip( ), that retrieves sounds 
from files or over the network. This method takes an absolute or relative URL to specify where the 
audio file is located. The following application, NoisyButton, gives a simple example: 

//file: NoisyButton.java 
import java.applet.*; 
import java.awt.*; 
import java.awt.event.*; 
import javax.swing.*; 
 
public class NoisyButton extends JFrame { 
 
  public NoisyButton(final AudioClip sound) { 
    // set up the frame 
    setTitle("NoisyButton"); 
    addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent e) { System.exit(0); } 
    }); 
    setSize(200, 200); 
    setLocation(100, 100); 
    // set up the button 
    JButton button = new JButton("Woof!"); 
    button.addActionListener(new ActionListener( ) { 
      public void actionPerformed(ActionEvent e) { sound.play( ); } 
    }); 
    getContentPane( ).setBackground(Color.pink); 
    getContentPane().setLayout(new GridBagLayout( )); 
    getContentPane( ).add(button); 
    setVisible(true); 
  } 
 
  public static void main(String[] args) throws Exception { 
    java.io.File file = new java.io.File("bark.aiff"); 



    AudioClip sound = Applet.newAudioClip(file.toURL( )); 
    new NoisyButton(sound); 
  } 
} 

NoisyButton retrieves an AudioClip from the file bark.aiff ; we use File to represent the file 
and toURL( ) to create a URL that represents the file. (You might want to use a command-line 
argument to specify the file name instead.) When the button is pushed, we call the play( ) 
method of the AudioClip to start things. After that, it will play to completion unless we call 
the stop( ) method to interrupt it. 

Playback is the limit of Java 2's built-in sound capabilities. However, you can play back a wide 
range of file formats: AIFF, AU, Windows WAV, standard MIDI files, and Rich Music Format 
(RMF) files. For a little extra zing in your applications, consider adding sound. 

18.6 Working with Movies 

Get some popcorn—Java can play movies, with a little work. You'll need to download and install 
one of Java's standard extension APIs, the Java Media Framework (JMF). The JMF defines a set 
of interfaces and classes in the javax.media and javax.media.protocol packages. To use 
the JMF, add jmf.jar to your class path. Depending on what version of the JMF you download, the 
installation program may do this for you. 

We'll only scratch the surface of JMF here, by working with an important interface called Player. 
Specific implementations of Player deal with different media types, like Apple QuickTime (.mov) 
and Windows Video (.avi). Players are handed out by a high-level class in the JMF called 
Manager. One way to obtain a Player is to specify the URL of a movie: 

Player player = Manager.createPlayer(url); 

Because video files are so large, and playing them requires significant system resources, 
Players have a multi-step lifecycle from the time they're created to the time they actually play 
something. We'll just look at one step, realizing. In this step, the Player finds out (by looking at 
the media file) what system resources it will need to actually play the media file. 

player.realize( ); 

The realize( ) method returns right away; it kicks off the realizing process in a separate 
thread. When the player is finished realizing, it sends out an event. Once you receive this event, 
you can obtain a Component that will show the media. The Player has to be realized first so 
that it knows important information, like how big the component should be. Getting the component 
is easy: 

Component c = player.getVisualComponent( ); 

Now we just need to add the component to the screen somewhere. We can play the media right 
away (although this actually moves the Player through several other internal states): 

player.start( ); 

The following example displays a movie in a JFrame and plays it: 



//file: MoviePlayer.java 
import java.awt.*; 
import java.awt.event.*; 
import java.net.URL; 
import javax.swing.*; 
import javax.media.*; 
 
public class MoviePlayer extends JComponent { 
  public static void main(String[] args) throws Exception { 
    final JFrame f = new JFrame("MoviePlayer"); 
    f.addNotify( ); 
    f.setLocation(100, 100); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
 
    URL url = new URL(args[0]); 
    final Player player = Manager.createPlayer(url); 
    player.realize( ); 
     
    player.addControllerListener(new ControllerListener( ) { 
      public void controllerUpdate(ControllerEvent ce) { 
        if (ce instanceof RealizeCompleteEvent) { 
          Component c = player.getVisualComponent( ); 
          Container content = f.getContentPane( ); 
          content.setLayout(new BorderLayout( )); 
          content.add(c, BorderLayout.CENTER); 
          Insets i = f.getInsets( ); 
          Dimension d = c.getSize( ); 
          f.setSize(d.width + i.left + i.right, 
              d.height + i.top + i.bottom); 
          f.setVisible(true); 
          player.start( ); 
        } 
      } 
    }); 
  } 
} 

This class creates a JFrame that will hold the movie. Then it creates a Player from the URL 
specified on the command line and tells the Player to realize( ). There's nothing else we 
can do until the Player is realized, so the rest of the code operates inside a 
ControllerListener , after the RealizeCompleteEvent is received. 

In the event handler, we get the Player's component and add it to the JFrame. Then we size 
the JFrame so that it exactly fits the movie component. Finally, we play the movie. 

To use this class, pass the URL of a movie in the command line. I was able to show a movie that 
was on another machine in my local network like this: 

java MoviePlayer http://172.16.0.1/the.english.patient.mov 



Chapter 19. Java Beans 

JavaBeans[1] is a component architecture for Java. It is a set of rules for writing highly reusable 
software elements that can be linked together in a "plug and play" fashion to build applications. 
Writing objects to the JavaBeans specification means you will have to write less custom code to 
glue them together. It also allows you to leverage JavaBean-aware development tools. With some 
graphical development environments, it is even possible to build complete applications just by 
connecting prefabricated Java Beans. 

[1] "JavaBeans" refers to the component architecture; "Java Beans" refers to components that use this 
architecture. 

JavaBeans is a rich topic, and we can't give it more than a brief overview here. If this overview 
whets your appetite, look for Developing Java Beans by Robert Englander (O'Reilly & 
Associates). 

19.1 What's a Bean? 

So, what exactly is or are Java Beans? JavaBeans defines a set of rules; Java Beans are 
ordinary Java objects that play by these rules. That is, Java Beans are Java objects that conform 
to the JavaBeans API and design patterns. By doing so they can be recognized and manipulated 
within visual application builder environments. Beans live and work in the Java runtime system, 
as do all Java objects. They communicate with their neighbors using events and other normal 
method invocations. 

For examples of Beans, we have to look no further than the javax.swing packages. All of the 
familiar components, like JButton, JTextArea, JScrollpane, etc., are not only suggestive of 
things suitable to be Beans, but are, in fact, Beans! Much of what you learned in Chapter 13, 
about the Swing components has prepared you for understanding Beans. Although most of the 
Swing components aren't very useful in isolation, Beans can also be large and complex 
application components, like spreadsheets or document editors. The HotJavaBrowser Bean, 
for example, is a complete web browser cast in the form of a Java Bean. We'll talk more about 
what exactly makes a Bean a Bean in a moment. For now, we want to give you a better sense of 
how they are used. 

Java Beans are objects intended to be manipulated visually, within a graphical application builder. 
They will generally be chosen from a palette of tools and manipulated graphically in an 
application builder's workspace. In this sense, Beans are somewhat like widgets used in a 
traditional GUI builder: user interface components that can be assembled to make application 
"screens." But in traditional GUI builders, the result is usually just some automatically generated 
code that provides a skeleton on which you hang the meat of your application. GUI builders 
generally build GUIs, not entire applications. 

In contrast, Java Beans can be not only simple UI components like buttons and sliders but more 
complex and abstract components as well. It is easy to get the impression that Beans are, 
themselves, always graphical objects (like the Swing components that we mentioned). But Java 
Beans can implement any part of an application, including "invisible" parts that perform 
calculations, storage, and communications. Ideally, we would like to be able to snap together a 
substantial application using prefabricated Beans, without ever writing a line of code! Three 
characteristics of the JavaBeans architecture make it possible to work with application 
components at this level: 



Design patterns  

The most important characteristic of a Java Bean is simply a layer of standardization. 
Design patterns (i.e., coding conventions) let tools and humans recognize the basic 
features of a Bean and manipulate it without knowing how it is implemented. We might 
say that Beans are "self-documenting." By examining a Bean, we can tell what events it 
can fire and receive; we can also learn about its properties (the equivalent of its public 
variables) and its methods. Beans can also provide information about their features that 
is tailored specifically for builder tools. 

Reflection  

Reflection is an important feature of the Java language. (It's discussed in Chapter 7.) 
Reflection makes it possible for Java code to inspect and manipulate new Java objects at 
runtime. In the context of JavaBeans, reflection lets a development tool analyze a Bean's 
capabilities, examine the values of its fields, and invoke its methods. Essentially, 
reflection allows Java objects that meet at runtime to do all of the things that could be 
done if they had been put together at compile time. Even if a Bean doesn't come bundled 
with any "built-in" documentation, we can still gather information about its capabilities and 
properties by directly inspecting the class, using reflection. 

Object serialization  

Finally, the Java Serialization API allows us to "freeze-dry" (some prefer the word 
"pickle") a living, breathing application or application component and revive it later. This is 
a very important step; it makes it possible to piece together applications without extensive 
code generation. Rather than customizing and compiling large amounts of Java code to 
build our application on startup, we can simply paste together Beans, configure them, 
tweak their appearance, and then save them. Later, the Beans can be restored with all of 
their state and all of their interconnections intact. This makes possible a fundamentally 
different way of thinking about the design process. It is easy to use serialized objects 
from handwritten Java code as well, so we can freely mix "freeze-dried" Beans with plain 
old Bean classes and other Java code. 

19.1.1 How Big Is a Bean? 

Our examples of Beans have ranged from simple buttons to spreadsheets. Obviously, a button 
Bean would be much less complex than a spreadsheet, and would be used at a different level of 
the application's design. At what level are Beans intended to be used? Well, the JavaBeans 
architecture is supposed to scale well from small to large; simple Beans can be used to build 
larger Beans. A small Bean may consist of a single class; a large Bean may have many. Beans 
can also work together through their container to provide services to other beans. 

Simple Beans are little more than ordinary Java objects. In fact, any Java class that has a default 
(empty) constructor could be considered a Bean. A Bean should also be serializable, although the 
JavaBeans specification doesn't strictly require that. These two criteria ensure that we can create 
an instance of the Bean dynamically, and that we can later save the Bean, as part of a group or 
composition of Beans. There are no other requirements. Beans are not required to inherit from a 
base Bean class, and they don't have to implement any special interface. 

A useful Bean would want to send and receive events or expose its properties to the world. To do 
so, it follows the appropriate design patterns for naming the relevant methods, so that these 
features can be automatically recognized. Most nontrivial Beans will also provide information 
about themselves in the form of a BeanInfo class. A BeanInfo class implements the 



BeanInfo interface, which holds methods that can describe a Bean's features. Normally, this 
"bean info" is supplied by a separate class that is named for and packaged with the Bean. 

19.1.2 The BeanBox Application 

We can't have a meaningful discussion of Beans without spending a little time talking about the 
builder environments in which they will be used. In this book we will talk about the BeanBox 
container that comes with Sun's Bean Development Kit (BDK). BeanBox is by no means a real 
application builder environment. Its job is to provide a simple reference platform in which you can 
test your Beans. BeanBox reads basic Bean information, creates instances of Beans, and allows 
the most basic hookup of events and properties. It also comes with some interesting test Beans. 
Aside from that, it offers little. Its main advantage is that it is free (including source code) and 
universally available, because it is written in pure Java. We'll use the BeanBox fairly extensively 
in this chapter to demonstrate how Beans work. But keep in mind that the BeanBox isn't a real 
development environment, and that real development tools will do a lot more. 

Some examples of real-world Java development environments that support Java Beans are: 

• IBM's Visual Age for Java 
(http://www7.software.ibm.com/vad.nsf/data/document2590). Yes, this is the 
real URL. 

• Sun's Forte for Java (http://www.sun.com/forte) 
• Borland/Inprise's JBuilder (http://www.inprise.com/jbuilder) 
• WebGain's Visual Café 

(http://www.webgain.com/Products/VisualCafe_Overview.html) 
• Metrowerks's CodeWarrior (http://www.metrowerks.com) 

19.1.2.1 Running the BeanBox application 

You can get the BDK from Sun at: http://java.sun.com/beans/. Refer to JavaSoft's directions 
for installing it and running the BeanBox. Figure 19.1 shows the Bean palette, BeanBox work 
area, and a properties sheet (or customizer window). The properties sheet or "customizer" 
changes its contents based on the Bean selected in the work area. 

Figure 19.1. The Bean palette, the BeanBox, and a properties sheet 



 

To add a Bean to the BeanBox, drag it from the palette and drop it into the work area. (If that 
doesn't work, try clicking on the Bean in the palette and then clicking in the work area.) Once 
placed in the BeanBox, a Bean can be selected by clicking on or just outside of it. You can move 
the Bean within the BeanBox and reshape it by dragging its corners. 

19.1.3 Properties and Customizers 

Properties represent the " state" or "data" content of a Bean. They are features that can be 
manipulated externally to configure the Bean. For a Bean that's a GUI component, you might 
expect its properties to include its color, label, and other features of its basic appearance. 
Properties are similar to an object's public variables. Like a variable, a property can be a primitive 
type (like a number or boolean) or it can be a complex object type (like a String or a collection 
of spreadsheet data). Unlike variables, properties are manipulated using methods; this enables a 
Bean to take action whenever a property changes. By sending an event when a property 
changes, a Bean can notify other interested Beans of the change. (See Section 19.1.5 later in 
this chapter.) 

Let's pull a couple of Beans into the BeanBox and take a look at their properties. Grab a button 
Bean—the one called ExplicitButton will do—from the palette, and place it in the workspace. 

When the ExplicitButton Bean was first loaded by the BeanBox, it was inspected to discover 
its properties. When we select an instance of the button, the BeanBox displays these properties 
in the properties sheet and allows us to modify them. As you can see in the figure, the button has 
four properties. foreground and background are colors; their current values are displayed in 
the corresponding box. font is the font that is used to display the label text; an example of the 
font is shown. And label is the text of the label itself. Try typing something new in the label field 
of the property sheet and watch the button label change. 

The first three properties will become familiar to you; many GUI Beans inherit them from the base 
Component class. As you'll see when we create our own Beans, there are lots of other properties 
that are inherited from that class. For many Beans, some properties aren't relevant and it isn't 
desirable to show them all. Later we'll show how to choose which of a Bean's properties are 
shown in the properties sheet. 



Now place a Juggler Bean (one of Sun's cute test Beans) in the workspace. The animation 
should start: Duke should begin juggling his coffee beans as soon as you put him in the BeanBox, 
as shown in Figure 19.2. If he gets annoying, don't worry, we'll have him under our control soon 
enough. 

Figure 19.2. Juggling Beans 

 

You'll see that this Bean has a different set of properties. The most interesting is the one called 
animationRate. It is an integer property that controls the interval in milliseconds between 
displays of the juggler's frames. Try changing its value. The juggler changes speed as you type 
each value. Good Beans give you immediate feedback on changes to their properties. 

Notice that the property sheet understands and provides a way to display and edit each of the 
different property types. For the foreground and background properties, the sheet displays 
the color; if you click on it, a color selection dialog pops up. Similarly, if you click on the font 
property, you get a font dialog. For integer and string values, you can type a new value into 
the field. The BeanBox understands and can edit the most useful basic Java types. 

Since the types of properties are open ended, BeanBox can't possibly anticipate them all. Beans 
with more complex property types can supply a property editor. The Molecule Bean that we'll 
play with in the next section, for example, uses a custom property editor that lets us choose the 
type of molecule. If it needs even more control over how its properties are displayed, a Bean can 
provide a customizer. A customizer allows a Bean to provide its own GUI for editing its properties. 

19.1.4 Events Hookups and Adapters 

Beans use events to communicate. As we mentioned in Chapter 13, events are not limited only 
to GUI components but can be used for signaling and passing information in more general 
applications. An event is simply a notification; information describing the event and other data are 
wrapped up in a subclass of EventObject and passed to the receiving object by a method 
invocation. Event sources register listeners who want to receive the events when they occur. 
Event receivers implement the appropriate listener interface containing the method needed to 
receive the events. 

Sometimes it is useful to place an adapter object between an event source and a listener. An 
adapter can be used when an object doesn't know how to receive a particular event; it enables 
the object to handle the event anyway. The adapter can translate the event into some other 
action, like a call to a different method or an update of some data. One of the jobs of the BeanBox 
is to let us hook up event sources to event listeners. Another job is to provide or produce 
adapters that allow us to hook up events in more complex ways. 



But before we get into details, let's look at Figure 19.3 and try to get our Juggler under control. 
Using the properties sheet, change the label of our button Bean to Start. Now while the Start 
button is selected, pull down the Edit menu of the BeanBox. Choose the submenu Events. You 
will see a menu showing the listener interfaces to which the button can send events. The names 
may not match the interface names that you're familiar with, but the relationship between the 
menu and the interfaces should be clear. (The ExplicitButton provides "friendly" names for 
the interfaces, rather than using the unadorned interface names. You can also see a "bound 
property change" event category; that's another kind of listener defined by JavaBeans, which we'll 
discuss soon.) Select the button push submenu, which corresponds to the ActionListener 
interface. You'll see the actual event types that can be sent. In this case, there's only one: 
actionPerformed; choose it. Recall that buttons and other GUI components generate 
ActionEvents when they are used; you have just chosen an event source. You should see a red 
line that looks like a rubber band stretching from the button. Drag the line over to the Juggler, 
and click on it. A dialog will appear, prompting you to choose a method to which to "hook" this 
event. 

Figure 19.3. Connecting events to Beans 

 

What does it mean to hook an event to a method? If you remember our discussion of Swing, you 
know that event sources signal event listeners through a very specific method, namely one 
defined by a listener interface. Furthermore, all the methods that can handle an ActionEvent 
accept an ActionEvent as an argument. Some of the methods the target dialog presents surely 
don't take ActionEvents as arguments. And if you take a peek at the Juggler source code, you 
will see that it doesn't even implement an appropriate listener interface. How can we direct events 
to it at all? 

The answer is that the BeanBox automatically makes an adapter class for us, giving us the option 
of delivering an event to any method that could possibly make sense. That includes any method 
that could accept the ActionEvent object as an argument, including methods that take as an 
argument the type Object. More importantly, it includes methods that take no arguments at all. 
In that case, the BeanBox creates an adapter that throws away the ActionEvent and invokes 
the target method you choose whenever the event is fired. 

The Juggler methods we're interested in targeting are startJuggling( ) and stopJuggling( 
). Select startJuggling and click OK to complete the hookup of our Start button. The 
BeanBox briefly displays a message saying that it is creating and compiling the necessary 
adapter class. Follow the same procedure to create a Stop button, and hook it to 
stopJuggling( ). Finally, the Juggler will do our bidding. You should be able to start and 
stop him with the buttons. Choose the Save option from the menu to save the state of the 
BeanBox; we'll use the controllable Juggler later in another example. (There is also a 
SerializeComponent command; we'll talk about that later.) 



Let's look at one more interesting example, shown in Figure 19.4, before moving on. Grab a 
Molecule Bean, and place it in the BeanBox. By dragging the mouse within the image you can 
rotate the model in three dimensions. Try changing the type of molecule using the properties 
sheet—ethane is fun. Now let's see what we can do with our molecule. Grab a TickTock Bean 
from the palette. TickTock is a timer. Every so many seconds, TickTock fires a 
PropertyChangeEvent, which is an event defined by JavaBeans that notifies Beans of a 
change to another Bean's properties. The timer is controlled by an integer property called 
interval, which determines the number of seconds between events. TickTock is an "invisible" 
Bean; it is not derived from a Component and doesn't have a graphical appearance, just as an 
internal timer in an application wouldn't normally have a presence on the screen. BeanBox 
represents invisible Beans by a simple dashed border and a label containing its name. 

Figure 19.4. The Molecule Bean and the timer 

 

Select the PropertyChangeEvent from the Events submenu, and click on our Molecule as 
the target for the event. Hook the event to the rotateOnX( ) method. Now the Molecule 
should turn on its own, every time it receives an event from the timer. Try changing the timer's 
interval. You could also hook TickTock to the Molecule's rotateOnY( ) method, or you 
could use a different instance of TickTock and cause it to turn at different rates in each 
dimension, by setting different intervals. There is no end to the fun. 

19.1.5 Bound Properties 

By using a combination of events and smart adapters, we can connect Beans in many interesting 
ways. We can even "bind" two Beans together so that if a property changes in the first Bean, the 
corresponding property is automatically changed in the second Bean. In this scenario, the Beans 
don't necessarily have to be of the same type, but, to make sense, the properties do. 

Grab two JellyBean Beans from the palette, drop them in the BeanBox, and select one of them, 
as shown in Figure 19.5. You'll notice that a JellyBean has the simple color and font 
properties of a Swing component, plus an integer property called priceInCents. Select the 
Bind Property option under the Edit menu. (This menu option may not appear for some kinds of 
Beans.) A dialog appears, asking which property we would like to bind. Choose priceInCents. 
Now drag the rubber band over to the other JellyBean. Another dialog appears, asking to which 
property you would like to bind this value. In this case, there is only one appropriate property: the 
corresponding priceInCents. However, if a JellyBean had other integer properties, the 
dialog would list more options. After you choose the price property, BeanBox will say that it is 



creating and compiling an adapter. When the hookup is complete, go back to the first Bean, and 
try changing its price. Switch to the second, and you'll see that its price has changed as well. The 
second Bean's property has been bound to the first. 

Figure 19.5. Binding properties 

 

How does this work? It's only slightly more complicated than our previous example, in which we 
hooked an event to an arbitrary method. In that case the BeanBox generated an adapter that 
received the event and, in turn, invoked the method. Bound properties rely on the fact that the 
source Bean promises to fire a PropertyChangeEvent whenever one of its "bound" properties 
changes. The JellyBean supports this feature, so the Bind property option appears in the 
menu for it. BeanBox uses the feature by generating an adapter that listens for the 
PropertyChangeEvent and updates the property value in the target. Whenever the adapter 
receives the event, it finds the new value and sets it in the target Bean. Try binding the price 
property in the other direction as well, so that you can change the value in either Bean, and the 
changes are propagated in both directions. (Some simple logic in the Beans prevents infinite 
loops from happening here.) 

If you look under the Events submenu for one of the JellyBeans, you'll see the 
PropertyChangeEvent that we described. You can use this event like any other event; for 
example, you could go ahead and hook it up to a method. Try setting things up so that your 
Molecule rotates when you change the price of the JellyBean. A more appropriate use for 
PropertyChangeEvent would be to connect it to the reportChange( ) method of an 
instance of the ChangeReporter test Bean. The ChangeReporter will then display a message 
describing each change event it receives. 

Notice that the JellyBean has only one type of PropertyChangeEvent. How then does the 
recipient know which property has changed? Well, for a simple Bean, a PropertyChangeEvent 
is fired whenever any bound property changes; information in the event (a String value) 
describes which property changed. A sophisticated Bean could provide a separate type of 
PropertyChangeEvent for each bindable property. 

19.1.6 Constrained Properties 

In the previous section, we discussed how Beans fire PropertyChangeEvents to notify other 
Beans (and adapters) that a property has changed. In that scenario, the object that receives the 
event is simply a passive listener, as far as the event's source is concerned. JavaBeans also 
supports constrained properties, in which the event listener gets to say whether it will allow a 
Bean to change the property's value. If the new value is rejected, the change is cancelled: the 
event source keeps its old value. 

The JellyBean supports one constrainable property: priceInCents. To try this out, grab a 
Voter Bean from the palette. The Voter Bean listens for constrained PropertyChangeEvents 



and enforces its vote on them (Yes or No), depending on the value of its vetoAll property 
(False or True). Hook up the vetoableChange event from one of your JellyBeans to the 
vetoableChange( ) method of the Voter Bean. By default, the Voter vetoes all change 
requests, as shown in Figure 19.6. Try changing the price of the JellyBean. The BeanBox 
should notify you that the value cannot be changed. If you set the vetoAll property to False, 
you will be free to change the price again. Now you can decide for yourself if price controls are 
warranted for jelly beans. 

Figure 19.6. Vetoing all change requests 

 

So how are constrained properties implemented? Normally, PropertyChangeEvents are 
delivered to a propertyChange( ) method in the listener. Constrained properties are 
implemented by delivering PropertyChangeEvents to a separate listener method called 
vetoableChange( ). The vetoableChange( ) method throws a 
PropertyVetoException if it doesn't like a proposed change. 

Beans can handle the process of proposing changes in two ways. The first is to use a "two-phase 
commit" style, in which the sending Bean first issues a vetoable change. If the change passes 
(i.e., none of the listeners throw a PropertyVetoException), the sending Bean issues a 
regular property change. Bound properties in the receiving Bean don't respond until the second 
phase, when the regular property change arrives. 

An alternative strategy is to allow bound properties in the receiving Bean to act on the vetoable 
change; if the change is rejected by a receiving Bean, the sending Bean sends out a followup 
vetoable change to restore the property's original value. In this scenario, it would be legitimate to 
ignore a crazy receiving Bean that wouldn't take the old value back. 

Keep in mind that binding properties and constraining properties are two separate issues. We can 
have either one without the other. How popular builder environments will choose to represent the 
two features remains to be seen. While the BeanBox does a good job of binding properties for us, 
it does not currently shield us from the details of hooking up constrained properties. In a real 
builder environment, the two processes would presumably be made to look more similar. 

19.2 Building Beans 

Now that you have the feel from the user's perspective, let's build some Beans. In this section we 
will become the Magic Beans company. We will create some Beans, package them for 
distribution, and use them in the BeanBox to build a very simple application. (The complete JAR 
file, along with all of the example code for this chapter, is on the CD-ROM that accompanies this 
book, and at http://www.oreilly.com/catalog/learnjava.) 

The first thing we'll remind you of is that absolutely anything can be a Bean. Even the following 
class is a Bean, albeit an invisible one: 



public class Trivial implements java.io.Serializable {} 

Of course, this Bean isn't very useful: it doesn't have any properties, and it doesn't do anything. 
But it's a Bean, nonetheless and you can drag it into the BeanBox. It's important to realize that 
JavaBeans really doesn't give a hard and fast definition for what a Bean is required to be. In 
practice though, we'll want Beans that are a little more useful. 

19.2.1 Creating a Component with Bindable Properties 

We created a nifty Dial component in Chapter 15. What would it take to turn it into a Bean? 
Well, surprise: it is already a Bean! The Dial has a number of properties that it exposes in the 
way prescribed by JavaBeans. A "get" method retrieves the value of a property; for example, 
getValue( ) retrieves the dial's current value. Likewise, a "set" method (setValue( )) 
modifies the dial's value. The dial has two other properties, which also have "get" and "set" 
methods: minimum and maximum. This is all the Dial needs to do to inform a tool like BeanBox 
what properties it has and how to work with them. In addition, Dial is a custom Swing 
component, and if you look, you'll see that the JComponent class follows the same rules for its 
important properties (for example, its font). 

In order to use our Dial, we put it in a package named magicbeans, and store it in a JAR file 
that can be loaded by the BeanBox. First, create a directory called magicbeans to hold our 
Beans, add a package statement to the source files Dial.java, DialEvent.java, and 
DialListener.java, put the source files into the magicbeans directory, and compile them (javac 
magicbeans/Dial.java) to create class files. 

Next, we need to create a manifest file that tells the BeanBox which of the classes in the JAR file 
are Beans and which are support files or unrelated. At this point, we only have one Bean, 
Dial.class, so we create the following file called magicbeans.manifest : 

Name: magicbeans/Dial.class  
Java-Bean: True 

The Name: label identifies the class file as it will appear in the JAR: magicbeans/Dial.class. 
Specifications appearing after an item's Name: line and before an empty line apply to that item. 
(See the section on JARs and manifest files in Chapter 3, for more details.) We have added the 
attribute Java-Bean: True, which flags this class as a Bean to tools that read the manifest. We 
will add an entry like this for each Bean in our package. We don't need to flag support classes 
(like DialEvent and DialListener) as Beans, because we won't want to manipulate them 
directly with the BeanBox; in fact, we don't need to mention them in the manifest at all. The jar 
utility will add appropriate entries for them automatically. 

To create the JAR file, including our manifest information, enter the following command: 

% jar cvmf magicbeans.manifest magicbeans.jar magicbeans/*.class 

Now we can load our JAR into the BeanBox using the Load JAR option under the File menu. Use 
the File dialog to locate our JAR and select it. An entry for Dial should appear in the Bean 
palette. We have loaded our first Bean! Drop an instance of Dial Bean into the BeanBox. 

As Figure 19.7 shows, the dial's properties: value, minimum, and maximum are on the 
properties sheet and can be modified by the BeanBox. (At this point, you'll see several other 
properties inherited from the JComponent class as well. This picture shows the Dial Bean as it 



will appear later in this chapter, after we've learned about the BeanInfo class). We're almost 
there. But these properties are not very useful to other Beans unless we can notify them when the 
dial's value changes. We need to make value a bound property, by firing 
PropertyChangeEvents when the value changes. (Alternately, we could have other beans that 
know about DialEvents. It really depends on how we plan to design our suite of beans.) It won't 
be hard to add PropertyChangeEvents to our Bean because the JComponent class already 
handles them for us. 

Figure 19.7. The Dial component as a Bean 

 

We insert the firePropertyChange statement as the first line of the Dial's setvalue( ) 
method: 

public void setValue(int value) { 
    firePropertyChange( "value", this.value, value ); 
    ... 

That's all it takes to make Dial a source of PropertyChangeEvents. To fire an event, we use 
the firePropertyChange( ) method built into JComponent. The JComponent also handles 
all of the listener registration for us. 

The firePropertyChange( ) method takes three arguments: the name of the property and 
the old and new values. It may seem superfluous to send both the old and new values, but there 
is one bonus when we do: the firePropertyChange( ) method doesn't generate an event if 
the value has not actually changed. This saves us the trouble of implementing "event-avoidance" 
logic over and over. (It also prevents looping and other bad behavior.) Various overloaded 
versions of firePropertyChange( ) in the JComponent class accept different argument 
types, including Object and all of the primitive numeric types. 

Now we're ready to put the Dial to use. Recompile and re-JAR the classes. Next, reload the 
Juggler example that we asked you to save in the first section of this chapter. (Did you save it?) 
Add an instance of our new magic Dial Bean to the scenario, as shown in Figure 19.8. 

Figure 19.8. The Juggler with a dialable animation rate 



 

Let's try to bind the value property of the Dial to the animationRate of the Juggler. The 
Bind Property option should now be available under the Edit menu because the BeanBox 
recognizes that we are a source of PropertyChangeEvents. (Note that there are a lot of 
properties listed here. Again, we'll show you later how to limit what is presented.) When you 
complete the hookup, you should be able to vary the speed of the juggler by turning the dial. Try 
changing the maximum and minimum values of the dial to change the range. 

19.2.1.1 Design patterns for properties 

We said earlier that tools like BeanBox found out about a Bean's properties by looking at its get 
and set methods. The easiest way to make properties visible is to follow these simple design 
patterns: 

• Method for getting the current value of a property: 

public propertyType getPropertyName( ) 

• Method for setting the value of a property: 

public void setPropertyName( propertyType arg ) 

• Method for determining whether a boolean-valued property is currently true: 

public boolean isPropertyName( ) 

The last method is used only for properties with boolean values, and is optional. (You could just 
use the get method in this situation.) 

The appropriate set and get methods for these features of our Bean are already in the Dial 
class, either methods that we added or methods inherited from the java.awt.Component and 
javax.swing.JComponent classes: 



// inherited from Component  
public Color getForeground( )   
public void setForeground(Color c)   
  
public Color getBackground( )   
public void setBackground(Color c)   
  
public Font getFont( )  
public void setFont(Font f)   
  
// many others from Component and JComponent 
 
// part of the Dial itself  
public int getValue( )  
public void setValue(int v)  
  
public int getMinimum( )  
public void setMinimum(int m)  
  
public int getMaximum( )  
public void setMaximum(int m) 

BeanBox uses the reflection API to find out about the Dial Bean's methods (both its own and the 
methods it inherits); it then uses the design patterns to figure out what properties are available. 
When we use the properties sheet to change a value, the BeanBox dynamically invokes the 
correct set method to change the value. 

But wait—if you look further at the JComponent class, you'll notice that other methods match the 
design pattern. For example, what about the setCursor( ) and getCursor( ) pair? 
BeanBox doesn't know how to display or edit a cursor, so it simply ignores those properties in the 
properties sheet. 

BeanBox automatically pulls the property's name from the name of its accessor methods; it then 
lowercases the name for display on the properties sheet. For example, the font property is not 
listed as Font. Later, we'll show how to provide a BeanInfo class that overrides the way these 
properties are displayed, letting you provide your own friendly property names. 

JavaBeans allows read-only and write-only properties, which are implemented simply by leaving 
out the get or set method.  

19.2.2 A (Slightly) More Realistic Example 

We now have one nifty Bean for the Magic Beans products list. Let's round out the set before we 
start advertising. Our goal is to build the Beans we need to make a very simple form. The 
application will perform a simple calculation after data is entered on the form. 

19.2.2.1 A Bean for displaying text 

One thing that we will need in almost any application is a plain old text label. Fortunately, Swing 
provides us with one for free. 

We make a trivial subclass and package it as a Bean: 

//file: TextLabel.java 



package magicbeans;  
import javax.swing.JLabel; 
 
public class TextLabel extends JLabel { 
 
    public void setText( String s ) { 
        super.setText(s); 
 
        if ( getParent( ) != null ) { 
            invalidate( ); 
            getParent().validate( ); 
        } 
    } 
} 

The only thing we've added here is a bit of code to make the JLabel behave better in the 
BeanBox. We override the setText( ) method to have it revalidate its container whenever the 
label changes. This will cause the label to snap to the correct size automatically when you 
change the text in the property sheet. 

Recreate the JAR file and try out the label in the BeanBox. Don't forget to add TextLabel.class to 
the manifest and to specify that it's a Bean. 

19.2.2.2 A Bean for validating numeric data 

Another component that we're sure to need in a form is a text field that accepts numeric data. 
Let's build a text-entry Bean that accepts and validates numbers and makes the values available 
as a property. You should recognize almost all of the parts of the NumericField Bean: 

//file: NumericField.java 
package magicbeans; 
import javax.swing.JTextField; 
import java.awt.event.*; 
import java.beans.*; 
 
public class NumericField extends JTextField 
                          implements ActionListener { 
    private double value; 
 
    public NumericField( ) {  
        super(6); 
        addActionListener( this ); 
    } 
 
    public void actionPerformed( ActionEvent e ) { 
        try {  
            setValue( Double.parseDouble( getText( ) ) ); 
        } catch ( NumberFormatException ex ) {  
            select(0, getText().length( )); 
        } 
    } 
 
    public double getValue( ) { 
        return value; 
    } 



 
    public void setValue( double newValue ) { 
        double oldValue = value; 
        value = newValue; 
        setText( "" + newValue ); 
        firePropertyChange( "value", oldValue, newValue ); 
    } 
} 

NumericField extends the Swing JTextField component. The heart of NumericField is in 
the actionPerformed( ) method. You'll recall that a JTextField generates ActionEvents 
whenever the user presses Return to enter the data. We catch those events and try to parse the 
user's entry as a number, giving it a Double value. If we succeed, we update the value property 
using our setValue( ) method. setValue( ) then fires a PropertyChangeEvent to notify 
any interested Beans. This event firing enables us to bind NumericField's value property to 
some other property. (We'll see how in the next example.) 

If the text doesn't parse properly as a number, we give feedback to the user by selecting 
(highlighting) the text. The field defaults to a width of six columns, but you can change its size by 
dragging it. 

Verify the operation of NumericField by placing two of them in the BeanBox and binding the 
value property of one to the other. You should be able to enter a new floating point value and 
see the change reflected in the other. 

19.2.2.3 An invisible multiplier 

Finally, let's try our hand at an invisible Bean: one that performs a calculation rather than 
providing part of a user interface. Multiplier is a simple invisible Bean that multiplies the 
values of two of its properties (A and B) to produce the value of a third read-only property (C). 
Here's the code: 

//file: Multiplier.java 
package magicbeans;  
import java.beans.*;  
  
public class Multiplier implements java.io.Serializable {  
  private double a, b, c;  
    
  synchronized public void setA( double val ) {   
    a = val;   
    multiply( );  
  }  
 
  synchronized public double getA( ) {   
    return a;   
  }  
 
  synchronized public void setB( double val ) {   
    b = val;   
    multiply( );  
  }  
 
  synchronized public double getB( ) {   



    return b;   
  }  
 
  synchronized public double getC( ) {   
    return c;   
  }   
 
  private void multiply( ) {  
    double oldC = c;  
    c = a * b;  
    propChanges.firePropertyChange( 
      "c", new Double(oldC), new Double(c));  
  }  
  
  private PropertyChangeSupport propChanges = 
      new PropertyChangeSupport(this);  
  
  public void 
  addPropertyChangeListener(PropertyChangeListener listener) {  
    propChanges.addPropertyChangeListener(listener);  
  }  
 
  public void 
  removePropertyChangeListener(PropertyChangeListener listener) {  
    propChanges.removePropertyChangeListener(listener);  
  }  
} 

Because a Multiplier is invisible, it doesn't extend the JComponent class. To make a 
Multiplier a source of PropertyChangeEvents, we enlist the help of a 
PropertyChangeSupport object. When we need to invoke Multiplier's methods for 
registering property-change listeners, we simply call the corresponding methods in the 
PropertyChangeSupport object. Similarly, a Multiplier fires a property change event by 
calling the PropertyChangeSupport object's firePropertyChange( ) method. This is the 
easiest way to get an arbitrary class to be a source of PropertyChangeEvents. 

The code is straightforward. Whenever the value of property A or B changes, we call multiply( 
), which multiplies their values and fires a PropertyChangeEvent. So we can say that 
Multiplier supports binding of any of its properties.  

19.2.2.4 Putting them together 

Finally, let's demonstrate that we can put our Beans together in a useful way. Arrange three 
TextLabel s, three NumericFields, and a Multiplier into the scene shown in Figure 
19.9. 

Figure 19.9. TextLabels, NumericFields, and a Multiplier 



 

Bind the values of the first two NumericFields to the A and B properties of the Multiplier; 
bind the C value to the third NumericField. Now we have a simple calculator. You could use 
this as a tip calculator, but it's important to realize that much more is possible. Try some other 
arrangements. Can you build a calculator that squares a number? Can you see how you might 
build a simple spreadsheet? 

Before moving on, save this work so that you can reuse it later. This time, use the BeanBox's 
Serialize component command to serialize the BeanBox container itself. To select the top-level 
BeanBox, click on the background of the workspace. The dashed line should appear around the 
entire BeanBox. Then use the Serialize component command to save your work. By serializing 
the BeanBox container, we save all of the Beans it contains and all of their interconnections. 
Later in this chapter, we'll show you how to put these to use. (BeanBox's Save command also 
stores the state of the BeanBox, but it may or may not use serialization to do so.) 

19.2.3 Customizing with BeanInfo 

So far, everything the BeanBox has known about our Beans has been determined by low-level 
reflection—that is, by looking at the methods of our classes. The java.beans.Introspector 
gathers information on a Bean using reflection, then analyzes and describes a Bean to any tool 
that wants to know about it. The introspection process works only if we follow design patterns that 
restrict what we call our methods; furthermore, it gives us little control over exactly what 
properties and events appear in the BeanBox menus. We have been forced to live with all of the 
stuff that we inherit from the base Swing components, for example. We can change all that by 
creating BeanInfo classes for our Beans. A BeanInfo class provides BeanBox's introspector 
with explicit information about the properties, methods, and events of a Bean; we can even use it 
to customize the text that appears in the BeanBox's menus. 

A BeanInfo class implements the BeanInfo interface. That's a complicated proposition; in most 
situations, the introspector's default behavior is reasonable. So instead of implementing the 
BeanInfo interface, we extend the SimpleBeanInfo class, which implements all of 
BeanInfo's methods. We can override specific methods to provide the information we want; 
when we don't override a method, we'll get the introspector's default behavior. 

In the next few sections, we'll develop a DialBeanInfo class that provides explicit information 
about our Dial Bean. 

19.2.3.1 Getting Properties information 



We'll start out by describing the Dial's properties. To do so, we must implement the 
getPropertyDescriptors( ) method. This method simply returns an array of 
PropertyDescriptor objects—one for each property we want to publicize. 

To create a PropertyDescriptor, we call its constructor with two arguments: the property's 
name and the class. In the following code, we create descriptors for the Dial's value, minimum, 
and maximum properties. Then we call a few methods of the PropertyDescriptor class to 
provide additional information about each property. In this example, we call the setBound( ) 
method to state that minimum and maximum are not bound properties but that value is a bound 
property. Our code also is prepared to catch an IntrospectionException, which can occur if 
something goes wrong while creating the property descriptors: 

//file: DialBeanInfo.java 
package magicbeans;  
import java.beans.*;  
  
public class DialBeanInfo extends SimpleBeanInfo {  
  
  public PropertyDescriptor[] getPropertyDescriptors( ) {  
    try {  
      PropertyDescriptor value =   
        new PropertyDescriptor("value", Dial.class);  
      PropertyDescriptor minimum =   
        new PropertyDescriptor("minimum", Dial.class);  
      PropertyDescriptor maximum =   
        new PropertyDescriptor("maximum", Dial.class);  
        
      value.setBound(true);  
      minimum.setBound(false);  
      maximum.setBound(false);  
  
      return new PropertyDescriptor [] { value, minimum, maximum };  
    } 
    catch (IntrospectionException e) {  
      return null;   
    }  
  } 
} 

Perhaps the most interesting thing about DialBeanInfo is that by providing explicit information 
for our properties, we automatically hide any other properties that introspection might find. If you 
don't provide any property information, a development tool like BeanBox will find out about all 
sorts of properties, including properties inherited from the superclass. When we loaded the Dial 
into the BeanBox, we saw a number of properties inherited from Component. If you compile 
DialBeanInfo, package it with the Dial, and load the resulting JAR file into the BeanBox, 
you'll see that the Component properties no longer appear in the properties sheet. 

A PropertyDescriptor can provide a lot of other information about a property: it can provide 
the names of the accessor methods (if you decide not to use the design patterns); whether the 
property is constrained; and a class to use as a property editor (if the standard property editors 
aren't sufficient). 

19.2.3.2 Getting Events information 



The Dial defines its own event: the DialEvent. We'd like to tell development tools about this 
event, so that we can build applications using it. The process for telling the world about our event 
is similar to what we did previously: we add a method to the DialBeanInfo class called 
getEventSetDescriptors( ), which returns an array of EventSetDescriptors. 

Events are described in terms of their listener interfaces, not in terms of the event classes 
themselves, so our getEventSetDescriptors( ) method creates a descriptor for the 
DialListener interface. We also have to tell the world that we generate 
PropertyChangeEvents, so we create a descriptor for the PropertyChangeListener. 
Here's the code to add to the DialBeanInfo class: 

public EventSetDescriptor[] getEventSetDescriptors( ) {  
  try {  
    EventSetDescriptor dial = new EventSetDescriptor( 
      Dial.class, "dialAdjusted", 
      DialListener.class, "dialAdjusted"); 
    dial.setDisplayName("Dial Adjusted");  
  
    EventSetDescriptor changed = new EventSetDescriptor( 
      Dial.class, "propertyChange", 
      PropertyChangeListener.class, "propertyChange"); 
    changed.setDisplayName("Bound property change"); 
 
    return new EventSetDescriptor [] { dial, changed }; 
  } 
  catch (IntrospectionException e) {  
    return null; 
  }  
} 

In this method, we create two EventSetDescriptor objects: dial and changed. The 
constructor for an EventSetDescriptor takes four arguments: the class that generates the 
event, the name of the event (the name that will be displayed, by default, by a development tool), 
the listener class, and the name of the method to which the event can be delivered. (Other 
constructors let you deal with listener interfaces that have several methods.) After creating these 
objects, we call the setDisplayName( ) method to provide a more friendly name to be 
displayed by development tools like the BeanBox. (This overrides the default name specified in 
the constructor.) 

Just as the property descriptors we supply hide the properties that were discovered by reflection, 
the EventSetDescriptors hide the other events that are inherited from the base component 
classes. Therefore, when you recompile DialBeanInfo, package it in a JAR, and load it into the 
BeanBox, you'll no longer see mouse events, action events, and all the other AWT/Swing events. 
You will see only the two events that we have explicitly described: our own DialEvent and 
PropertyChangeEvent (displayed as "Dial Adjusted" and "Bound property change"). 

Once you have an EventSetDescriptor, you can provide other kinds of information about the 
event. In particular, you can state that the event is unicast, which means that it can only have one 
listener. 

19.2.3.3 Supplying icons 



Some of the Beans that come with the BeanBox are displayed on the palette with a cute icon. 
This makes life more pleasant for everyone. To supply an icon for the BeanInfo object we have 
been developing, we have it implement the getIcon( ) method. You may supply as many as 
four icons: they may be either 16 × 16 or 32 × 32, and either color or monochrome. Here's the 
getIcon( ) method for DialBeanInfo: 

public class DialBeanInfo extends SimpleBeanInfo {  
  ...  
  public java.awt.Image getIcon(int iconKind) {  
  
    if (iconKind == BeanInfo.ICON_COLOR_16x16) {  
      return loadImage("DialIconColor16.gif");  
    } else  
    if (iconKind == BeanInfo.ICON_COLOR_32x32) {  
      return loadImage("DialIconColor32.gif");  
    } else  
    if (iconKind == BeanInfo.ICON_MONO_16x16) {  
      return loadImage("DialIconMono16.gif");  
    } else  
    if (iconKind == BeanInfo.ICON_MONO_32x32) {  
      return loadImage("DialIconMono32.gif");  
    }  
    return null;  
  } 

This method is called with a constant indicating what kind of icon is being requested; for example, 
BeanInfo.ICON_COLOR_16x16 requests a 16 × 16 color image. If an appropriate icon is 
available, it loads the image and returns an Image object. If the icon isn't available, it returns 
null. For convenience, you can package the images in the same JAR file as the Bean and its 
BeanInfo class. 

Though we haven't used them here, you can also use a BeanInfo object to provide information 
about other public methods of your Bean, array-valued properties, and other features. 

19.2.3.4 Creating customizers and property editors 

JavaBeans also lets you provide a customizer for your Beans. Customizers are objects that do 
advanced customization for a Bean as a whole; they let you provide your own GUI for tweaking 
your Bean. (For example, the Select Bean uses a customizer rather than the standard 
properties sheet.) We won't show you how to write a customizer; it's not too difficult, but it's 
beyond the scope of this chapter. Suffice it to say that a customizer must implement the 
java.beans.Customizer interface, and should extend Component (or JComponent), so that 
it can be displayed. 

A property editor isn't quite as fancy as a customizer. Property editors are a way of giving the 
properties sheet additional capabilities. For example, you would supply a property editor to let you 
edit a property type that is specific to your Bean. You could provide a property editor that would 
let you edit an object's price in dollars and cents. We've already seen a couple of property editors: 
the editor used for Color-valued properties is fundamentally no different from a property editor 
you might write yourself. In addition, the Molecule Bean used a property editor to specify its 
moleculeName property. 

Again, describing how to write a property editor is beyond the scope of this chapter. Briefly, a 
property editor must implement the PropertyEditor interface; it usually does so by extending 



the PropertyEditorSupport class, which provides default implementations for most of the 
methods. 

19.3 Hand-Coding with Beans 

So far, we've seen how to create and use Beans within a Bean application builder environment. 
That is the primary role of a Java Bean in development. But Beans are not limited to being used 
by automated tools. There's no reason we can't use Beans in handwritten code. You might use a 
builder to assemble Beans for the user interface of your application and then load that serialized 
Bean collection in your own code. We'll give an example of that in a moment. 

19.3.1 Bean Instantiation and Type Management 

Beans are an abstraction over simple Java classes. They add, by convention, features that are 
not part of the Java language. To enable these additional capabilities of JavaBeans we have to 
use some special tools that take the place of basic language operations. Specifically, when 
working with Beans, we need replacements for three basic Java operations: creating an object 
with new, checking the type of an object with the instanceof operator, and casting a type with 
a cast expression. In place of these, use the corresponding static methods of the 
java.beans.Beans class, shown in Table 19.1. 

Table 19.1. Methods of the java.beans.Beans Class  
Operator Equivalent 

New Beans.instantiate(classloader, name) 
Instanceof Beans.isInstanceOf(object, class) 

Explicit cast Beans.getInstanceOf(object, class) 

Beans.instantiate( ) is the new operation for Beans. It takes a class loader and the name 
of a Bean class or serialized Bean as arguments. Its advantage over the new operator is that it 
can also load Beans from a serialized form. If you use intantiate( ), you don't have to 
specify in advance whether you will provide the Bean as a class or as a serialized object. This 
feature will become more important in the future; upcoming releases may allow the use of XML as 
an alternative serialization format for beans. If you use instantiate( ), you won't care 
whether serialized objects are provided in the standard Java format, some new XML format, or 
something even newer that we haven't heard of yet. 

Beans.isInstanceOf( ) and Beans.getInstanceOf( ) do the jobs of checking a Bean's 
type and casting it to a new type. In the future these methods may be used to let Beans take 
control of this behavior, providing different "views" of themselves. 

19.3.2 Working with Serialized Beans 

Remember the tip calculator we developed a few sections back? We asked you to serialize the 
BeanBox container and save it. As we mentioned earlier, BeanBox is a Bean itself. We can 
therefore pull the serialized BeanBox along with all of our previous work into another application 
and use it just as we had left it. We'll assume that you saved the serialized BeanBox in a file 
called tipcalc.ser. 

Compile the following small application: 

//file: BackFromTheDead.java 



import java.awt.Component; 
import javax.swing.*;  
import java.beans.*;  
  
public class BackFromTheDead extends JFrame {  
  
  public BackFromTheDead( ) {  
    super("Revived Beans!");  
    try {  
      Object bean = Beans.instantiate(   
        getClass().getClassLoader( ), "tipcalc" );  
  
      if ( Beans.isInstanceOf(bean, Component.class) ) {  
        Component comp = (Component) 
          Beans.getInstanceOf(bean, Component.class);  
        getContentPane( ).add("Center", comp);  
      } else { 
          System.out.println("Bean is not a Component...");  
      } 
    } 
 
    catch ( java.io.IOException e1 ) {  
      System.out.println("Error loading the serialized object"); 
    } 
 
    catch ( ClassNotFoundException e2 ) {  
      System.out.println( 
         "Can't find the class that goes with the object"); 
    }  
  }  
  
  public static void main(String [] args) {  
    JFrame f = new BackFromTheDead( ); 
    f.pack( ); 
    f.setVisible(true); 
  }  
} 

Run this program, making sure that all the BeanBox classes and associated JAR files, including 
our magicbeans.jar file, are in your class path. (We need only those classes since we are loading 
a BeanBox itself in this example—we don't need them in general to load other serialized beans or 
collections of Beans.) You should see the restored BeanBox, just as you left it, as shown in 
Figure 19.10. 

Figure 19.10. The restored BeanBox 



 

 

At the time of this writing, there are some bugs in the BDK, which may 
prevent you from loading the serialized BeanBox as we described in the 
previous example. If you have trouble, just substitute another serialized 
bean in place of tipcalc.ser. (Use the Serialize Component command in 
the BeanBox to save one of the other Beans, rather than the BeanBox 
itself). The example will load and display any serialized Bean that is a kind 
of Component. 

 
 

In BackFromTheDead, we use Beans.instantiate( ) to load our serialized Bean by name. 
Then we check to see whether it is a GUI component using Beans.isInstanceOf( ). (It is, 
because the BeanBox itself is a subclass of java.awt.Panel.) Finally, we cast the instantiated 
object to a Component with Beans.getInstanceOf( ) and add it to our application's 
JFrame. Notice that we still need a static Java cast to turn the Object returned by 
getInstanceOf( ) into a Component. This cast may seem gratuitous, but it is the bridge 
between the dynamic Beans lookup of the type and the static, compile-time view of the type. 

One important question remains: how does instantiate( ) find a Bean using the argument 
tipcalc? First, it appends the extension .ser to form the filename tipcalc.ser. If it can find this 
file anywhere along the class path, it loads it as a serialized Bean. It also needs the serialized 
Bean's original .class file; the name of that file is included in the serialized object and usually 
doesn't have any relation to the name of the serialized object. (In this case, instantiate( ) 
would look for BeanBox.class and the classes for the components in the BeanBox.) 

If the .ser file doesn't exist, instantiate( ) appends .class to the name (in this case, yielding 
tipcalc.class) and looks for a class file. In this case, instantiate( ) instantiates the Bean like 
any other object—that is, with the new operator. 

19.4 Putting Reflection to Work 

We've discussed reflection largely in terms of how design tools use it to analyze your classes. But 
it would be a shame to end this discussion without showing you how to use reflection for your 
own purposes. It's a powerful tool that lets you do many things that wouldn't be possible 
otherwise. In this section, we'll build a dynamic event adapter that can be configured at runtime. 

In Chapter 13, we saw how adapter classes could be built to connect event firings to arbitrary 
methods in our code, allowing us to cleanly separate GUI and logic in our applications. In this 
chapter, we have described how the BeanBox interposes adapters between Beans to do this for 
us. We have also described how the BeanBox uses adapters to bind and constrain properties 
between Beans. 



One of the primary motivations behind the AWT/Swing event model was to reduce the need to 
subclass components to perform simple hookups. But if we start relying heavily on special 
adapter classes, we can quickly end up with as many adapters as objects. Anonymous inner 
classes let us hide the existence of these classes, but they're still there. A potential solution for 
large or specialized applications is to create generic event adapters that can serve a number of 
event sources and targets simultaneously. 

The following example, DynamicActionAdapter, is a generic adapter for ActionEvents. A 
single instance of DynamicActionAdapter can be used to hook up a number of ActionEvent 
sources. DynamicActionAdapter uses reflection on both the source and target objects. This 
enables us to direct each event on the source object to an arbitrary method of the target object. 

Here's the code: 

//file: DynamicActionAdapter.java 
import java.awt.*;  
import java.util.Hashtable;  
import java.lang.reflect.Method;  
import java.awt.event.*; 
  
class DynamicActionAdapter implements ActionListener {  
  Hashtable actions = new Hashtable( );  
    
  public void hookup( Object sourceObject, Object targetObject, 
                      String targetMethod ) {  
    actions.put(sourceObject,  
      new Target(targetObject, targetMethod)); 
    invokeReflectedMethod( sourceObject, "addActionListener", 
      new Object[] {this}, new Class[] {ActionListener.class}); 
  }  
  
  public void actionPerformed(ActionEvent e) {  
    Target target = (Target)actions.get( e.getSource( ) );  
    if ( target == null )  
      throw new RuntimeException("unknown source");  
    invokeReflectedMethod(target.object, target.methodName,  
                          null, null); 
  }  
  
  private void invokeReflectedMethod(   
    Object target, String methodName,  
    Object [] args, Class [] argTypes ) { 
  
    try {  
      Method method =  
        target.getClass( ).getMethod( methodName, argTypes );  
      method.invoke( target, args );  
    } 
    catch ( Exception e ) {  
      throw new RuntimeException("invocation problem: "+e);  
    }  
  }  
  
  class Target {  
    Object object;  
    String methodName;  



  
    Target( Object object, String methodName ) {  
      this.object = object;  
      this.methodName = methodName;  
    }  
  }  
} 

Once we have an instance of DynamicActionAdapter, we can use its hookup( ) method to 
connect an ActionEvent source to some method of a target object. The target object doesn't 
have to be an ActionListener—or any other particular kind of object. The following 
application, DynamicHookupTest, uses an instance of our adapter to connect a button to its 
own launchTheMissiles( ) method: 

//file: DynamicHookupTest.java 
import javax.swing.*; 
import java.awt.event.*; 
 
public class DynamicHookupTest extends JFrame {  
  DynamicActionAdapter actionAdapter = new DynamicActionAdapter( ); 
  JLabel label = new JLabel( "Ready...", JLabel.CENTER ); 
  int count; 
 
  public DynamicHookupTest( ) { 
    JButton launchButton = new JButton("Launch!"); 
    getContentPane( ).add( launchButton, "South" ); 
    getContentPane( ).add( label, "Center" ); 
    actionAdapter.hookup(launchButton, this, "launchTheMissiles"); 
  } 
 
  public void launchTheMissiles( ) {   
    label.setText("Launched: "+ count++ ); 
  } 
 
  public static void main(String[] args) { 
    JFrame f = new DynamicHookupTest( ); 
    f.addWindowListener(new WindowAdapter( ) { 
      public void windowClosing(WindowEvent we) { System.exit(0); } 
    }); 
    f.setSize(150, 150); 
    f.setVisible( true ); 
  } 
} 

Here we simply call the dynamic adapter's hookup( ) method, passing it the ActionEvent 
source, the target object, and a string with the name of the method to invoke when the event 
arrives. 

As for the code, it's pretty straightforward. DynamicActionAdapter implements the 
ActionListener interface. When hookup( ) is called, it registers itself with the event source, 
using reflection on the source object to invoke its addAction-Listener( ) method. It stores 
information about the target object and method in a Target object, using an inner class. This 
object is stored in a Hashtable called actions. 



When an action event arrives, the dynamic adapter looks up the target for the event source in the 
Hashtable. It then uses reflection on the target object, to look up and invoke the requested 
method. Our adapter can invoke only a method that takes no arguments. If the method doesn't 
exist, the adapter throws a RuntimeException. 

The heart of the adapter is the invokeReflectedMethod( ) method. This is a private 
method that uses reflection to look up and invoke an arbitrary method in an arbitrary class. First, it 
calls the target's getClass( ) method to get the target's Class object. It uses this object to call 
getMethod( ), which returns a Method object. Once we have a Method, we can call invoke( 
) to invoke the method. 

The dynamic adapter is important because it has almost no built-in knowledge. It doesn't know 
what kind of object will be the event source. Likewise, it doesn't know what object will receive the 
event, or what method it should call to deliver the event. All this information is provided at 
runtime, in the call to hookup( ). We use reflection to look up and invoke the event source's 
addActionListener( ) method, and to look up and invoke the target's event handler. All this 
is done on the fly. Therefore, you can use this adapter in almost any situation requiring an 
ActionEvent. 

19.4.1 Safety Implications 

If the target's event-handling method isn't found, the adapter throws a RuntimeException. 
Therein lies the problem with this technique. By using reflection to locate and invoke methods, we 
abandon Java's strong typing and head off in the direction of scripting languages. We add power 
at the expense of safety. 

19.4.2 Runtime Event Hookups with Reflection 

Our dynamic event adapter is limited to handling ActionEvents. What if we want to build 
something like the BeanBox that can hook up arbitrary event sources to arbitrary destinations? 
Can we build an adapter that can listen to any kind of event? 

The answer is "yes." We can use the powerful new interface proxy reflection feature introduced in 
SDK 1.3. The java.lang.reflect.Proxy class is a factory that can generate adapters 
implementing any type of interface at runtime. By specifying one or more event listener interface 
(e.g., ActionListener) we get an adapter that implements those listener interfaces generated 
for us on the fly. The adapter is a specially created class that delegates all of the method calls on 
its interfaces to a designated InvocationHandler object. See Chapter 7 for more information 
about the reflection interface proxy. 

We should repeat that this is a feature that was introduced in the SDK 1.3. In versions of Java 
prior to 1.3, there is no standard way to create an object that implements a specified interface at 
runtime. That is, there is no way to make a specified "kind" of event listener without creating the 
class yourself. The BeanBox and other utilities which generated adapters dynamically prior to the 
SDK 1.3 did so by creating Java byte code on the fly and loading it through a class loader. 

19.5 BeanContext and BeanContextServices 

So far we've talked about some sophisticated mechanisms for connecting Java Beans together at 
design time and runtime. However, we haven't talked at all about the environment in which 
JavaBeans live. To build advanced, extensible applications we need a way for Java Beans to find 
each other or "rendezvous" at run time. The java.beans.beancontext package provides this 



kind of container environment It also provides a generic "services" lookup mechanism for Beans 
that wish to advertise their capabilities. 

Beans that implement the BeanContextChild interface (or a subinterface) are passed a 
reference to the container's BeanContext, which is the source for all container-related 
information. The BeanContext implements many useful interfaces that describe the Bean 
environment. (To use it, cast it to the appropriate interface.) The two interfaces that we will talk 
about here are Collection and BeanContextServices. 

A bean collection is an object that implements the java.util.Collection interface. It can be 
used to enumerate the Bean instances in the container. A corresponding listener interface lets 
Beans find out when Beans are added or removed. The BeanContextServices interface 
provides a means for looking up Beans that provide services, either by the Bean's class type or 
through a list of the currently available service Beans. There is a corresponding listener interface 
for being informed of new services and revoked services. 

Doing much with these classes is a bit beyond the scope of this chapter, but we'll show a simple 
example that lists the beans in the current container and the available services. Here's the code; 
Figure 19.11 shows what the bean looks like. 

//file: ShowContext.java 
package magicbeans; 
import javax.swing.*; 
import java.beans.beancontext.*; 
import java.util.*; 
 
public class ShowContext extends JTabbedPane  
                         implements BeanContextProxy { 
  BeanContext context; 
  BeanContextServices services; 
  JList servicesList = new JList(), beansList = new JList( ); 
 
  public ShowContext( ) { 
    addTab( "Beans", new JScrollPane( beansList ) ); 
    addTab( "Services", new JScrollPane( servicesList ) ); 
  } 
 
  private BeanContextChildSupport beanContextChild =  
    new BeanContextChildSupport( ) { 
 
    public void initializeBeanContextResources( )  { 
      context= getBeanContext( ); 
      try  { 
        services = (BeanContextServices)context; 
      } catch (ClassCastException ex){/*No BeanContextServices*/} 
 
      updateBeanList( ); 
      updateServicesList( ); 
 
      context.addBeanContextMembershipListener(  
        new BeanContextMembershipListener( ) { 
          public void childrenAdded( 
            BeanContextMembershipEvent e){ 
            updateBeanList( ); 
          } 



          public void childrenRemoved( 
            BeanContextMembershipEvent e){ 
            updateBeanList( ); 
          } 
        } ); 
      services.addBeanContextServicesListener(  
        new BeanContextServicesListener( ) { 
          public void serviceAvailable(  
                BeanContextServiceAvailableEvent e ) { 
            updateServicesList( ); 
          } 
          public void serviceRevoked(  
                BeanContextServiceRevokedEvent e ) { 
            updateServicesList( ); 
          } 
        } ); 
    } 
  }; 
 
  void updateServicesList( ) { 
    if ( services == null ) 
      return; 
    Iterator it = services.getCurrentServiceClasses( ); 
    Vector v = new Vector( ); 
    while( it.hasNext( ) ) 
      v.addElement( it.next( ) ); 
    servicesList.setListData( v ); 
  } 
  void updateBeanList( ) { 
    Iterator it = context.iterator( ); 
    Vector v = new Vector( ); 
    while( it.hasNext( ) ) 
      v.addElement( it.next( ) ); 
    beansList.setListData( v ); 
  } 
 
  public BeanContextChild getBeanContextProxy( ) { 
    return beanContextChild; 
  } 
} 

Figure 19.11. Reporting on a bean collection 

 

The purpose of the BeanContextChild interface is to flag the bean as a child of the container 
and allow it to receive a reference to the BeanContext. But if you look at the code, you won't 
see any BeanContextChild. Instead, you see that our example implements something called 
BeanContextProxy. What's the story? Where is our BeanContextChild? 



The easiest way to answer this question is to think about some of the design decisions that must 
have gone into the beancontext package. BeanContextChild isn't an extremely complicated 
interface, but it still has a half-dozen or so methods, and Sun's engineers didn't want to oblige 
Bean authors to implement all of those methods whenever they wanted an object that implements 
BeanContextChild. There's an obvious solution to this problem that has been used 
successfully elsewhere in Java: creating an adapter class that implements BeanContextChild, 
and letting the Bean author override only those methods that he or she is interested in. This 
adapter class is called BeanContextChildSupport—but it solves one problem only to create 
another. 

If we want an object that implements BeanContextChild, we can certainly extend 
BeanContextChildSupport, but that's ugly: it forces all of our Beans that need to know about 
the context to extend a particular class, which severely limits your design flexibility. 

A better solution is to introduce another interface, BeanContextProxy, with a single method, 
getBeanContextProxy( ), that returns a BeanContextChild. If we implement 
BeanContextProxy, the Bean's container will call getBean-ContextProxy( ) to get a child 
object for us. We can then implement getBeanContextProxy( ) easily, using a private 
anonymous inner class that extends BeanContextChildSupport, and override only the 
methods that are important to us. In our private instance, we override one method: 
initialize-BeanContextResources( ). This method gives us a hook on which to hang 
any code that needs to run after the container has given us our reference to the BeanContext. 
Within this method we can safely ask for the BeanContext with the getBeanContext( ) 
method and use it to look up Beans or services. There are other ways around this problem, but 
the one described here is as effective as any, and requires minimal work. 

Once we have a BeanContext, we can use it to look at the Beans and services that are 
available in our container. Getting the list of Beans available is simple: we just call the 
iterator( ) method of the bean context to get an Iterator that lets us extract references to 
the Beans. We do this in a helper method called updateBeanList( ). Likewise, getting a list of 
the services available requires casting the BeanContext to a BeanContextServices object, 
calling getCurrent-ServiceClasses( ) to retrieve an Iterator that lists the services, and 
extracting the services from the Iterator. Again, we use a helper method called 
updateServicesList( ) to do most of this work. Finally, the Beans and services available 
can change at any time, so we register with the BeanContext as a 
BeanContextMembershipListener to find out about changes to the Beans, and as a 
BeanContextServicesListener to find out about changes to the services. 
BeanContextMembershipListener requires two methods, childrenAdded( ) and 
childrenRemoved( ), both of which handle a BeanContextMembershipEvent. Likewise, 
BeanContextServicesListener requires the methods serviceAvailable( ) and 
serviceRevoked( ), which handle (respectively) BeanContextServiceAvailableEvents 
and BeanContextServiceRevokedEvents. 

Whew! That was a dense example. But there's really not much to it when you pick it apart. Next 
we'll move on a bit and talk about some additional JavaBeans-related APIs. 

19.6 The Java Activation Framework 

The Java Activation Framework ( JAF ) is a standard extension that can be used by Beans that 
work with many external data types, such as media retrieved from files and streams. It is 
essentially a generalized content/protocol handler mechanism for Java Beans. The JAF is an 
extensible set of classes that wrap arbitrary, raw data sources to provide access to their data as 



streams or objects, identify the MIME type of the data, and enumerate a registered set of 
"commands" for operating on the data. 

The JAF provides two primary interfaces: DataSource and DataHandler. The DataSource 
acts something like the protocol handlers we discussed in Chapter 12. It wraps the data source 
and determines a MIME type for the data stream. The DataHandler acts something like a 
content handler, except that it provides a great deal more than access to the data. A 
DataHandler is constructed to wrap a DataSource and interpret the data in different forms. It 
also provides a list of command operations that can be used to access the data. DataHandler 
also implements the java.awt.datatransfer.Transferable interface, allowing data to be 
passed among application components in a well defined way. 

You can grab the latest JAF from Sun at http://java.sun.com/beans/glasgow/jaf.html. 

19.7 Enterprise JavaBeans 

Enterprise JavaBeans is a very big topic, and we can't do more than provide a few paragraphs to 
whet your appetite. If you want more information, see Enterprise JavaBeans by Richard Monson-
Haefel (O'Reilly & Associates). The thrust of EJB is to take the JavaBeans philosophy of portable, 
pluggable, components and extend it to accommodate the sorts of things that three-tiered 
networked and database-centric applications require. Although EJB is built on the basic 
JavaBeans concepts, it is much larger and more "special-purpose." It doesn't have a lot in 
common with the kinds of things we've been talking about in this chapter. EJBs are primarily 
server-side components for networked applications. Sun's Forte development environment, 
among others, provides some support for working with Enterprise JavaBeans. 

EJB ties together a number of other Java "enterprise"-oriented APIs, including database access, 
transactions, and name services, into a single component model for server applications. EJB 
imposes a lot more structure on how you write code than plain old JavaBeans. But it does so in 
order to allow the server-side EJB container to take on a lot of responsibility for you and to 
optimize your application's activities without you having to write a lot of code. Here are a few of 
the things that Enterprise JavaBeans tackles: 

• Object lifecycle and name service lookup 
• Container-managed persistence 
• Transaction management 
• Server resource pooling and management 
• Deployment configuration 

EJB divides the world into two camps: Entity Beans , which represent data objects, and Session 
Beans, which implement services and operations over entity beans. These correspond well to the 
second and third tiers in a three-tiered business application. "Business Logic" is represented by 
Session Bean services and database access is made transparent through automated object 
mapping by Entity Beans. 

Many aspects of EJB behavior can be controlled through "deployment descriptors" that customize 
bean behavior for the local environment. The result is a high level of abstraction over ordinary 
business-specific code. It allows powerful, networked business application components to be 
packaged and reused in the sort of way that ordinary Beans are reused to build client-side 
applications. 

Sun has created a reference EJB platform as part of Java 2 Enterprise Edition (J2EE); currently, 
the most robust EJB implementations are provided by third-party companies. Usually the EJB 



"container" is packaged as part of a more general "application server" that performs other duties 
such as providing a web server. There are many vendors of commercial EJB servers. Two 
extremes: Weblogic makes a very popular one with many high-end features; Valto's Ejipt is a very 
small (embeddable) EJB container. 



Chapter 20. Applets 

One of the original tenets of Java was that applications would be delivered over the network to 
your computer. Instead of buying a shrink-wrapped box containing a word processor, you would 
pay per use for a program available over the Internet. This revolutionary idea has been 
temporarily shelved by the realities of a slow Internet. But small downloadable applications called 
applets are practical and interesting. 

An applet is part of a web page, just like an image or hyperlink. It "owns" some rectangular area 
of the user's screen. It can draw whatever it wants and respond to keyboard and mouse events in 
that area. When the web browser loads a page that contains a Java applet, it knows how to load 
the classes of the applet and run them. 

This chapter describes how applets work and how to put them in web pages. You'll learn how to 
use Sun's Java Plug-In to take advantage of the latest Java features. Finally, we'll cover the 
details of creating signed applets, which can step outside the typical applet security restrictions to 
do useful things, like reading and writing files. 

20.1 The JApplet Class 

If you've been waiting for a more detailed discussion of the applet class, here it is. A JApplet is 
something like a Panel with a mission. It is a GUI container that has some extra structure to 
allow it to be used in an "alien" environment, such as a Web browser. Applets also have a 
lifecycle that lets them act more like an application than a static component, such as a paragraph 
of text or an image. Although applets tend to be relatively simple, there's no inherent restriction 
on their complexity. There's no reason you couldn't write an air traffic control system (well, let's be 
less ambitious—a word processor) as an applet. 

Originally, the java.applet.Applet class defined the functionality of an applet. The 
javax.swing.JApplet class is a simple extension of Applet that adds the plumbing 
necessary for Swing. 

Structurally, an applet is a sort of wrapper for your Java code. In contrast to a standalone 
graphical Java application, which starts up from a main( ) method and creates a GUI, an applet 
is itself a component that expects to be dropped into someone else's GUI. Thus, an applet can't 
run by itself; it runs in the context of a web browser or a special applet viewer program (which is 
described later). Instead of having your application create a JFrame to hold your GUI, you stuff 
your application inside a JApplet (which is itself a Container), and let someone else add the 
applet to their GUI. 

Applets are placed on web pages with the <APPLET> HTML tag, which we'll discuss later in this 
chapter. At its simplest, you just specify the name of the applet class and a size for the applet: 

<APPLET code=AnalogClock width=100 height=100></APPLET> 

Pragmatically, an applet is an intruder into someone else's environment, and therefore has to be 
treated with suspicion. The web browsers that run applets impose restrictions on what the applet 
is allowed to do. The restrictions are enforced by an applet security manager, which unsigned 
applets are not allowed to change. The browser also provides an "applet context," which is 
additional support that helps the applet live within its restrictions. 



Aside from that top-level structure and the security restrictions, there is no difference between an 
applet and an application. If your application can live within the restrictions imposed by a 
browser's security manager, you can easily structure it to function as an applet and a standalone 
application. (We'll show an example of an applet that can also be run as a standalone shortly.) 
Conversely, if you can supply all of the things that an applet requires from its environment, you 
can use applets within your standalone applications and within other applets (though this requires 
a bit of work). 

As we said a moment ago, a JApplet expects to be embedded in GUI (perhaps a document) 
and used in a viewing environment that provides it with special resources. In all other respects, 
however, applets are just ordinary Panel objects. As Figure 20.1 shows, an applet is a kind of 
Panel. Like any other Panel, a JApplet can contain user interface components and use all the 
basic drawing and event-handling capabilities of the Component class. We draw on a JApplet 
by overriding its paint( ) method; we respond to events in the JApplet's display area by 
providing the appropriate event listeners. Applets have additional structure that helps them 
interact with the viewer environment. 

Figure 20.1. The java.applet package 

 

20.1.1 Applet Control 

The Applet class contains four methods an applet can override to guide it through its lifecycle. 
The init( ) , start( ), stop( ), and destroy( ) methods are called by the 
appletviewer or a web browser to direct the applet's behavior. init( ) is called once, after 
the applet is created. The init( ) method is where you perform basic setup like parsing 
parameters, building a user interface, and loading resources. Given what we've said about 
objects, you might expect the applet's constructor would be the right place for such initialization. 
However, the constructor is meant to be called by the applet's environment, for simple creation of 
the applet. This might happen before the applet has access to certain resources, like information 
about its environment. Therefore, an applet doesn't normally do any work in its constructor; it 
relies on the default constructor for the JApplet class and does its initialization in the init( ) 
method. 



The start( ) method is called whenever the applet becomes visible; it shouldn't be a surprise 
then that the stop( ) method is called whenever the applet becomes invisible. init( ) is only 
called once in the life of an applet, but start( ) and stop( ) can be called any number of 
times (but always in the logical sequence). For example, start( ) is called when the applet is 
displayed, such as when it scrolls onto the screen; stop( ) is called if the applet scrolls off the 
screen or the viewer leaves the document. start( ) tells the applet it should be active. The 
applet may want to create threads, animate, or otherwise perform useful (or annoying) activity. 
stop( ) is called to let the applet know it should go dormant. Applets should cease CPU-
intensive or wasteful activity when they are stopped and resume it when (and if) they are 
restarted. However, there's no requirement that an invisible applet stop computing; in some 
applications, it may be useful for the applet to continue running in the background. Just be 
considerate of your user, who doesn't want an invisible applet dragging down system 
performance. There are user tools that help to monitor and squash rogue applets in a web 
browser. 

Finally, the destroy( ) method is called to give the applet a last chance to clean up before it's 
removed—some time after the call to stop( ). For example, an applet might want to close down 
suspended communications channels or remove graphics frames. Exactly when destroy( ) is 
called depends on the browser; Netscape calls destroy( ) just prior to deleting the applet from 
its cache. This means that although an applet can cling to life after being told to stop( ), how 
long it can go on is unpredictable. If you want to maintain your applet as the user progresses 
through other activities, consider putting it in an HTML frame, so that it remains visible and won't 
be told to stop( ). 

20.1.2 The Applet Security Sandbox 

Applets are quarantined within the browser by an applet SecurityManager. The 
SecurityManager is part of the web browser or applet viewer. It is installed before the browser 
loads any applets and implements the basic restrictions that let the user run untrusted applets 
safely. Remember, aside from basic language robustness, there are no inherent security 
restrictions on a standalone Java application. It is the browser's responsibility to install a special 
security manager and limit what applets are allowed to do. 

Most browsers impose the following restrictions on untrusted applets: 

• Untrusted applets cannot read or write files on the local host. 
• Untrusted applets can open network connections (sockets) only to the server from which 

they originated. 
• Untrusted applets cannot start other processes on the local host. 
• Untrusted applets cannot have native methods. 

The motivation for these restrictions should be fairly obvious: you clearly wouldn't want a program 
coming from some random Internet site to access your files or run arbitrary programs. Although 
untrusted applets cannot directly read and write files on the client side or talk to arbitrary hosts on 
the network, applets can work with servers to store data and communicate. For example, an 
applet can use Java's RMI (Remote Method Invocation) facility to do processing on its server. An 
applet can communicate with other applets on the Net by proxy through its server. 

20.1.2.1 Trusted applets 

Newer versions of Java make it possible to sign archive files that contain applets. Because a 
signature identifies the applet's origin unambiguously, we can now distinguish between "trusted" 
applets (i.e., applets that come from a site or person you trust not to do anything harmful) and 



run-of-the-mill "untrusted" applets. In browser environments that support signing, trusted applets 
can be granted permission to "go outside" of the applet security sandbox. Trusted applets can be 
allowed to do most of the things that standalone Java applications can do: read and write files, 
open network connections to arbitrary machines, and interact with the local operating system by 
starting processes. Trusted applets still can't have native methods, but including native methods 
in an applet would make it unportable, and would therefore be a bad idea. 

Chapter 3, discussed how to package your applet's class files and resources into a JAR file. 
Later in this chapter, I'll show you how to sign an applet with your digital signature. 

20.1.3 Getting Applet Resources 

An applet must communicate with its browser or applet viewer. For example, it must get its 
parameters from the HTML document in which it appears. An applet may also need to load 
images, audio clips, and other items. It may also want to ask the viewer about other applets on 
the same HTML page in order to communicate with them. To get resources from the 
environment, applets use the AppletStub and AppletContext interfaces. Unless you're 
writing a browser or some other application that loads and runs applets, you won't have to 
implement these interfaces, but you do use them within your applet. 

20.1.3.1 Applet parameters 

An applet gets its parameters from the <PARAM> tags placed inside the <APPLET> tag in the 
HTML document, as we'll describe later. Inside the applet, you can retrieve these parameters 
using Applet's getParameter( ) method. For example, the following code reads the 
imageName and sheep parameters from its HTML page: 

String imageName = getParameter( "imageName" );   
try  {  
    int numberOfSheep = Integer.parseInt(getParameter( "sheep" ));   
} catch ( NumberFormatException e ) { /* use default */ } 

A friendly applet will provide information about the parameters it accepts through its 
getParameterInfo( ) method. getParameterInfo( ) returns an array of string arrays, 
listing and describing the applet's parameters. For each parameter, three strings are provided: 
the parameter name, its possible values or value types, and a verbose description. For example: 

public String [][] getParameterInfo( ) {  
  String [][] appletInfo =  { 
      {"logo",   "url",  "Main logo image"}, 
      {"timer", "int",   "Time to wait before becoming annoying"},  
      {"flashing", "constant|intermittant", "Flag for how to flash"} 
  }; 
  return appletInfo; 
} 

20.1.3.2 Applet resources 

An applet can find where it lives by calling the getDocumentBase( ) and getCodeBase( ) 
methods. getDocumentBase( ) returns the base URL of the document in which the applet 
appears; getCodeBase( ) returns the base URL of the Applet's class files. An applet can use 
these to construct relative URLs from which to load other resources like images, sounds, and 
other data. The getImage( ) method takes a URL and asks for an image from the viewer 



environment. The image may be pulled from a cache or loaded asynchronously when later used. 
The getAudioClip( ) method, similarly, retrieves sound clips. 

The following example uses getCodeBase( ) to construct a URL and load a properties 
configuration file, located in the same remote directory as the applet's class file: 

Properties props = new Properties( );   
try {  
  URL url = new URL(getCodeBase( ), "appletConfig.props");  
  props.load( url.openStream( ) );   
} catch ( IOException e ) { /* failed */ } 

A better way to load resources is by calling the getResource( ) and 
getResourceAsStream( ) methods of the Class class, which search the applet's JAR files (if 
any) as well as its codebase. The following code loads the properties file 
appletConfig.props: 

Properties props = new Properties( );   
try {  
  props.load( getClass( ).getResourceAsStream("appletConfig.props") ); 
} catch ( IOException e ) { /* failed */ } 

20.1.3.3 Driving the browser 

The status line is a blurb of text that usually appears somewhere in the viewer's display, 
indicating a current activity. An applet can request that some text be placed in the status line with 
the showStatus( ) method. (The browser isn't required to do anything in response to this call, 
but most browsers will oblige you. ) 

An applet can also ask the browser to show a new document. To do this, the applet makes a call 
to the showDocument(url) method of the AppletContext. You can get a reference to the 
AppletContext with the applet's getAppletContext( ) method. Calling 
showDocument(url) replaces the currently showing document, which means that your 
currently running applet will be stopped. 

Another version of showDocument( ) takes an additional String argument to tell the browser 
where to display the new URL: 

getAppletContext( ). 
 
showDocument( url, name ); 

The name argument can be the name of an existing labeled HTML frame; the document 
referenced by the URL will be displayed in that frame. You can use this method to create an 
applet that "drives" the browser to new locations dynamically, but keeps itself active on the 
screen in a separate frame. If the named frame doesn't exist, the browser will create a new top-
level window to hold it. Alternatively, name can have one of the following special values: 

self  

Show in the current frame 



_parent  

Show in the parent of our frame 

_top  

Show in outermost (top-level) frame 

_blank  

Show in a new top-level browser window 

Both showStatus( ) and showDocument( ) requests may be ignored by a cold-hearted 
viewer or web browser. 

20.1.3.4 Inter-applet communication 

Applets that are embedded in documents loaded from the same location on a web site can use a 
simple mechanism to locate one another (rendezvous). Once an applet has a reference to 
another applet, it can communicate with it, just as with any other object, by invoking methods and 
sending events. The getApplet( ) method of the applet context looks for an applet by name: 

Applet clock = getAppletContext( ).getApplet("theClock"); 

Give an applet a name within your HTML document using the name attribute of the <APPLET> 
tag. Alternatively, you can use the getApplets( ) method to enumerate all of the available 
applets in the pages. 

The tricky thing with applet communications is that applets run inside of the security sandbox. An 
untrusted applet can only "see" and communicate with objects that were loaded by the same 
class loader. Currently, the only reliable criterion for when applets share a class loader is when 
they share a common base URL. For example, all of the applets contained in web pages loaded 
from the base URL of http://foo.bar.com/mypages/ should share a class loader and should be 
able to see each other. This would include documents such as mypages/foo.html and 
mypages/bar.html, but not mypages/morestuff/foo.html. 

When applets do share a class loader, other techniques are possible too. As with any other class, 
you can call static methods in applets by name. So you could use static methods in one of your 
applets as a "registry" to coordinate your activities. There are also proposals that would allow you 
to have more control over when applets share a class loader and how their life cycles are 
managed. 

20.1.3.5 Applets versus standalone applications 

The following lists summarize the methods of the applet API. From the AppletStub interface: 

boolean isActive( );  
URL getDocumentBase( );  
URL getCodeBase( );  
String getParameter(String name);  
AppletContext getAppletContext( );  
void appletResize(int width, int height); 



From the AppletContext interface: 

AudioClip getAudioClip(URL url);  
Image getImage(URL url);  
Applet getApplet(String name);  
Enumeration getApplets( );  
void showDocument(URL url);  
public void showDocument(URL url, String target);  
void showStatus(String status); 

These are the methods that are provided by the applet viewer environment. If your applet doesn't 
happen to use any of them, or if you can provide alternatives to handle special cases (such as 
loading images), then your applet could be made able to function as a standalone application as 
well as an applet. The basic idea is to add a main( ) method that provides a window (JFrame) 
in which the applet can run. Here's an outline of the strategy: 

//file: MySuperApplet.java 
import java.applet.Applet; 
import java.awt.*; 
import javax.swing.*; 
 
public class MySuperApplet extends JApplet {  
 
    // applet's own code, including constructor 
    // and init() and start( ) methods 
 
    public static void main( String [] args ) {  
        // instantiate the applet 
        JApplet theApplet = new MySuperApplet( );  
 
        // create a window for the applet to run in 
        JFrame theFrame = new JFrame( );  
        theFrame.setSize(200,200);  
 
        // place the applet in the window 
        theFrame.getContentPane( ).add("Center", theApplet);  
 
        // start the applet 
        theApplet.init( );  
        theApplet.start( );  
 
        // display the window 
        theFrame.setVisible(true);  
    }  
} 

Here we get to play "applet viewer" for a change. We have created an instance of the class, 
MySuperApplet, using its constructor—something we don't normally do—and added it to our 
own JFrame. We call its init( ) method to give the applet a chance to wake up and then call 
its start( ) method. In this example, MySuperApplet doesn't implement init( ) and 
start( ), so we're calling methods inherited from the Applet class. This is the procedure that 
an applet viewer would use to run an applet.(If we wanted to go further, we could implement our 
own AppletContext and AppletStub and set them in the JApplet before startup.) 



Trying to make your applets into applications as well often doesn't make sense and is not always 
trivial. We show this example only to get you thinking about the real differences between applets 
and applications. It is probably best to think in terms of the applet API until you have a need to go 
outside it. Remember that trusted applets can do almost all of the things that applications can. It 
may be wiser to make an applet that requires trusted permissions than an application. 

20.2 The <APPLET> Tag 

Applets are embedded in HTML documents with the <APPLET> tag. The <APPLET> tag 
resembles the HTML <IMG> image tag. It contains attributes that identify the applet to be 
displayed and, optionally, give the web browser hints about how it should be displayed.[1] The 
standard image tag sizing and alignment attributes, such as height and width, can be used inside 
the applet tag. However, unlike images, applets have both an opening <APPLET> and a closing 
</APPLET> tag. Sandwiched between these can be any number of <PARAM> tags that contain 
data to be passed to the applet: 

[1] If you are not familiar with HTML or other markup languages, you may want to refer to HTML: The Definitive Guide, by Chuck 
Musciano and Bill Kennedy (O'Reilly & Associates), for a complete reference on HTML and structured web documents. 

<APPLET attribute attribute ... > 
    <PARAM parameter > 
    <PARAM parameter > 
    ... 
</APPLET> 

20.2.1 Attributes 

Attributes are name/value pairs that are interpreted by a web browser or appletviewer. (Many 
HTML tags besides <APPLET> have attributes.) Attributes of the <APPLET> tag specify general 
features that apply to all applets, such as size and alignment. The definition of the <APPLET> tag 
lists a fixed set of recognized attributes; specifying an incorrect or nonexistent attribute should be 
considered an HTML error. 

Three attributes are required in the <APPLET> tag. Two of these attributes, width and height, 
specify the space the applet occupies on the screen. The third required attribute may be either 
code or object; you must supply one of these attributes, and you can't specify both. The code 
attribute specifies the class file from which the applet is loaded; the object attribute specifies a 
serialized representation of an applet. Most often, you'll use the code attribute; the tools for 
creating serialized applets aren't quite there yet. 

The following is an HTML fragment for a hypothetical simple clock applet that takes no 
parameters and requires no special HTML layout: 

<APPLET code=AnalogClock width=100 height=100></APPLET> 

The HTML file that contains this <APPLET> tag must be stored in the same directory as the 
AnalogClock.class class file. The applet tag is not sensitive to spacing, so the previous code is 
therefore equivalent to: 

<APPLET   
    code=AnalogClock   
    width=100   
    height=100>   
</APPLET> 



You can use whatever form seems appropriate. 

20.2.2 Parameters 

Parameters are analogous to command-line arguments; they provide a way to pass information to 
an applet. Each <PARAM> tag contains a name and a value that are passed as strings to the 
applet: 

<PARAM name = parameter_name value = parameter_value> 

Parameters provide a means of embedding application-specific data and configuration 
information within an HTML document.[2] Our AnalogClock applet, for example, might accept a 
parameter that selects between local and universal time: 

[2] If you are wondering why the applet's parameters are specified in yet another type of tag, here's 
the reason. In the original alpha release of Java, applet parameters were included inside of a single 
<app> tag along with formatting attributes. However, this format was not SGML-compliant, so the 
<PARAM> tag was added. 

<APPLET code=AnalogClock width=100 height=100>   
    <PARAM name=zone value=GMT>   
</APPLET> 

Presumably, this AnalogClock applet is designed to look for a parameter named zone with a 
possible value of GMT. 

Parameter names and values can be quoted to contain spaces and other special characters. We 
could therefore be more verbose and use a parameter value like the following: 

<PARAM name=zone value="Greenwich Mean Time"> 

The parameters a given applet expects are determined by the developer of that applet. There is 
no fixed set of parameter names or values; it's up to the applet to interpret the parameter 
name/value pairs that are passed to it. Any number of parameters can be specified, and the 
applet may choose to use or ignore them as it sees fit. The applet might also consider parameters 
to be either optional or required, and act accordingly. 

20.2.3 ¿Habla Applet? 

Web browsers ignore tags they don't understand; if the web browser doesn't interpret the 
<APPLET> or <PARAM> tags, they should disappear and any HTML between the <APPLET> 
and </APPLET> tags should appear normally. 

By convention, Java-enabled web browsers do the opposite and ignore any extra HTML between 
the <APPLET> and </APPLET> tags. This means we can place some alternative HTML inside 
the <APPLET> tag, which is displayed only by web browsers that can't run the applet. 

For our AnalogClock example, we could display a small text explanation and an image of the 
clock applet as a teaser: 

<APPLET code=AnalogClock width=100 height=100>   
    <PARAM name=zone value=GMT>   
    <strong>If you see this you don't have a Java-enabled Web   
    browser. Here's a picture of what you are missing.</strong>   



    <img src="clockface.gif">   
</APPLET> 

20.2.4 The Complete <APPLET> Tag 

We can now spell out the syntax for the full-blown <APPLET> tag: 

<APPLET   
    code = class_name 
or: 
object = serialized_applet_name   
 
    width = pixels_high 
    height = pixels_wide 
 
    [ codebase = location_URL ]   
    [ archive = comma_separated_list_of_archive_files ]   
    [ name = applet_instance_name ]   
    [ alt = alternate_text ]   
    [ align = style ]   
    [ vspace = vertical pad pixels ]   
    [ hspace = horizontal pad pixels ]   
> 
    [ <PARAM name = parameter_name value = parameter_value> ] ... 
 
... [ HTML code for non-Java-aware browsers ]   
</APPLET> 

Either the code attribute or the object attribute must be present to specify the applet to run. The 
code attribute specifies the applet's class file; you'll see this most frequently. The object attribute 
specifies a serialized (pickled) representation of an applet. When you use the object attribute to 
load an applet, the applet's init( ) method is not called. However, the serialized applet's start( ) 
method is called. 

The width, height, align, vspace, and hspace attributes deterine the preferred size, alignment, and 
padding, respectively. The width and height attributes are required. 

The codebase attribute specifies the directory to be searched for the applet's class file (or archive 
file). If this attribute isn't present, the browser looks in the same directory as the HTML file. The 
archive attribute specifies a list of JAR or ZIP files in which the applet's class file is located. To 
put two or more files in the list, separate the filenames by commas; for example, the following 
attribute tells the browser to search three archives for the applet: 

archive=Part1.jar,Part2.jar,Utilities.jar 

The archive attribute must be present if you have packaged your applet in an archive. When 
searching for classes, a browser checks the files listed in the archives attribute before searching 
any other locations on the server. 

The alt attribute specifies alternate text that is displayed by browsers that understand the 
<APPLET> tag and its attributes, but can't actually run applets. This attribute can also describe 
the applet, since in this case any alternate HTML between <APPLET> and </APPLET> is, by 
convention, ignored by Java-enabled browsers. 



The name attribute specifies an instance name for the executing applet. This is a name specified 
as a unique label for each copy of an applet on a particular HTML page. For example, if we 
include our clock twice on the same page (using two applet tags), we should give each instance a 
unique name to differentiate them: 

<APPLET code=AnalogClock name="bigClock" width=300 height=300></APPLET> 
<APPLET code=AnalogClock name="smallClock" width=50 height=50></APPLET> 

Applets use instance names to recognize and communicate with other applets on the same page. 
We could, for instance, create a "clock setter" applet that knows how to set the time on an 
AnalogClock applet and pass it the instance name of a particular target clock on this page as a 
parameter. This might look something like: 

<APPLET code=ClockSetter>   
    <PARAM name=clockToSet value="bigClock">   
</APPLET> 

20.2.5 Loading Class Files 

The code attribute of the <APPLET> tag should specify the name of an applet. This is either a 
simple class name, or a package path and class name. For now, let's look at simple class names; 
we'll discuss packages in a moment. By default, the Java runtime system looks for the class file in 
the same location as the HTML document that contains it. This location is known as the base 
URL for the document. 

Consider an HTML document, clock.html, that contains our clock applet example: 

<APPLET code=AnalogClock width=100 height=100></APPLET> 

Let's say we retrieve the document at the following URL: 

http://www.time.ch/documents/clock.html 

Java tries to retrieve the applet class file from the same base location: 

http://www.time.ch/documents/AnalogClock.class 

The codebase attribute of the <APPLET> tag can be used to specify an alternative base URL for 
the class file search. Let's say our HTML document now specifies codebase, as in the following 
example: 

<APPLET   
    codebase=http://www.joes.ch/stuff/   
    code=AnalogClock   
    width=100   
    height=100>   
</APPLET> 

Java now looks for the applet class file at: 

http://www.joes.ch/stuff/AnalogClock.class 

20.2.6 Packages 



Packages are groups of Java classes. A package name is a little like a URL, in that they both use 
a hierarchical, dot-separated naming convention. The full name of a Java class file is formed by 
prefixing the class name with the package name. 

In addition to providing a naming scheme, packages determine the storage locations of class 
files. Before a class file is retrieved from a server, its package-name component is translated by 
the client into a relative path name under the base URL of the document. The components of a 
class package name are turned into the directory components of a pathname, just as with classes 
on your local system. 

Let's suppose that our AnalogClock has been placed into a package called time.clock (a 
subordinate package for clock-related classes, within a package for time-related classes). The 
fully qualified name of our class is time.clock.AnalogClock. Our simple <APPLET> tag would now 
look like: 

<APPLET code=time.clock.AnalogClock width=100 height=100></APPLET> 

Let's say the clock.html document is once again retrieved from: 

http://www.time.ch/documents/clock.html 

Java now looks for the class file in the following location: 

http://www.time.ch/documents/time/clock/AnalogClock.class 

The same is true when specifying an alternative codebase: 

<APPLET   
    codebase=http://www.joes.ch/stuff/   
    code=time.clock.AnalogClock   
    width=100   
    height=100>   
</APPLET> 

Java now tries to find the class in the corresponding path under this base URL: 

http://www.joes.ch/stuff/time/clock/AnalogClock.class 

One possible package-naming convention proposes that Internet host and domain names be 
incorporated as part of package names to form a unique identifier for classes produced by a 
given organization. If a company with the domain name foobar.com produced our AnalogClock 
class, they might distribute it in a package called com.foobar.time.clock. The fully qualified name 
of the AnalogClock class would then be com.foobar.time.clock.AnalogClock. This would 
presumably be a unique name stored on an arbitrary server. A future version of the Java class 
loader might use this to automatically search for classes on remote hosts. Perhaps soon we'll run 
Sun's latest and greatest web browser directly from its source with: 

% java com.sun.java.hotjava.HotJava 

20.2.7 Viewing Applets 



Sun's SDK comes with an applet-viewer program, aptly called appletviewer. To use appletviewer, 
specify the URL of the document on the command line. For example, to view our AnalogClock at 
the URL shown ealier, use the following command: 

% appletviewer http://www.time.ch/documents/clock.html 

appletviewer retrieves all applets in the specified document and displays each one in a separate 
window. appletviewer is not a web browser; it doesn't attempt to display HTML. It's primarily a 
convenience for testing and debugging applets. If the document doesn't contain <APPLET> tags, 
appletviewer does nothing. 

20.3 Using the Java Plug-in 

The disadvantage of the <APPLET> tag is that you have to rely on the browser's Java interpreter. 
This is bad for two reasons: 

• The version of Java that is included in popular browsers lags the current version of the 
SDK. It was a painfully long time, for instance, between the release of SDK 1.1 and the 
time that SDK 1.1 was supported in Netscape and Internet Explorer. As a matter of fact, it 
hasn't ever been fully supported in Internet Explorer—Microsoft has its own agenda, 
which may not match up with your "write once, run anywhere" aspirations. 

• The browser's Java implementation has its own bugs and idiosyncrasies, which are 
different from the bugs and idiosyncrasies of Sun's SDK. If you are hoping to run your 
applet on both Netscape and Internet Explorer, you will have to test it on both platforms 
to make sure you don't run into any trouble. This is tedious and frustrating. 

At the time of this writing, both browsers are moderately stable for SDK 1.1 development. As a 
developer, though, you're probably itching to use all of those cool Java 2 features. What can you 
do? In light of the lawsuits brought by Sun and the Department of Justice, it is unlikely that 
Microsoft will ever support Java 2 in Internet Explorer. Netscape's Java support in Navigator is 
likewise questionable, though for different reasons. In the foreseeable future, you can't rely on 
Java 2 support in Navigator or Internet Explorer. 

20.3.1 What Is the Java Plug-in? 

Does that mean applets are dead? Heck no! A clever technology called the Java Plug-in saves 
the day. Both Navigator and Internet Explorer have a plug-in mechanism that allows the browser 
to be extended to handle new types of data.[3] For example, you can view movies in your browser 
using Apple's QuickTime plug-in. You can view interactive multimedia with Macromedia's 
Shockwave plug-in. The idea is strikingly similar to applets; basically the browser hands off 
responsibility for some rectangular area on the screen to someone else's code. The Java Plug-in 
is simply a Java runtime environment implemented as a browser plug-in. 

[3] Microsoft calls this technique ActiveX custom controls. But it's exactly the same concept: the browser gives control for some 
part of a web page to another piece of code. 

Applets that use the Java Plug-in can take advantage of the very latest Java platform features. 
Furthermore, applets should run exactly the same in any browser. The browser isn't even really 
running the applet anymore—the Plug-in takes care of it. 

This is nifty technology, but it does come at a price. Users who want to use the Java Plug-in to 
run applets will have to download and install it first. While this is not a huge deal, it is a barrier to 
universal acceptance. (It's conceivable that America Online, which owns Netscape now, will 



package the Plug-in with future versions of Navigator. But it's unlikely that Microsoft would make 
the same move with Internet Explorer.) 

20.3.2 Messy Tags 

The HTML for web pages that contain Plug-in applets is much messier than the <APPLET> tag 
you've already seen. Part of the problem is that you have to use separate tags for Internet 
Explorer and Navigator. Navigator recognizes the <EMBED> tag, while Internet Explorer 
recognizes the <OBJECT> tag. If you are clever about fitting the <EMBED> tag inside the 
<OBJECT> tag, you'll end up with some HTML that both browsers will recognize and run correctly. 

These tags have their own little syntax, but basically you're still providing the same information to 
the browser. You specify the size of the applet, the class name to use, where to find additional 
classes, and parameters that should be passed to the applet itself. Fortunately, you don't have to 
worry too much about the details. Sun provides a handy utility, the HTML Converter , that 
converts <APPLET> tags to the appropriate <EMBED> and <OBJECT> tags. Assuming you've set 
up your <APPLET> tag correctly, you should have no trouble converting your HTML page to use 
the Java Plug-in. This utility is available for download at 
http://java.sun.com/products/plugin/1.2/converter.html. 

Suppose, for example, that you create a web page called ShowOff.html. Once you have the 
<APPLET> tag set up the way you want (you can test it with appletviewer), you can use the 
HTML Converter to set up your web page to use the Plug-in. The HTML Converter runs as a 
Swing application. To run it, navigate to the directory where you installed the HTML Converter 
and type the following: 

C:\> java HTMLConverter 

The window is pretty self-explanatory. You can convert all HTML files in a directory or just convert 
a single HTML file. The conversion is done "in-place," which means that your original HTML is 
overwritten with the new stuff. The Converter will automatically back up your old files unless you 
tell it otherwise. 

You can perform different kinds of conversions, represented by different templates. By default, 
the HTML Converter uses a template that produces a page that will work with Navigator and 
Internet Explorer. If you want it to work with other browsers that support Java 2, you'll need to 
specify the "Extended" template rather than the "Standard" template.[4] In addition to adding the 
<EMBED> and <OBJECT> tags, the "Extended" template will preserve the original <APPLET> tag. 
This has the added benefit that you'll still be able to test your applet with appletviewer. 

[4] At this writing, no browsers support Java 2. But it seems likely that Sun will release a new version of 
HotJava soon. 

20.3.3 Viewing Plug-in Applets 

What actually happens when users browse to a page with a Plug-in applet? It depends, of course, 
on which browser you're using. Internet Explorer asks the user for permission to download and 
run the Java Plug-in in order to display the applet. Netscape Navigator directs the user to the 
Java Runtime Environment (JRE) download page. The Java Plug-in is distributed as part of the 
JRE. In either case, the download and installation times vary, depending on network speed and 
user expertise. You can expect that most Internet users will have to spend ten or more minutes 
downloading and installing the JRE. 



The good news is that the installation only needs to be done once. Once you have JRE installed 
and running, you can view Plug-in applets immediately (at least as soon as the browser loads the 
plug-in). The only time you'll need to install a new Plug-in is when a new version of Java comes 
out. 

Despite the price of installation and HTML tag messiness, the Plug-in is powerful medicine 
indeed. No longer do you have to wait for browser vendors to implement the latest Java platform 
features—the Plug-in makes the latest Java releases available to applets immediately, and it 
provides a more hospitable environment for applets, regardless of what browser displays them. 

20.4 Using Digital Signatures 

Digital signatures provide a way to authenticate documents and other data. They solve one of the 
Internet's biggest problems: given that you've received a message from Ms. X, how do you know 
that the message really came from Ms. X and not an imposter? Just as important for Java, let's 
say that you've downloaded a great new applet written by your favorite author, Jonathan 
Knudsen, and you'd like to grant it some additional privileges, so that it can do something cool for 
you. You trust that this particular author wouldn't intentionally distribute something harmful. But 
how do you know that the author really is who he says he is? And what if you downloaded the 
applet from a third-party location, like an archive? How can you be sure that someone hasn't 
modified the applet since the author wrote it? With Java's default security manager, such an 
applet can't do anything serious, but when we're talking about configuring your browser to grant 
additional privileges to applets coming from trusted sites, you would be in for trouble—if it weren't 
for digital signatures. 

Like their inky analogs, digital signatures associate a name with an item in a way that is difficult to 
forge. In reality, a digital signature is much more difficult to forge than a traditional signature. 
Furthermore, digital signatures provide another benefit: they allow you to authenticate a 
document, proving that it hasn't been altered in transit. In other words, you know who the sender 
is, and that the data you received is exactly what the sender sent. Some malicious person can't 
clip out a digital signature, modify the original document (or applet), and attach the old signature 
to the result. And he can't generate a new signature—at least, he can't generate a signature 
claiming that the document came from its original sender. (He could, of course, attach his own 
signature—but that would be like signing the stick up note you hand to the bank teller.) 

Digital signatures are based on public-key cryptography, which is beyond the scope of this book. 
However, the basics are important and interesting.[5] In a public-key system, there are two pieces 
of information: a public key and a private one. They have a special, asymmetric relationship, such 
that a message encrypted with one key can only be decrypted with the other key. Furthermore, if 
you know only one key, it is very difficult to compute the other. Therefore, if I give you my public 
key, you can use it to create an encrypted message that only I can read. No one else, including 
you, has enough information to go through the process of decrypting the encoded message, so 
it's safe to send it over untrusted networks. Furthermore, I can (and probably will) give my public 
key to anyone in the world, since the public key only lets people send me messages; it doesn't let 
them read my messages. 

[5] See Bruce Schneier's encyclopedic Applied Cryptography (John Wiley & Sons) or Jonathan Knudsen's 
Java Cryptography (O'Reilly & Associates). 

Digital signatures are based on the reverse process. If I encrypt something with my private key, 
anyone can use my public key to read the message. That may not sound very useful, since I 
already said that I'd give my public key away to anyone who wants it. But in this case, we're not 
trying to keep the message secret, we're trying to prove that I'm the only one who could have sent 
the message. And that's exactly what we've done. No one else has my private key, so no one 



else can send a message that can be decrypted with my public key. Therefore, only the real me 
could have sent the message. 

We've simplified the process in one crucial way. Encrypting a large message with complex 
algorithms takes a long time, even with fast computers. And some public key algorithms just 
aren't suitable for encrypting large amounts of data for other reasons, as well. For digital 
signatures, then, we don't usually encrypt the entire message. First, we use a standard algorithm 
to create a "hash" or "message digest." To produce the signature, we then encrypt the (relatively 
small) message digest with the private key. The recipient can then decrypt the signature with the 
public key and check whether the resulting message digest matches the message he received. If 
it does, the recipient knows that the message hasn't been altered and that the sender is who he 
claims to be. 

Digital signatures can be used to authenticate Java class files and other types of data sent over 
the network. The author of an object signs the data with his or her digital signature, and we use 
the author's public key to authenticate that signature after we retrieve it. We don't have to 
communicate with anyone in order to verify the authenticity of the data. We don't even have to 
make sure that the communications by which we received the data are secure. We simply check 
the signature after the data arrives. If it is valid, we know that we have the authentic data and that 
it has not been tampered with . . . or do we? 

Well, there is a larger problem that digital signatures alone don't solve: verifying identity. If the 
signature checks out, we know that only the person (or entity) that published the public key could 
have sent the data. But how do we know that the public key really belongs to whomever we think 
it does? How do we associate an identity with that public key in the first place? We've made it 
more difficult to counterfeit a message, but it's not impossible. A forger could conceivably create a 
counterfeit Java class, sign it with his own private key, and try to trick you into believing that his 
public key is that of the real author or the trusted web site. In this case, you'll download the bad 
applet, then use the wrong public key to verify the applet, and be tricked into thinking that there's 
nothing wrong. This is where certificates and certificate authorities come into play. 

20.4.1 Certificates 

A certificate is a document that lists a name and a public key. By a name, we mean some real 
world information describing a person or entity. For example, a certificate might contain your full 
name and address, or the name of a company and the location of its headquarters. We'll consider 
the combination of a name and a public key in this way to make up an identity. If we have valid 
information for a particular identity, we can verify data that the identity has signed. 

A certificate is signed with the digital signature of a certificate authority—the entity that issued the 
certificate. The certificate is, in effect, a proclamation by the certificate authority that the identity 
listed is valid—in other words, that the listed public key really does belong to the entity named. If 
we decide to trust the certificate authority, we can then believe the identities contained in the 
certificates it issues are valid. The certificate acts as a sort of electronic ID card, backed up by the 
credentials of the certificate authority. Of course, we no longer issue certificates on fancy vellum 
scrolls, as shown in Figure 20.2; the format for modern certificates is described by a standard 
called X.509. 

Figure 20.2. An old-fashioned certificate 



 

20.4.1.1 Certificate authority (CA) certificates 

This is all well and good, but the original problem remains: in order to verify the authenticity of a 
certificate, we need to verify its signature. Now, to do that, we need to know the certificate 
authority's public key; rather than solving the problem, we simply seem to have shifted the 
problem to a new front. If a counterfeiter could substitute her public key for the public key of one 
entity, she might be able to do the same for the certificate authority. But shifting the problem 
helps quite a bit. We have reduced the number of public keys that we need to know from an 
unlimited number (all of the identities we might ever encounter) to a very small number: one for 
each certificate authority. We have chained our trust of the identity to the trust of the certificate 
authority's identity. Chaining can be allowed to extend further, to an arbitrary depth, allowing 
certificate authorities to back up lower certificate authorities, and so on. At some point, of course, 
the chain has to stop, and that usually happens with a "self-signed" or certificate authority 
certificate; that is, a certificate that is issued by the certificate authority for itself, containing its 
own public key. "What good is that?" you might ask. 

As for the authenticity of the top-level certificate authorities themselves, we will have to rely on 
very strong, well-known certificates that we have acquired by very secure or perhaps very 
tangible means. Web browsers, like Netscape Navigator and Microsoft Internet Explorer, come 
with CA certificates for several popular certificate authorities. Netscape Navigator and MSIE are, 
for example, shipped with a CA certificate for Verisign (http://www.verisign.com), so that you 
can safely verify any certificates signed by Verisign, wherever you encounter them. So, if all is 
working, we've reduced the problem to just that of your getting your copy of the web browser 
software securely the first time. As far as maintenance goes, browsers like Netscape Navigator 
let you download new CA certificates dynamically, using secure transports. 

20.4.1.2 Site certificates 

Certificates are presented to your web browser for verification when you encounter signed objects 
(signed JAR files). They are also issued by web servers when you make a secure connection 
using the HTTPS (HTTP Secure Socket Layer) protocol. Browsers like HotJava, Netscape, and 
Internet Explorer may save these certificates encountered from third-party locations, so that you 



can assign privileges or attributes to those identities and so that they can be recognized again. 
We'll call these certificates site certificates—though they may belong to any third party, like a 
person or an organization. For example, you might declare that objects signed by a certain site 
are allowed to write local files. The browser then saves that site's certificate, marking it with the 
privileges (writing local files) that it should grant. 

20.4.1.3 User (signer) certificates 

Finally, you, the user, can have your own identity and your own certificates to validate your 
identity. Browsers like Netscape Navigator store user certificates that can be used to identify you 
to third parties. A user certificate is associated with a private key—the private key that goes with 
the public key in the certificate. When you use a private key to sign an object, the corresponding 
certificate is shipped as part of the signature. Remember, the recipient needs the public key in 
your certificate to validate your signature. The certificate says on whose authority the recipient 
should trust that public key. 

So, where do you get private keys, public keys, and certificates validating your public keys? Well, 
as for the keys, you generate those yourself. No other party should ever have access to your 
private key, much less generate it for you. After you generate a public and private key pair, you 
send your public key to the certificate authority to request that they certify you. The CA can make 
you jump through whatever hoops are necessary; when they are satisfied that you are who you 
say you are, they grant you a certificate. 

In Netscape Navigator, this entire process can be accomplished by the user, within the browser, 
using the KEYGEN extension to HTML. You can then use Netscape tools to sign JAR files, send 
secure email, etc. HotJava is not quite as slick. The SDK supplies a utility called keytool for 
managing keys and certificates. Another utility, jarsigner, is used for signing JAR files. We'll 
discuss these utilities in detail in the next section. 

20.4.2 Signed JAR Files: The keytool and jarsigner Utilities 

keytool is a utility for managing a database of identities. With it, you can generate or import key 
pairs and certificates. You can then use these keys and certificates to sign JAR files. 

For a variety of reasons, including antiquated cryptography export control laws in the U.S. and 
patents on various cryptographic algorithms, Sun was forced to separate the security API itself 
from the packages that actually implement encryption algorithms.[6] The packages that implement 
cryptography are called "provider" packages; Sun's security provider package comes with the 
SDK by default. Other packages can be installed to provide additional or alternate 
implementations of the cryptographic algorithms. By default, keytool uses the implementations 
found in Sun's provider package, though it can use other packages if any are available. 

[6] See the JCE (Java Cryptography Extension), which is available to U.S. and Canadian citizens from 
http://java.sun.com/products/jce. 

The user interface to keytool is awkward. It's a good bet that someone will implement a key 
management utility with a more friendly graphical interface; maybe it will be built into a future 
version of HotJava. Therefore, we won't spend a great deal of time discussing the details of 
keytool; it's more important to understand the concepts. 

20.4.2.1 What about Netscape and Internet Explorer? 



Before the debut of the Java Plug-in, Netscape and Microsoft both invented their own code-
signing schemes. As a result, signed applets in the SDK 1.1 world were a disaster—there were 
three different ways to sign and deploy code, one each for Netscape Navigator, Sun's HotJava, 
and Microsoft's Internet Explorer. Unless you knew in advance that you had only one kind of 
browser worry about, you were pretty much out of luck. 

The Plug-in levels the field for signed applets, because the packaging and deployment strategy is 
the same for Navigator and Internet Explorer. 

20.4.2.2 The TestWrite example 

Before we dive into the muck, let's take a look at an example, just to prove that you can actually 
sign objects with the current releases of the SDK and the Java Plug-in. In the process of 
discussing the example, we'll point out some things that are lacking. 

Use your browser to navigate to 
http://www.oreilly.com/catalog/learnjava/TestWrite/Unsigned.html. You'll see the 
applet shown in Figure 20.3. When you push the button, this applet attempts to write a harmless 
file on the local host. Give it a try. The applet should fail with a security exception and display a 
message. 

Figure 20.3. An unsigned applet violating security policy 

 

At this point, load a web page that displays the same applet: 
http://www.oreilly.com/catalog/learnjava/TestWrite/Signed.html. The only difference is that I've 
wrapped the applet in a JAR file that I have signed, with a key and certificate that I generated 
using keytool. When it loads the applet's JAR file, the Java Plug-in also retrieves the signature. 
However, nothing has changed for the applet just yet. When you click the button, you still get a 
security exception when the applet tries to write a file. 

But now that an identity is associated with the applet, we can do more. You can download my 
certificate from http://www.oreilly.com/catalog/learnjava/TestWrite/Jonathan.cer. 
Enabling the signed applet to write a file takes two steps. First, you'll have to import this certificate 
file into a keystore , which is simply a collection of keys and certificates. The second step is to 
create a policy file that tells the Java Plug-in that this applet is allowed to write a file. 

To import the certificate file, use the keytool utility that comes with the SDK. For this example, 
we'll create an entirely new keystore. The following command imports the Jonathan.cer certificate 
file and puts it in a keystore called client.keystore. If the keystore file doesn't exist, it will be 
created. 

C:\> keytool -import -file Jonathan.cer -alias Jonathan 
    -keystore client.keystore -storepass buendia 



The -alias option tells keytool what alias to use for the imported certificate. This is just a 
name you can use to refer to the keys in the certificate. The integrity of the keystore is protected 
using a password, specified with the -storepass option. Whenever you access the keystore, 
you'll need to supply the same password to verify that the keystore hasn't been tampered with. 

After you type this command, keytool prints out some information about the certificate you are 
about to import. Then it asks if this certificate should be trusted. This is an important question, as 
anyone can generate this kind of self-signed certificate. (I've decided to be my own certificate 
authority of one, for now.) 

Owner: CN=Jonathan Knudsen 
Issuer: CN=Jonathan Knudsen 
Serial number: 3804d2c1 
Valid from: Wed Oct 13 14:43:13 EDT 1999 until: 
  Tue Jan 11 13:43:13 EST 2000 
Certificate fingerprints: 
    MD5:  A6:56:C2:52:2B:20:69:26:67:A2:0B:78:D3:3C:AC:45 
    SHA1: A3:AF:41:93:73:1F:48:EE:6E:F5:8B:93:66:3E:73:F5:99:5D:54:AF 
Trust this certificate? [no]:  yes 
Certificate was added to keystore 
 
C:\> 

What can we do? We might simply get a certificate signed by a more popular authority than 
myself. But you would still have to register the CA's certificate somehow, following this same 
process. 

For now, you can verify this certificate by hand. We'll do this not only to get through this example, 
but because it presents a useful analogy to the process of certification. The SHA1 "thumbprint" 
that keytool displays should match this: 

A3:AF:41:93:73:1F:48:EE:6E:F5:8B:93:66:3E:73:F5:99:5D:54:AF 

If everything looks good, you can type "yes" to accept this certificate. By doing so, you are saying 
that you accept my identity, and believe that I have in fact signed certificates that match this 
thumbprint. You have effectively chained your trust to this printed page rather than an online 
certificate authority. You can be reasonably sure that no one has gone to the effort of issuing 
counterfeit O'Reilly books. 

You are now ready to assign greater privileges to this applet. For example, you can allow it to 
write files. To grant privileges in this way, you need to create a security policy. Use the SDK's 
policytool utility (which we introduced in ). Start the utility from a command line: 

C:\> policytool 

The policytool interface isn't pretty, but it gets the job done. When you first run policytool, 
you may get a message that it can't find the default policy file. Just click OK. (If you don't get this 
message, choose New from the File menu to start with a clean slate.) 

Our eventual goal is to tell the Plug-in that any applet we have signed is allowed to write a file on 
your computer. The policy file needs to reference the certificate in the keystore we just created. 
The first thing we need to do, therefore, is tell policytool where to find the keystore. Select the 
Change KeyStore option from the Edit method. Type the URL of the keystore file you just 



created. (On a Windows system, it looks something like this: 
file:/c:/SignTest/client.keystore.) You can leave the keystore type blank. Then click OK. 

Now that we're pointed at the right keystore, we need to add a permission for file writing. Click on 
the Add Policy Entry button. In the window that comes up, leave the CodeBase field blank. Fill in 
the SignedBy field with Jonathan. This means that we're setting a policy for all code signed by 
Jonathan. (Remember, Jonathan is the alias we used for the certificate when it was imported 
to the keystore.) 

To give code signed by Jonathan permission to write files, click on the Add Permission button. 
In the next dialog, choose FilePermission from the top combo box. In the second combo box, 
choose <<ALL FILES>>. In the third combo box, choose write. Finally, click on OK to finish 
creating the permission. Then click on Done to finish creating the policy. 

Having set this up, you now need to save the policy file. Choose Save from the File menu; save 
this policy file as client.policy. You can exit the policytool utility now. 

The last thing you need to do is tell the Java Plug-in to use the policy file we've just so laboriously 
created. To do this, use a text editor to edit the java.security file. This file is found underneath the 
installation directory for the JRE, in the lib/security subdirectory. (If you have both the SDK and 
the JRE installed, you will actually have two copies of this file in different locations. For example, 
you might have one JRE installed in C:\sdk1.3\jre and another in C:\Program Files\JavaSoft\JRE. 
Make sure you edit the java.security file that is used by the Plug-in, which is probably the 
one that's not in the SDK installation directory.) 

Once you've found the right java.security file, you need to find the section that contains entries for 
policy.url. Add a line to reference the policy file we just created, like this: 

policy.url.3=file:/c:/SignTest/client.policy 

Finally, you're ready to test the signed applet. (You may need to restart your browser.) Navigate 
to the signed applet page. When you press the button, the file is written successfully. 

So, how did we create this certificate and sign the JAR file? Let's move on. 

20.4.3 Keystores, Keys, and Certificates 

The SDK supports keystores that hold identities along with their public keys, private keys, and 
certificates. It includes a utility called keytool that manages keystores. You just saw how 
Jonathan's certificate could be contained in a keystore. The identities in keystores are visible to 
Java. We'll discuss what that means in a bit, but for the most part, we'll only use this database as 
a repository while we create and work with our identity locally. 

An identity can be a person, an organization, or perhaps a logical part of an organization. Before 
it can be used, an identity must have a public key and at least one certificate validating its public 
key. keytool refers to entities in the local database by IDs or aliases. These names are arbitrary 
and are not used outside of the keystore and any policy files that reference it. Identities that have 
a private key stored locally in the keystore, along with their public key, can be used to sign JAR 
files. These identities are also called signers. 

The default location for a keystore is the file .keystore in the user's home directory. On a single 
user system, the Java installation directory is used instead of the user's home directory.[7] The 



default keystore location is used by keytool unless you specify another keystore with the -
keystore option. 

[7] Beware if you have both the SDK and HotJava installed in separate locations on a single user system, 
such as a PC running Windows. You will have to inform HotJava where to find the SDK package using the 
JDK_HOME environment variable. 

If you are going to maintain any private keys in a keystore (if you will have any signers), you must 
take special care to keep the keystore file safe (and not publicly readable). Private keys must be 
kept private. 

20.4.3.1 Public and private keys 

We can create a new entry in the default keystore, complete with a key pair, with the following 
keytool command: 

C:\> keytool -genkey -alias Jonathan -keyalg DSA -keysize 1024 -dname 
"CN=Jonathan Knudsen, OU=Technical Publications, O=O'Reilly & 
Associates, C=US" -keypass gianni -storepass buendia 

There are a lot of options to explain. The most important one is -genkey, which tells keytool to 
create a new key pair for this entry. A key pair enables this entry to sign code. The -alias 
options supplies an alias for this entry, Jonathan. The -keyalg argument, DSA, is the algorithm 
for which we are going to generate the keys. The current release of Java only supports one: DSA, 
the Digital Signature Algorithm, which is a U.S. government standard for signing. The -keysize 
argument is the key length in bits. For most algorithms, larger key sizes provide stronger 
encryption. DSA supports keys of either 512 or 1024 bits. You should use the latter, unless you 
have a specific reason to do otherwise. 

keytool generates the keys and places them in the default keystore. Private keys are specially 
protected using the -keypass option. To retrieve Jonathan's private key, you will have to know 
the correct key password. The integrity of the keystore as a whole is protected by the -
storepass option. You need to supply the same keystore password to retrieve data from this 
keystore later. 

Once we've created a keystore entry, we can display it with the command: 

C:\> keytool -list -alias Jonathan -storepass buendia 

To see more detail, add the -v option (for "verbose"): 

C:\> keytool -list -alias Jonathan –v -storepass buendia 

Or we can list the entire contents of the database: 

C:\> keytool -list -storepass buendia 

20.4.3.2 Certificates 

Now that we have keys, we want a certificate in which to wrap our public key for distribution. 
Ideally, at this point, we'd send a public key to a trusted certificate authority and receive a 



certificate in return. keytool can generate such a request, called a Certificate Signing Request 
(CSR). To generate a signing request for the entry we just created, you would do this: 

C:\> keytool -csr -alias Jonathan -file Jonathan.csr -keypass firenze -
storepass buendia 

You need to specify the alias for the entry you want, a filename where the CSR will be written, 
and the password for the private key. Once you've generated the CSR file, you can send it off to 
your favorite Certificate Authority. Once they've performed some identity checks on you, and 
once you pay them, they will send a certificate back to you. Suppose they send it back in a file 
called Jonathan.x509. You can use keytool to import this certificate as follows: 

C:\> keytool -import -alias Jonathan -file Jonathan.x509 -keypass 
firenze -storepass buendia 

To demonstrate the features of keytool, we will serve as our own authority (as we did in the 
example) and use our own self-signed certificate. It turns out that keytool already did this for us 
when we created keys! A self-signed certificate already exists in the keystore; all we have to do is 
export it as follows: 

C:\> keytool -export -alias Jonathan -file Jonathan.cer -storepass 
buendia 

20.4.3.3 Signing JARs 

If we have a signer keystore entry, initialized with its private and public keys, we are ready to sign 
JAR files. This is accomplished using another command-line utility, jarsigner. All we need to 
do is specify which keystore entry should do the signing, which JAR needs to be signed, and the 
keystore password. 

C:\> jarsigner -storepass buendia testwrite.jar Jonathan 

If we now list the archive, we will see that jarsigner has added two files to the META-INF 
directory: JONATHAN.SF and JONATHAN.DSA. JONATHAN.SF is the signature file—it is like 
the manifest file for this particular signature. It lists the objects that were signed and the signature 
algorithms. JONATHAN.DSA is the actual binary signature. 

20.4.4 Where We've Been 

We've covered a lot of territory in the past few pages. Here's a summary of what we can and can't 
do. We can: 

• Use keytool to create a keystore entry, including public and private keys. 
• Use keytool to create a self-signed certificate, or import a certificate that has been 

issued by a certificate authority. 
• Use jarsigner to sign a JAR file. 
• Tell the Java Plug-in (by hand) what certificates it should trust and what permissions to 

grant to each identity. 

Unfortunately, we can't do any of this automatically. We can't just tell the Plug-in, "I trust John 
Doe" and have it try to look up a verifiable certificate for John Doe. Furthermore, we are 
personally responsible for the security of our keystores. It's important that private keys remain 



private; but anyone who walks up to my computer can use keytool to retrieve information about 
any identity that I have issued. The keystore password provides some protection, but it won't foil 
a determined attacker. The fundamental problem, keeping secrets secret, will always be difficult.  

Chapter 21. Glossary 

abstract  

The abstract keyword is used to declare abstract methods and classes. An abstract 
method has no implementation defined; it is declared with arguments and a return type 
as usual, but the body enclosed in curly braces is replaced with a semicolon. The 
implementation of an abstract method is provided by a subclass of the class in which it is 
defined. If an abstract method appears in a class, the class is also abstract. 

API (Application Programming Interface)  

An API consists of the functions and variables programmers use in their applications. The 
Java API consists of all public and protected methods of all public classes in the 
java.applet, java.awt, java.awt.image, java.awt.peer, java.io, 
java.lang, java.net, and java.util packages. 

applet  

An embedded Java application that runs in the context of an applet viewer, such as a 
web browser. 

<APPLET> tag  

An HTML tag that specifies an applet run within a web document. 

appletviewer  

Sun's application that implements the additional structure needed to run and display Java 
applets. 

application  

A Java program that runs standalone; i.e., it doesn't require an applet viewer. 

AWT (Abstract Window Toolkit)  

Java's platform-independent windowing, graphics, and user interface toolkit. 

boolean  

A primitive Java data type that contains a truth value. The two possible values of a 
boolean variable are true and false. 

byte  



A primitive Java data type that's an eight-bit two's-complement signed number (in all 
implementations). 

callback  

A behavior that is defined by one object and then later invoked by another object when a 
particular event occurs. 

cast  

A technique that explicitly converts one data type to another. 

catch  

The catch statement introduces an exception-handling block of code following a try 
statement. The catch keyword is followed by an exception type and argument name in 
parentheses and a block of code within curly braces. 

certificate  

An electronic document used to verify the identity of a person, group, or organization. 
Certificates attest to the identity of a person or group and contain that organization's 
public key. A certificate is signed by a certificate authority. 

certificate authority (CA)  

An organization that is entrusted to issue certificates, taking whatever steps are 
necessary to verify the identity for which it is issuing the certificate. 

char  

A primitive Java data type; a variable of type char holds a single 16-bit Unicode 
character. 

class  

a) An encapsulated collection of data and methods to operate on the data. A class may 
be instantiated to produce an object that's an instance of the class. 

b) The class keyword is used to declare a class, thereby defining a new object type. Its 
syntax is similar to the struct keyword in C. 

class loader  

An object in the Java security model that is responsible for loading Java binary classes 
from the network into the local interpreter. A class loader keeps its classes in a separate 
namespace, so that loaded classes cannot interact with system classes and breach 
system security. 

class method  



A method declared static. Methods of this type are not passed implicit this 
references and may refer only to class variables and invoke other class methods of the 
current class. A class method may be invoked through the class name, rather than 
through an instance of the class. 

class path  

The directory path specifying the location of compiled Java class files on the local 
system. 

class variable  

A variable declared static. Variables of this type are associated with the class, rather 
than with a particular instance of the class. There is only one copy of a static variable, 
regardless of the number of instances of the class that are created. 

client  

The application that initiates a conversation as part of a networked client/server 
application. See also server. 

compilation unit  

The source code for a Java class. A compilation unit normally contains a single class 
definition and, in most current development environments, is simply a file with a .java 
extension. 

compiler  

A program that translates source code into executable code. 

component  

Any of the GUI primitives implemented in the java.awt package as subclasses of 
Component. The classes Button, Choice, and TextField (among many others) are 
components. 

component architecture  

A methodology for building parts of an application. It is a way to build reusable objects 
that can be easily assembled to form applications. 

composition  

Using objects as part of another, more complex object. When you compose a new object, 
you create complex behavior by delegating tasks to the internal objects. Composition is 
different from inheritance, which defines a new object by changing or refining the 
behavior of an old object. See also inheritance. 

constructor  



A method that is invoked automatically when a new instance of a class is created. 
Constructors are used to initialize the variables of the newly created object. The 
constructor method has the same name as the class. 

container  

One of the java.awt classes that "contain" GUI components. Components in a 
container appear within the boundaries of the container. The classes Dialog, Frame, 
Panel, and Window are containers. 

content handler  

A class that is called to parse a particular type of data and that converts it to an 
appropriate object. 

datagram  

A packet of data sent to a receiving computer without warning, error checking, or other 
control information. 

data hiding  

See encapsulation. 

double  

A Java primitive data type; a double value is a 64-bit (double-precision) floating-point 
number. 

encapsulation  

An object-oriented programming technique that makes an object's data private or 
protected (i.e., hidden) and allows programmers to access and manipulate that data 
only through method calls. Done well, encapsulation reduces bugs and promotes 
reusability and modularity of classes. This technique is also known as data hiding. 

event  

A user's action, such as a mouse-click or key press. 

event model  

The overall design of the mechanism for sending and receiving events. The Java event 
model changed between the 1.0 and 1.1 releases in order to allow more explicit control 
over how and when events are delivered from sources to listeners. 

exception  

A signal that some unexpected condition has occurred in the program. In Java, 
exceptions are objects that are subclasses of Exception or Error (which themselves 



are subclasses of Throwable). Exceptions in Java are "raised" with the throw keyword 
and received with the catch keyword. See also catch, throw, and throws. 

extends  

A keyword used in a class declaration to specify the superclass of the class being 
defined. The class being defined has access to all the public and protected variables 
and methods of the superclass (or, if the class being defined is in the same package, it 
has access to all non-private variables and methods). If a class definition omits the 
extends clause, its superclass is taken to be java.lang.Object. 

final  

A keyword modifier that may be applied to classes, methods, and variables. It has a 
similar, but not identical, meaning in each case. When final is applied to a class, it 
means that the class may never be subclassed. java.lang.System is an example of a 
final class. When final is applied to a variable, the variable is a constant; i.e., it can't 
be modified. 

finalize  

A reserved method name. The finalize( ) method is called when an object is no 
longer being used (i.e., when there are no further references to it), but before the object's 
memory is actually reclaimed by the system. A finalizer should perform cleanup tasks and 
free system resources not handled by Java's garbage-collection system. 

finally  

A keyword that introduces the finally block of a try/catch/finally construct. 
catch and finally blocks provide exception handling and routine cleanup for code in a 
try block. The finally block is optional, and appears after the try block, and after 
zero or more catch blocks. The code in a finally block is executed once, regardless 
of how the code in the try block executes. In normal execution, control reaches the end 
of the try block and proceeds to the finally block, which generally performs any 
necessary cleanup. 

float  

A Java primitive data type; a float value is a 32-bit (single-precision) floating- point 
number represented in IEEE 754 format. 

garbage collection  

The process of reclaiming the memory of objects no longer in use. An object is no longer 
in use when there are no references to it from other objects in the system and no 
references in any local variables on the method call stack. 

GC  

An abbreviation for garbage collection or garbage collector (or occasionally "graphics 
context"). 



graphics context  

A drawable surface represented by the java.awt.Graphics class. A graphics context 
contains contextual information about the drawing area and provides methods for 
performing drawing operations in it. 

GUI (graphical user interface)  

A GUI is a user interface constructed from graphical push buttons, text fields, pull-down 
menus, dialog boxes, and other standard interface components. In Java, GUIs are 
implemented with the classes in the java.awt package. 

hashcode  

An arbitrary-looking identifying number used as a kind of signature for an object. A 
hashcode stores an object in a hashtable. See also hashtable. 

hashtable  

An object that is like a dictionary or an associative array. A hashtable stores and retrieves 
elements using key values called hashcodes. See also hashcode. 

hostname  

The name given to an individual computer attached to the Internet. 

HotJava  

A web browser written in Java, capable of downloading and running Java applets. 

ImageConsumer  

An interface for receiving image data from an image source. Image consumers are 
usually implemented by the awt.peer interface, so they are largely invisible to 
programmers. 

ImageObserver  

An interface in the java.awt.image package that receives information about the status 
of an image being constructed by a particular ImageConsumer. 

ImageProducer  

An interface in the java.awt.image package that represents an image source (i.e., a 
source of pixel data). 

implements  

A keyword used in class declarations to indicate that the class implements the named 
interface or interfaces. The implements clause is optional in class declarations; if it 
appears, it must follow the extends clause (if any). If an implements clause appears in 



the declaration of a non-abstract class, every method from each specified interface 
must be implemented by the class or by one of its superclasses. 

import  

The import statement makes Java classes available to the current class under an 
abbreviated name. ( Java classes are always available by their fully qualified name, 
assuming the appropriate class file can be found relative to the CLASSPATH environment 
variable and that the class file is readable. import doesn't make the class available; it 
just saves typing and makes your code more legible.) Any number of import statements 
may appear in a Java program. They must appear, however, after the optional package 
statement at the top of the file, and before the first class or interface definition in the file. 

inheritance  

An important feature of object-oriented programming that involves defining a new object 
by changing or refining the behavior of an existing object. That is, an object implicitly 
contains all the non-private variables of its superclass and can invoke all the non-
private methods of its superclass. Java supports single inheritance of classes and 
multiple inheritance of interfaces. 

inner class  

A class definition that is nested within another class. An inner class functions within the 
lexical scope of another class. 

instance  

An object. When a class is instantiated to produce an object, we say the object is an 
instance of the class. 

instance method  

A non-static method of a class. Such a method is passed an implicit this reference to 
the object that invoked it. See also class method and static. 

instanceof  

A Java operator that returns true if the object on its left-hand side is an instance of the 
class (or implements the interface) specified on its right-hand side. instanceof returns 
false if the object is not an instance of the specified class or does not implement the 
specified interface. It also returns false if the specified object is null. 

instance variable  

A non-static variable of a class. Copies of such variables occur in every instance of the 
created class. See also class variable and static. 

int  



A primitive Java data type that's a 32-bit two's-complement signed number (in all 
implementations). 

interface  

A keyword used to declare an interface. More generally, an interface defines a list of 
methods that enables a class to implement the interface itself. 

internationalization  

The process of making an application accessible to people who speak a variety of 
languages. Sometimes abbreviated I18N. 

interpreter  

The module that decodes and executes Java byte-code. 

introspection  

The process by which a Java Bean provides additional information about itself, 
supplementing information learned by reflection. 

ISO 8859-1  

An eight-bit character encoding standardized by the ISO. This encoding is also known as 
Latin-1 and contains characters from the Latin alphabet suitable for English and most 
languages of western Europe. 

ISO 10646  

A four-byte character encoding that includes all of the world's national standard character 
encodings. Also known as UCS. The 2-byte Unicode character set maps to the range 
0x00000000 to 0x0000FFFF of ISO 10646. 

JavaBeans  

A component architecture for Java. It is a way to build interoperable Java objects that can 
be manipulated easily in a visual application builder environment. 

Java Beans  

Individual Java Beans are Java classes that are built using certain design patterns and 
naming conventions. 

JavaScript  

A language developed by Netscape for creating dynamic web pages. From a 
programmer's point of view, it's unrelated to Java, although some of its capabilities are 
similar. Internally, there may be a relationship, but even that is unclear. 

Java WorkShop  



Sun's web browser-based tool written in Java for the development of Java applications. 

JDBC  

The standard Java API for talking to an SQL (structural query language) database. 

JDK (Java Development Kit)  

A package of software distributed by Sun Microsystems for Java developers. It includes 
the Java interpreter, Java classes, and Java development tools: compiler, debugger, 
disassembler, applet viewer, stub file generator, and documentation generator. 

layout manager  

An object that controls the arrangement of components within the display area of a 
container. The java.awt package contains a number of layout managers that provide 
different layout styles. 

Latin-1  

A nickname for ISO 8859-1. 

lightweight component  

A Java component that has no native peer in the AWT. 

local variable  

A variable that is declared inside a single method. A local variable can be seen only by 
code within that method. 

long  

A primitive Java data type that's a 64-bit two's-complement signed number (in all 
implementations). 

message digest  

A long number computed from a message, used to determine whether the message's 
contents have been changed in any way. A change to a message's contents will change 
its message digest. It is almost impossible to create two similar messages with the same 
digest. 

method  

The object-oriented programming term for a function or procedure. 

method overloading  



Providing definitions of more than one method with the same name but with different 
argument lists or return values. When an overloaded method is called, the compiler 
determines which one is intended by examining the supplied argument types. 

method overriding  

Defining a method that exactly matches (i.e., same name, same argument types, and 
same return type) a method defined in a superclass. When an overridden method is 
invoked, the interpreter uses "dynamic method lookup" to determine which method 
definition is applicable to the current object. 

Model-View-Controller (MVC) framework  

A user-interface design that originated in Smalltalk. In MVC, the data for a display item is 
called the "model." A "view" displays a particular representation of the model, and a 
"controller" provides user interaction with both. Java incorporates many MVC concepts. 

modifier  

A keyword placed before a class, variable, or method that alters the item's accessibility, 
behavior, or semantics. See also abstract, final, native, private, protected, public, static, 
and synchronized. 

NaN (not-a-number)  

This is a special value of the double and float data types that represents an undefined 
result of a mathematical operation, such as zero divided by zero. 

native  

A modifier that may be applied to method declarations. It indicates that the method is 
implemented (elsewhere) in C, or in some other platform-dependent fashion. A native 
method declaration should end with a semicolon instead of a brace-enclosed code block. 
A native method cannot be abstract, but all other method modifiers may be used 
with native methods. 

native method  

A method that is implemented in a native language on a host platform, rather than being 
implemented in Java. Native methods provide access to such resources as the network, 
the windowing system, and the host filesystem. 

new  

new is a unary operator that creates a new object or array (or raises an 
OutOfMemoryException if there is not enough memory available). 

null  

null is a special value that indicates a variable doesn't refer to any object. The value 
null may be assigned to any class or interface variable. It cannot be cast to any integral 
type, and should not be considered equal to zero, as in C. 



object  

An instance of a class. A class models a group of things; an object models a particular 
member of that group. 

<OBJECT> tag  

A proposed HTML tag that may replace the widely used but nonstandard <APPLET> tag. 

package  

The package statement specifies which package the code in the file is part of. Java code 
that is part of a particular package has access to all classes (public and non-public) 
in the package, and all non-private methods and fields in all those classes. When Java 
code is part of a named package, the compiled class file must be placed at the 
appropriate position in the CLASSPATH directory hierarchy before it can be accessed by 
the Java interpreter or other utilities. If the package statement is omitted from a file, the 
code in that file is part of an unnamed default package. This is convenient for small test 
programs, or during development because it means the code can be interpreted from the 
current directory. 

<PARAM> tag  

An HTML tag used within <applet> ... </applet> to specify a named parameter and 
string value to an applet within a web page. 

peer  

The actual implementation of a GUI component on a specific platform. Peer components 
reside within a Toolkit object. See also toolkit. 

primitive type  

One of the Java data types: boolean, char, byte, short, int, long, float, double. 
Primitive types are manipulated, assigned, and passed to methods "by value" (i.e., the 
actual bytes of the data are copied). See also reference type. 

private  

The private keyword is a visibility modifier that can be applied to method and field 
variables of classes. A private field is not visible outside its class definition. 

protected  

A keyword that is a visibility modifier; it can be applied to method and field variables of 
classes. A protected field is visible only within its class, within subclasses, or within the 
package of which its class is a part. Note that subclasses in different packages can 
access only protected fields within themselves or within other objects that are 
subclasses; they cannot access protected fields within instances of the superclass. 

protocol handler  



Software that describes and enables the use of a new protocol. A protocol handler 
consists of two classes: a StreamHandler and a URLConnection. 

public  

A keyword that is a visibility modifier; it can be applied to classes and interfaces and to 
the method and field variables of classes and interfaces. A public class or interface is 
visible everywhere. A non-public class or interface is visible only within its package. A 
public method or variable is visible everywhere its class is visible. When none of the 
private, protected, or public modifiers are specified, a field is visible only within 
the package of which its class is a part. 

public key cryptography  

A cryptographic system that requires two keys, a public key and a private key. The 
private key can be used to decrypt messages encrypted with the corresponding public 
key, and vice versa. The public key can be made available to the public without 
compromising cryptographic security. 

reference type  

Any object or array. Reference types are manipulated, assigned, and passed to methods 
"by reference." In other words, the underlying value is not copied; only a reference to it is. 
See also primitive type. 

reflection  

The ability of a programming language to interact with structures of the language itself. 
Reflection in Java allows a Java program to examine class files at runtime to find out 
about their methods and variables, and to invoke methods or modify variables 
dynamically. 

Remote Method Invocation (RMI)  

RMI is a native Java distributed object system. With RMI you can pass references to 
objects on remote hosts and invoke methods in them just as if they were local objects. 

root  

The base of a hierarchy, such as a root class, whose descendants are subclasses. The 
java.lang.Object class serves as the root of the Java class hierarchy. 

SecurityManager  

The Java class that defines the methods the system calls to check whether a certain 
operation is permitted in the current environment. 

serialize  

To serialize means to put in order or make sequential. A serialized object is an object that 
has been packaged so that it can be stored or transmitted over the network. Serialized 



methods are methods that have been synchronized so that only one may be executing at 
a given time. 

server  

The application that accepts a request for a conversation as part of a networked 
client/server application. See also client. 

shadow  

To declare a variable with the same name as a variable defined in a superclass. We say 
the variable "shadows" the superclass's variable. Use the super keyword to refer to the 
shadowed variable, or refer to it by casting the object to the type of the superclass. 

signature  

A combination of a message's message digest, encrypted with the signer's private key, 
and the signer's certificate, attesting to the signer's identity. Someone receiving a signed 
message can get the signer's public key from the certificate, decrypt the encrypted 
message digest, and compare that result with the message digest computed from the 
signed message. If the two message digests agree, the recipient knows that the message 
has not been modified and that the signer is who he or she claims to be. 

signed class  

A Java class (or Java archive) that has a signature attached. The signature allows the 
recipient to verify the class's origin and that it is unmodified. The recipient can therefore 
grant the class greater runtime privileges. 

short  

A primitive Java data type that's a 16-bit two's-complement signed number (in all 
implementations). 

socket  

An interface that listens for connections from clients on a data port and connects the 
client data stream with the receiving application. 

static  

A keyword that is a modifier applied to method and variable declarations within a class. A 
static variable is also known as a class variable as opposed to non-static instance 
variables. While each instance of a class has a full set of its own instance variables, there 
is only one copy of each static class variable, regardless of the number of instances of 
the class (perhaps zero) that are created. static variables may be accessed by class 
name or through an instance. Non-static variables can be accessed only through an 
instance. 

stream  



A flow of data, or a channel of communication. All fundamental I/O in Java is based on 
streams. 

String  

A class used to represent textual information. The String class includes many methods 
for operating on string objects. Java overloads the + operator for string concatenation. 

subclass  

A class that extends another. The subclass inherits the public and protected 
methods and variables of its superclass. See also extends. 

super  

A keyword that refers to the same value as this: the instance of the class for which the 
current method (these keywords are valid only within non-static methods) was 
invoked. While the type of this is the type of the class in which the method appears, the 
type of super is the type of the superclass of the class in which the method appears. 
super is usually used to refer to superclass variables shadowed by variables in the 
current class. Using super in this way is equivalent to casting this to the type of the 
superclass. 

superclass  

A class extended by some other class. The superclass's public and protected 
methods and variables are available to the subclass. See also extends. 

synchronized  

A keyword used in two related ways in Java: as a modifier and as a statement. First, it is 
a modifier applied to class or instance methods. It indicates that the method modifies the 
internal state of the class or the internal state of an instance of the class in a way that is 
not thread-safe. Before running a synchronized class method, Java obtains a lock on 
the class, to ensure that no other threads can modify the class concurrently. Before 
running a synchronized instance method, Java obtains a lock on the instance that 
invoked the method, ensuring that no other threads can modify the object at the same 
time. 

Java also supports a synchronized statement that serves to specify a "critical section" 
of code. The synchronized keyword is followed by an expression in parentheses, and 
a statement or block of statements. The expression must evaluate to an object or array. 
Java obtains a lock on the specified object or array before executing the statements. 

TCP (Transmission Control Protocol)  

A connection-oriented, reliable protocol. One of the protocols on which the Internet is 
based. 

this  



Within an instance method or constructor of a class, this refers to "this object"—the 
instance currently being operated on. It is useful to refer to an instance variable of the 
class that has been shadowed by a local variable or method argument. It is also useful to 
pass the current object as an argument to static methods or methods of other classes. 

There is one additional use of this: when it appears as the first statement in a 
constructor method, it refers to one of the other constructors of the class. 

thread  

A single, independent stream of execution within a program. Since Java is a 
multithreaded programming language, more than one thread may be running within the 
Java interpreter at a time. Threads in Java are represented and controlled through the 
Thread object. 

throw  

The throw statement signals that an exceptional condition has occurred by throwing a 
specified exception object. This statement stops program execution and resumes it at the 
nearest containing catch statement that can handle the specified exception object. Note 
that the throw keyword must be followed by an exception object, not an exception class. 

throws  

The throws keyword is used in a method declaration to list the exceptions the method 
can throw. Any exceptions a method can raise that are not subclasses of Error or 
RuntimeException must either be caught within the method or declared in the 
method's throws clause. 

toolkit  

The property of the Java API that defines the look and feel of the user interface on a 
specific platform. 

try  

The try keyword indicates a block of code to which subsequent catch and finally 
clauses apply. The try statement itself performs no special action. See also catch and 
finally for more information on the try/catch/finally construct. 

UCS (universal character set)  

A synonym for ISO 10646. 

UDP (User Datagram Protocol)  

A connectionless unreliable protocol. UDP describes a network data connection based on 
datagrams with little packet control. 

Unicode  



A 16-bit character encoding that includes all of the world's commonly used alphabets and 
ideographic character sets in a "unified" form (i.e., a form from which duplications among 
national standards have been removed). ASCII and Latin-1 characters may be trivially 
mapped to Unicode characters. Java uses Unicode for its char and String types. 

UTF-8 (UCS transformation format 8-bit form)  

An encoding for Unicode characters (and more generally, UCS characters) commonly 
used for transmission and storage. It is a multibyte format in which different characters 
require different numbers of bytes to be represented. 

vector  

A dynamic array of elements. 

verifier  

A theorem prover that steps through the Java byte-code before it is run and makes sure 
that it is well-behaved. The byte-code verifier is the first line of defense in Java's security 
model. 



Appendix A. Content and Protocol Handlers 

Content and protocol handlers represent one of the most interesting ideas from the original Java 
vision. Unfortunately, as far as we can tell, no one has taken up the challenge of using this 
intriguing facility. We considered dropping them from the book entirely, but that decision just felt 
bad. Instead, we banished the discussion of how to write content and protocol handlers to an 
appendix. If you let us know that this material is important to you, we'll keep it in the next edition. 
If you feel "yes, this is interesting, but why do I care?" we'll drop them from the book. (You can 
send us comments through the book's web page at 
http://www.oreilly.com/catalog/learnjava.) 

This appendix picks up where we left our discussion of content and protocol handlers in Chapter 
12. We'll show you how to write your own handlers, which can be used in any Java application, 
including the HotJava web browser. In this section, we'll write a content handler that reads Unix 
tar files and a protocol handler that implements a pluggable encryption scheme. You should be 
able to drop both into your class path and start using them in the HotJava web browser right 
away. 

A.1 Writing a Content Handler 

The URL class's getContent( ) method invokes a content handler whenever it's called to 
retrieve an object at some URL. The content handler must read the flat stream of data produced 
by the URL's protocol handler (the data read from the remote source), and construct a well-
defined Java object from it. By "flat," we mean that the data stream the content handler receives 
has no artifacts left over from retrieving the data and processing the protocol. It's the protocol 
handler's job to fetch and decode the data before passing it along. The protocol handler's output 
is your data, pure and simple. 

The roles of content and protocol handlers do not overlap. The content handler doesn't care how 
the data arrives, or what form it takes. It's concerned only with what kind of object it's supposed to 
create. For example, if a particular protocol involves sending an object over the network in a 
compressed format, the protocol handler should do whatever is necessary to unpack it before 
passing the data on to the content handler. The same content handler can then be used again 
with a completely different protocol handler to construct the same type of object received via a 
different transport mechanism. 

Let's look at an example. The following lines construct a URL that points to a GIF file on an FTP 
archive and attempt to retrieve its contents: 

try {   
  URL url =  
      new URL ("ftp://ftp.wustl.edu/graphics/gif/a/apple.gif"); 
  ImageProducer imgsrc = (ImageProducer)url.getContent( );   
  ... 

When we construct the URL object, Java looks at the first part of the URL string (everything prior 
to the colon) to determine the protocol and locate a protocol handler. In this case, it locates the 
FTP protocol handler, which is used to open a connection to the host and transfer data for the 
specified file. 

After making the connection, the URL object asks the protocol handler to identify the resource's 
MIME type. The handler can try to resolve the MIME type through a variety of means, but in this 



case, it might just look at the filename extension (.gif ) and determine that the MIME type of the 
data is image/gif. Here, image/gif is a string that denotes that the content falls into the 
category of images and is, more specifically, a GIF image. The protocol handler then looks for the 
content handler responsible for the image/gif type and uses it to construct the right kind of 
object from the data. The content handler returns an ImageProducer object, which 
getContent( ) returns to us as an Object. As we've seen before, we cast this Object back 
to its real type so we can work with it. 

In an upcoming section, we'll build a simple content handler. To keep things as simple as 
possible, our example will produce text as output; the URL's get-Content( ) method will return 
this as a String object. 

A.1.1 Locating Content Handlers 

When Java searches for a class, it translates package names into filesystem pathnames. (The 
classes may also be in a JAR file in the class path, but we'll refer to them as files and directories 
anyway.) This applies to locating content-handler classes as well as other kinds of classes. For 
example, a class in a package named foo.bar.handlers would live in a directory with 
foo/bar/handlers/ as part of its pathname. To allow Java to find handler classes for arbitrary new 
MIME types, content handlers are organized into packages corresponding to the basic MIME type 
categories. The handler classes themselves are then named after the specific MIME type. This 
allows Java to map MIME types directly to class names. The only remaining piece of information 
Java needs is a list of packages in which the handlers might reside. To supply this information, 
use the system properties java.content.handler.pkgs and 
java.protocol.handler.pkgs. In these properties, you can use a vertical bar (|) to separate 
different packages in a list. 

We'll put our content handlers in the learningjava.contenthandlers package. According to 
the scheme for naming content handlers, a handler for the image/gif MIME type is called gif 
and placed in a package that is called learningjava.contenthandlers.image. The fully 
qualified name of the class would then be learningjava.contenthandlers.image.gif, 
and it would be located in the file learningjava/contenthandlers/image/gif.class, somewhere in the 
local class path, or, perhaps someday, on a server. Likewise, a content handler for the 
video/mpeg MIME type would be called mpeg, and an mpeg.class file would be located in a 
learningjava/contenthandlers/video/ directory somewhere in the class path. 

Many MIME type names include a dash (-), which is illegal in a class name. You should convert 
dashes and other illegal characters into underscores (_) when building Java class and package 
names. Also note that there are no capital letters in the class names. This violates the coding 
convention used in most Java source files, in which class names start with capital letters. 
However, capitalization is not significant in MIME type names, so it is simpler to name the handler 
classes accordingly. 

A.1.2 The application/x-tar Handler 

In this section, we'll build a simple content handler that reads and interprets tar (tape archive) 
files. tar is an archival format widely used in the Unix-world to hold collections of files, along with 
their basic type and attribute information.[A] A tar file is similar to a JAR file, except that it's not 
compressed. Files in the archive are stored sequentially, in flat text or binary with no special 
encoding. In practice, tar files are usually compressed for storage using an application like Unix 
compress or GNU gzip and then named with a filename extension like .tar.gz or .tgz. 

[A] There are several slightly different versions of the tar format. This content handler understands the most widely used variant. 



Most web browsers, upon retrieving a tar file, prompt the user with a File Save dialog. The 
assumption is that if you are retrieving an archive, you probably want to save it for later unpacking 
and use. We would like to implement a tar content handler that allows an application to read the 
contents of the archive and give us a listing of the files that it contains. In itself, this would not be 
the most useful thing in the world, because we would be left with the dilemma of how to get at the 
archive's contents. However, a more complete implementation of our content handler, used in 
conjunction with an application like a web browser, could generate HTML output or pop up a 
dialog that lets us select and save individual files within the archive. 

Some code that fetches a tar file and lists its contents might look like this: 

try {   
    URL listing =   
        new URL("http://somewhere.an.edu/lynx/lynx2html.tar");   
    String s = (String)listing.getContents( );   
    System.out.println( s );   
     ... 

Our handler will produce a listing similar to the Unix tar application's output: 

Tape Archive Listing:   
        
0     Tue Sep 28 18:12:47 CDT 1993 lynx2html/   
14773 Tue Sep 28 18:01:55 CDT 1993 lynx2html/lynx2html.c   
470   Tue Sep 28 18:13:24 CDT 1993 lynx2html/Makefile   
172   Thu Apr 01 15:05:43 CST 1993 lynx2html/lynxgate   
3656  Wed Mar 03 15:40:20 CST 1993 lynx2html/install.csh   
490   Thu Apr 01 14:55:04 CST 1993 lynx2html/new_globals.c   
... 

Our handler will dissect the file to read the contents and generate the listing. The URL's 
getContent( ) method will return that information to an application as a String object. 

First we must decide what to call our content handler and where to put it. The MIME-type 
hierarchy classifies the tar format as an application type extension. Its proper MIME type is then 
application/x-tar. Therefore, our handler belongs in the 
learningjava.contenthandlers.application package and goes into the class file 
learningjava/contenthandlers/application/x_tar.class. Note that the name of our class is x_tar, 
rather than x-tar; you'll remember the dash is illegal in a class name so, by convention, we 
convert it to an underscore. 

Here's the code for the content handler; compile it and put it in 
learningjava/contenthandlers/application/, somewhere in your class path: 

//file: x_tar.java 
package learningjava.contenthandlers.application;  
  
import java.net.*;  
import java.io.*;  
import java.util.Date;  
  
public class x_tar extends ContentHandler {  
  static int   
    RECORDLEN = 512,   



    NAMEOFF = 0, NAMELEN = 100,  
    SIZEOFF = 124, SIZELEN = 12,  
    MTIMEOFF = 136, MTIMELEN = 12;  
  
  public Object getContent(URLConnection uc) throws IOException {  
    InputStream is = uc.getInputStream( );  
    StringBuffer output =  
        new StringBuffer( "Tape Archive Listing:\n\n" ); 
    byte [] header = new byte[RECORDLEN];  
    int count = 0;  
  
    while ( (is.read(header) == RECORDLEN) 
             && (header[NAMEOFF] != 0) ) { 
      String name =  
           new String(header, NAMEOFF, NAMELEN, "8859_1"). trim( );  
      String s = 
           new String(header, SIZEOFF, SIZELEN, "8859_1").trim( );  
      int size = Integer.parseInt(s, 8);  
      s = new String(header, MTIMEOFF, MTIMELEN, "8859_1").trim( );  
      long l = Integer.parseInt(s, 8);  
      Date mtime = new Date( l*1000 );  
  
      output.append( size + " " + mtime + " " + name + "\n" );  
  
      count += is.skip( size ) + RECORDLEN;  
      if ( count % RECORDLEN != 0 )  
        count += is.skip ( RECORDLEN - count % RECORDLEN);  
    }  
  
    if ( count == 0 )  
      output.append("Not a valid TAR file\n");  
  
    return( output.toString( ) );  
  }  
} 

A.1.2.1 The ContentHandler class 

Our x_tar handler is a subclass of the abstract class java.net.ContentHandler. Its job is to 
implement one method: getContent( ), which takes as an argument a special "protocol 
connection" object and returns a constructed Java Object. The getContent( ) method of the 
URL class ultimately uses this getContent( ) method when we ask for the contents of the 
URL. 

The code looks formidable, but most of it's involved with processing the details of the tar format. If 
we remove these details, there isn't much left: 

public class x_tar extends ContentHandler {   
   
  public Object getContent( URLConnection uc ) throws IOException {   
    // get input stream   
    InputStream is = uc.getInputStream( );   
   
    // read stream and construct object   
    // ...   



   
    // return the constructed object   
    return( output.toString( ) );   
  }   
} 

That's really all there is to a content handler; it's relatively simple. 

A.1.2.2 The URLConnection 

The java.net.URLConnection object that getContent( ) receives represents the protocol 
handler's connection to the remote resource. It provides a number of methods for examining 
information about the URL resource, such as header and type fields, and for determining the 
kinds of operations the protocol supports. However, its most important method is 
getInputStream( ), which returns an InputStream from the protocol handler. Reading this 
InputStream gives you the raw data for the object the URL addresses. In our case, reading the 
InputStream feeds x_tar the bytes of the tar file it's to process. 

A.1.2.3 Constructing the object 

The majority of our getContent( ) method is devoted to interpreting the stream of bytes of the 
tar file and building our output object: the String that lists the contents of the tar file. Again, this 
means that this example involves the particulars of reading tar files, so you shouldn't fret too 
much about the details. 

After requesting an InputStream from the URLConnection, x_tar loops, gathering 
information about each file. Each archived item is preceded by a header that contains attribute 
and length fields. x_tar interprets each header and then skips over the remaining portion of the 
item. To parse the header, we use the String constructor to read a fixed number of characters 
from the byte array header[]. To convert these bytes into a Java String properly, we specify 
the character encoding used by web servers: 8859_1, which (for the most part) is equivalent to 
ASCII. Once we have a file's name, size, and time stamp, we accumulate the results (the file 
listings) in a StringBuffer—one line per file. When the listing is complete, getContent( ) 
returns the StringBuffer as a String object. 

The main while loop continues as long as it's able to read another header record, and as long 
as the record's "name" field isn't full of ASCII null values. (The tar file format calls for the end of 
the archive to be padded with an empty header record, although most tar implementations don't 
seem to do this.) The while loop retrieves the name, size, and modification times as character 
strings from fields in the header. The most common tar format stores its numeric values in octal, 
as fixed-length ASCII strings. We extract the strings and use Integer.parseInt( ) to parse 
them. 

After reading and parsing the header, x_tar skips over the data portion of the file and updates 
the variable count, which keeps track of the offset into the archive. The two lines following the 
initial skip account for tar's "blocking" of the data records. In other words, if the data portion of a 
file doesn't fit precisely into an integral number of blocks of RECORDLEN bytes, tar adds padding 
to make it fit. 

As we said, the details of parsing tar files are not really our main concern here. But x_tar does 
illustrate a few tricks of data manipulation in Java. 



It may surprise you that we didn't have to provide a constructor; our content handler relies on its 
default constructor. We don't need to provide a constructor because there isn't anything for it to 
do. Java doesn't pass the class any argument information when it creates an instance of it. You 
might suspect that the URLConnection object would be a natural thing to provide at that point. 
However, when you are calling the constructor of a class that is loaded at runtime, you can't 
easily pass it any arguments. 

A.1.2.4 Using our new handler 

When we began this discussion of content handlers, we showed a brief example of how our 
x_tar content handler would work for us. You can try that code snippet now with your favorite tar 
file by setting the java.content.handler.pkgs system property to 
learningjava.contenthandlers and making sure that package is in your class path. 

To make things more exciting, try setting the property in your HotJava properties file. (The 
HotJava properties file usually resides in a .hotjava directory in your home directory or in the 
HotJava installation directory on a Windows machine.) Make sure that the class path is set before 
you start HotJava. Once HotJava is running, go to the Preferences menu, and select Viewer 
Applications. Find the type TAR archive, and set its Action to View in HotJava. This tells 
HotJava to try to use a content handler to display the data in the browser. Now, drive HotJava to 
a URL that contains a tar file. The result should look something like that shown in Figure A.1. 

Figure A.1. Using a content handler to display data in a browser 

 

We've just extended our copy of HotJava to understand tar files! In the next section, we'll turn the 
tables and look at protocol handlers. There we'll be building URLConnection objects; someone 
else will have the pleasure of reconstituting the data. 

A.2 Writing a Protocol Handler 

A URL object uses a protocol handler to establish a connection with a server and perform 
whatever protocol is necessary to retrieve data. For example, an HTTP protocol handler knows 
how to talk to an HTTP server and retrieve a document; an FTP protocol handler knows how to 
talk to an FTP server and retrieve a file. All types of URLs use protocol handlers to access their 
objects. Even the lowly "file" type URLs use a special "file" protocol handler that retrieves files 



from the local filesystem. The data a protocol handler retrieves is then fed to an appropriate 
content handler for interpretation. 

While we refer to a protocol handler as a single entity, it really has two parts: a 
java.net.URLStreamHandler and a java.net.URLConnection. These are both 
abstract classes that we will subclass to create our protocol handler. (Note that these are 
abstract classes, not interfaces. Although they contain abstract methods we are required to 
implement, they also contain many utility methods we can use or override.) The URL looks up an 
appropriate URLStreamHandler, based on the protocol component of the URL. The 
URLStreamHandler then finishes parsing the URL and creates a URLConnection when it's 
time to communicate with the server. The URLConnection represents a single connection with a 
server, and implements the communication protocol itself. 

A.2.1 Locating Protocol Handlers 

Protocol handlers are organized in a package hierarchy similar to content handlers. But unlike 
content handlers, which are grouped into packages by the MIME types of the objects that they 
handle, protocol handlers are given individual packages. Both parts of the protocol handler (the 
URLStreamHandler class and the URLConnection class) are located in a package named for 
the protocol they support. 

For example, if we wrote an FTP protocol handler, we might put it in an 
learningjava.protocolhandlers.ftp package. The URLStreamHandler is placed in this 
package and given the name Handler; all URLStreamHandlers are named Handler and 
distinguished by the package in which they reside. The URLConnection portion of the protocol 
handler is placed in the same package and can be given any name. There is no need for a 
naming convention because the corresponding URLStreamHandler is responsible for creating 
the URLConnection objects it uses. 

As with content handlers, Java locates packages containing protocol handlers using the 
java.protocol.handler.pkgs system property. The value of this property is a list of 
package names; if more than one package is in the list, use a vertical bar (|) to separate them. 
For our example, we will set this property to include learningjava.protocolhandlers.  

A.2.2 URLs, Stream Handlers, and Connections 

The URL, URLStreamHandler, URLConnection, and ContentHandler classes work together 
closely. Before diving into an example, let's take a step back, look at the parts a little more, and 
see how these things communicate. Figure A.2 shows how these components relate to each 
other. 

Figure A.2. The protocol handler machinery 



 

We begin with the URL object, which points to the resource we'd like to retrieve. The 
URLStreamHandler helps the URL class parse the URL specification string for its particular 
protocol. For example, consider the following call to the URL constructor: 

URL url = new URL("protocol://foo.bar.com/file.ext"); 

The URL class parses only the protocol component; later, a call to the URL class's getContent( 
) or openStream( ) method starts the machinery in motion. The URL class locates the 
appropriate protocol handler by looking in the protocol-package hierarchy. It then creates an 
instance of the appropriate URLStreamHandler class. 

The URLStreamHandler is responsible for parsing the rest of the URL string, including 
hostname and filename, and possibly an alternative port designation. This allows different 
protocols to have their own variations on the format of the URL specification string. Note that this 
step is skipped when a URL is constructed with the "protocol," "host," and "file" components 
specified explicitly. If the protocol is straightforward, its URLStreamHandler class can let Java 
do the parsing and accept the default behavior. For this illustration, we'll assume that the URL 
string requires no special parsing. (If we use a nonstandard URL with a strange format, we're 
responsible for parsing it ourselves, as we'll show shortly.) 

The URL object next invokes the handler's openConnection( ) method, prompting the handler 
to create a new URLConnection to the resource. The URLConnection performs whatever 
communications are necessary to talk to the resource and begins to fetch data for the object. At 
that time, it also determines the MIME type of the incoming object data and prepares an 
InputStream to hand to the appropriate content handler. This InputStream must send "pure" 
data with all traces of the protocol removed. 

The URLConnection also locates an appropriate content handler in the content-handler 
package hierarchy. The URLConnection creates an instance of a content handler; to put the 
content handler to work, the URLConnection's getContent( ) method calls the content 
handler's getContent( ) method. If this sounds confusing, it is: we have three getContent( 
) methods calling each other in a chain. The newly created ContentHandler object then 
acquires the stream of incoming data for the object by calling the URLConnection's 
getInputStream( ) method. (Recall that we acquired an InputStream in our x_tar content 
handler.) The content handler reads the stream and constructs an object from the data. This 
object is then returned up the getContent( ) chain: from the content handler, the 
URLConnection, and finally the URL itself. Now our application has the desired object in its 
greedy little hands. 

To summarize, we create a protocol handler by implementing a URLStreamHandler class that 
creates specialized URLConnection objects to handle our protocol. The URLConnection 



objects implement the getInputStream( ) method, which provides data to a content handler 
for construction of an object. The base URLConnection class implements many of the methods 
we need; therefore, our URLConnection needs to provide only the methods that generate the 
data stream and return the MIME type of the object data. 

If you're not thoroughly confused by all that terminology (or even if you are), let's move on to the 
example. It should help to pin down what all these classes are doing. 

A.2.3 The crypt Handler 

In this section, we'll build a crypt protocol handler. It parses URLs of the form: 

crypt:type://hostname[:port]/location/item 

type is an identifier that specifies what kind of encryption to use. The protocol itself is a simplified 
version of HTTP; we'll implement the GET command and no more. We added the type identifier 
to the URL to show how to parse a nonstandard URL specification. Once the handler has figured 
out the encryption type, it dynamically loads a class that implements the chosen encryption 
algorithm and uses it to retrieve the data. Obviously, we don't have room to implement a full-
blown public-key encryption algorithm, so we'll use the rot13InputStream class from Chapter 
10. It should be apparent how the example can be extended by plugging in a more powerful 
encryption class. 

A.2.3.1 The Encryption class 

First, we'll lay out our plug-in encryption class. We'll define an abstract class called 
CryptInputStream that provides some essentials for our plug-in encrypted protocol. From the 
CryptInputStream we'll create a subclass called rot13CryptInputStream, that 
implements our particular kind of encryption: 

//file: rot13CryptInputStream.java 
package learningjava.protocolhandlers.crypt;  
import java.io.*;  
   
abstract class CryptInputStream extends InputStream {  
    InputStream in;  
    OutputStream out;  
    abstract public void set( InputStream in, OutputStream out );  
} // end of class CryptInputStream 
   
class rot13CryptInputStream extends CryptInputStream {  
   
    public void set( InputStream in, OutputStream out ) {  
        this.in = new learningjava.io.rot13InputStream( in );  
    }  
    public int read( ) throws IOException {  
        return in.read( );  
    }  
} 

Our CryptInputStream class defines a method called set( ) that passes in the 
InputStream it's to translate. Our URLConnection calls set( ) after creating an instance of 
the encryption class. We need a set( ) method because we want to load the encryption class 



dynamically, and we aren't allowed to pass arguments to the constructor of a class when it's 
dynamically loaded. (We noticed this same issue in our content handler previously.) In the 
encryption class, we also provide for the possibility of an OutputStream. A more complex kind 
of encryption might use the OutputStream to transfer public-key information. Needless to say, 
rot13 doesn't, so we'll ignore the OutputStream here. 

The implementation of rot13CryptInputStream is very simple. set( ) takes the 
InputStream it receives and wraps it with the rot13InputStream filter. read( ) reads 
filtered data from the InputStream, throwing an exception if set( ) hasn't been called. 

A.2.3.2 The URLStreamHandler 

Next we'll build our URLStreamHandler class. The class name is Handler; it extends the 
abstract URLStreamHandler class. This is the class the Java URL looks up by converting the 
protocol name (crypt) into a package name. Remember that Java expects this class to be named 
Handler, and to live in a package named for the protocol type. 

//file: Handler.java 
package learningjava.protocolhandlers.crypt;  
import java.io.*;  
import java.net.*;  
  
public class Handler extends URLStreamHandler {  
  
    protected void parseURL(URL url, String spec, 
                            int start, int end) { 
        int slash = spec.indexOf('/');  
        String crypType = spec.substring(start, slash-1);  
        super.parseURL(url, spec, slash, end);  
        setURL( url, "crypt:"+crypType, url.getHost( ),   
            url.getPort(), url.getFile(), url.getRef( ) );  
    }  
  
    protected URLConnection openConnection(URL url) 
      throws IOException {  
        String crypType = url.getProtocol( ).substring(6);  
        return new CryptURLConnection( url, crypType );  
    }  
} 

Java creates an instance of our URLStreamHandler when we create a URL specifying the crypt 
protocol. Handler has two jobs: to assist in parsing the URL specification strings and to create 
CryptURLConnection objects when it's time to open a connection to the host. 

Our parseURL( ) method overrides the parseURL( ) method in the URLStreamHandler 
class. It's called whenever the URL constructor sees a URL requesting the crypt protocol. For 
example: 

URL url = new URL("crypt:rot13://foo.bar.com/file.txt"); 

parseURL( ) is passed a reference to the URL object, the URL specification string, and starting 
and ending indexes that show what portion of the URL string we're expected to parse. The URL 
class has already identified the simple protocol name; otherwise, it wouldn't have found our 



protocol handler. Our version of parseURL( ) retrieves our type identifier from the specification 
and stores it temporarily in the variable crypType. To find the encryption type, we take 
everything between the starting index we were given and the character preceding the first slash in 
the URL string (i.e., everything up to the colon in ://). We then defer to the superclass parseURL( 
) method to complete the job of parsing the URL after that point. We call super.parseURL( ) 
with the new start index, so that it points to the character just after the type specifier. This tells the 
superclass parseURL( ) that we've already parsed everything prior to the first slash, and it's 
responsible for the rest. Finally we use the utility method setURL( ) to put together the final 
URL. Almost everything has already been set correctly for us, but we need to call setURL( ) to 
add our special type to the protocol identifier. We'll need this information later when someone 
wants to open the URL connection. 

Before going on, we'll note two other possibilities. If we hadn't hacked the URL string for our own 
purposes by adding a type specifier, we'd be dealing with a standard URL specification. In this 
case, we wouldn't need to override parseURL( ); the default implementation would have been 
sufficient. It could have sliced the URL into host, port, and filename components normally. On the 
other hand, if we had created a completely bizarre URL format, we would need to parse the entire 
string. There would be no point calling super.parseURL( ); instead, we'd have called the 
URLStreamHandler's protected method setURL( ) to pass the URL's components back to the 
URL object. 

The other method in our Handler class is openConnection( ). After the URL has been 
completely parsed, the URL object calls openConnection( ) to set up the data transfer. 
openConnection( ) calls the constructor for our URLConnection with appropriate 
arguments. In this case, our URLConnection object is named CryptURLConnection, and the 
constructor requires the URL and the encryption type as arguments. parseURL( ) put the 
encryption type in the protocol identifier of the URL. We recognize it and pass the information 
along. openConnection( ) returns the reference to our URLConnection, which the URL 
object uses to drive the rest of the process. 

A.2.3.3 The URLConnection 

Finally, we reach the real guts of our protocol handler, the URLConnection class. This is the 
class that opens the socket, talks to the server on the remote host, and implements the protocol 
itself. This class doesn't have to be public, so you can put it in the same file as the Handler 
class we just defined. We call our class CryptURLConnection; it extends the abstract 
URLConnection class. Unlike ContentHandler and StreamURLConnection, whose names 
are defined by convention, we can call this class anything we want; the only class that needs to 
know about the URLConnection is the URLStreamHandler, which we wrote ourselves: 

//file: CryptURLConnection.java 
  import java.io.*; 
  import java.net.*; 
 
class CryptURLConnection extends URLConnection {  
    static int defaultPort = 80;  
    CryptInputStream cis;  
  
    public String getContentType( ) {  
        return guessContentTypeFromName( url.getFile( ) );  
    }  
  
    CryptURLConnection ( URL url, String crypType ) 



      throws IOException {  
        super( url );  
        try {  
            String classname = "learningjava.protocolhandlers.crypt." 
                + crypType + "CryptInputStream";  
            cis = (CryptInputStream) 
                   Class.forName(classname).newInstance( ); 
        } catch ( Exception e ) {   
            throw new IOException("Crypt Class Not Found: "+e);  
        }  
    }  
  
    public void connect( ) throws IOException {   
        int port = ( url.getPort( ) == -1 ) ?  
                     defaultPort : url.getPort( );  
        Socket s = new Socket( url.getHost( ), port );  
  
        // Send the filename in plaintext  
        OutputStream server = s.getOutputStream( );  
        new PrintWriter( new OutputStreamWriter( server, "8859_1" ), 
                         true).println( "GET " + url.getFile( ) );  
  
        // Initialize the CryptInputStream  
        cis.set( s.getInputStream( ), server );  
        connected = true;  
    }  
  
    public InputStream getInputStream( ) throws IOException {  
        if (!connected)  
            connect( );  
        return ( cis );   
    }  
} 

The constructor for our CryptURLConnection class takes as arguments the destination URL 
and the name of an encryption type. We pass the URL on to the constructor of our superclass, 
which saves it in a protected url instance variable. We could have saved the URL ourselves, but 
calling our parent's constructor shields us from possible changes or enhancements to the base 
class. We use crypType to construct the name of an encryption class, using the convention that 
the encryption class is in the same package as the protocol handler (i.e., 
learningjava.protocolhandlers.crypt); its name is the encryption type followed by the 
suffix CryptInputStream. 

Once we have a name, we need to create an instance of the encryption class. To do so, we use 
the static method Class.forName( ) to turn the name into a Class object and 
newInstance( ) to load and instantiate the class. (This is how Java loads the content and 
protocol handlers themselves.) newInstance( ) returns an Object; we need to cast it to 
something more specific before we can work with it. Therefore, we cast it to our 
CryptInputStream class, the abstract class that rot13CryptInputStream extends. If we 
implement any additional encryption types as extensions to CryptInputStream and name 
them appropriately, they will fit into our protocol handler without modification. 

We do the rest of our setup in the connect( ) method of the URLConnection. There, we 
make sure we have an encryption class and open a Socket to the appropriate port on the 
remote host. getPort( ) returns -1 if the URL doesn't specify a port explicitly; in that case we 



use the default port for an HTTP connection (port 80). We ask for an OutputStream on the 
socket, assemble a GET command using the getFile( ) method to discover the filename 
specified by the URL, and send our request by writing it into the OutputStream. (For 
convenience, we wrap the OutputStream with a PrintWriter and call println( ) to send 
the message.) We then initialize the CryptInputStream class by calling its set( ) method 
and passing it an InputStream from the Socket and the OutputStream. 

The last thing connect( ) does is set the boolean variable connected to true. connected is 
a protected variable inherited from the URLConnection class. We need to track the state of 
our connection because connect( ) is a public method. It's called by the URLConnection's 
getInputStream( ) method, but it could also be called by other classes. Since we don't want 
to start a connection if one already exists, we check connected first. 

In a more sophisticated protocol handler, connect( ) would also be responsible for dealing with 
any protocol headers that come back from the server. In particular, it would probably stash any 
important information it can deduce from the headers (e.g., MIME type, content length, time 
stamp) in instance variables, where it's available to other methods. At a minimum, connect( ) 
strips the headers from the data so the content handler won't see them. I'm being lazy and 
assuming that we'll connect to a minimal server, like the modified TinyHttpd daemon we 
discuss below, which doesn't bother with any headers. 

The bulk of the work has been done; a few details remain. The URLConnection's 
getContent( ) method needs to figure out which content handler to invoke for this URL. In 
order to compute the content handler's name, getContent( ) needs to know the resource's 
MIME type. To find out, it calls the URLConnection's getContentType( ) method, which 
returns the MIME type as a String. Our protocol handler overrides getContentType( ), 
providing our own implementation. 

The URLConnection class provides a number of tools to help determine the MIME type. It's 
possible that the MIME type is conveyed explicitly in a protocol header; in this case, a more 
sophisticated version of connect( ) would have stored the MIME type in a convenient location 
for us. Some servers don't bother to insert the appropriate headers, though, so you can use the 
method guess-ContentTypeFromName( ) to examine filename extensions, like .gif or .html, 
and map them to MIME types. In the worst case, you can use guessContent-
TypeFromStream( ) to intuit the MIME type from the raw data. The Java developers call this 
method "a disgusting hack" that shouldn't be needed, but that is unfortunately necessary in a 
world where HTTP servers lie about content types and extensions are often nonstandard. We'll 
take the easy way out and use the guessContentTypeFromName( ) utility of the 
URLConnection class to determine the MIME type from the filename extension of the URL we 
are retrieving. 

Once the URLConnection has found a content handler, it calls the content handler's 
getContent( ) method. The content handler then needs to get an InputStream from which 
to read the data. To find an InputStream, it calls the URLConnection's getInputStream( ) 
method. getInputStream( ) returns an InputStream from which its caller can read the data 
after protocol processing is finished. It checks whether a connection is already established; if not, 
it calls connect( ) to make the connection. Then it returns a reference to our 
CryptInputStream. 

A final note on getting the content type: the URLConnection's default getContentType( ) 
calls getHeaderField( ), which is presumably supposed to extract the named field from the 
protocol headers (it would probably spit back information connect( ) had stored away). But the 



default implementation of getHeaderField( ) just returns null; we would have to override it 
to make it do anything interesting. Several other connection attributes use this mechanism, so in 
a more general implementation, we'd probably override getHeaderField( ) rather than 
getContentType( ) directly. 

A.2.3.4 Trying it out 

Let's try out our new protocol! Compile all of the classes and put them in the 
learningjava.protocolhandlers package somewhere in your class path. Now set the 
java.protocol.handler.pkgs system property in HotJava to include 
learningjava.protocolhandlers. Type a "crypt" style URL for a text document; you should 
see something like that shown in Figure A.3. 

Figure A.3. The crypt protocol handler at work 

 

This example would be more interesting if we had a rot13 server. Since the crypt protocol is 
nothing more than HTTP with some encryption added, we can make a rot13 server by modifying 
one line of the TinyHttpd server we developed earlier, so that it spews its files in rot13. Just 
change the line that reads the data from the file—replace this line: 

f.read( data ); 

with a line that reads through a rot13InputStream: 

new learningjava.io.rot13InputStream( f ).read( data ); 

We'll assume you placed the rot13InputStream example in a package called 
learningjava.io, and that it's somewhere in your class path. Now recompile and run the 
server. It automatically encodes the files before sending them; our sample application decodes 
them on the other end. 

We hope that this example has given you some food for thought. Content and protocol handlers 
are among the most exciting ideas in Java. It's unfortunate that we have to wait for future 



releases of HotJava and Netscape to take full advantage of them. But in the meantime, you can 
experiment and implement your own applications. 



Appendix B. BeanShell: Simple Java Scripting 

In this book, I (Pat Niemeyer) have tried to avoid talking about specific software products or tools, 
other than those that are part of the standard JDK. However I'm going to make a small exception 
here to mention a nifty, free Java tool called BeanShell. As its name suggests, BeanShell can be 
used as a Java "shell." It allows you to type standard Java syntax—statements and 
expressions—on the command line and see the results immediately. With BeanShell, you can try 
out bits of code as you work through the book. You can access all Java APIs and even create 
graphical user interface components and manipulate them "live". BeanShell uses only reflection, 
so there is no need to compile class files. 

I wrote BeanShell while developing the examples for this book, and I think it makes a good 
companion to have along on your journey through Java. BeanShell is a free software project, so 
the source code is included on the CD-ROM that accompanies this book. And you can always 
find the latest updates and more information at its official home: http://www.beanshell.org. 
BeanShell is also distributed with Emacs as part of Paul Kinnucan's Java Development 
Environment (the JDE). I hope you find it both useful and fun! 

B.1 Running BeanShell 

All you need to run BeanShell is the Java runtime system. Under Windows, with SDK 1.2 or 
greater, you may simply double-click the JAR file icon to start the BeanShell desktop. More 
generally, you can simply add the JAR to your class path: 

Unix:     export CLASSPATH=$CLASSPATH:bsh.jar 
Windows:  set classpath %classpath%;bsh.jar 

and run BeanShell in one of its two basic modes: GUI or on the command line. 

java bsh.Console       // run the graphical desktop 
java bsh.Interpreter   // run as text-only on the command line 

Running BeanShell with the GUI Console brings up a simple desktop that allows you to open 
multiple shell windows with basic command history, line editing, and cut-and-paste capability. 
There are some other GUI tools available, as well, including a simple text editor and class 
browser. Alternately, you can run BeanShell on the command line, in text-only mode. 

B.2 Java Statements and Expressions 

At the prompt, you can type standard Java statements and expressions. Statements and 
expressions are all of the normal things that you'd say inside a Java method: e.g., variable 
declarations and assignments, method calls, loops, and conditionals. 

You can type these exactly as they would appear in Java. You also have the option of working 
with "loosely typed" variables and arguments. That is, you can simply be lazy and not declare the 
types of variables that you use (both primitives and objects). BeanShell will still give you an error 
if you attempt to misuse the actual contents of the variable. If you do declare types of variables or 
primitives, BeanShell will enforce them. 

Here are some examples: 

foo = "Foo";    



four = (2 + 2)*2/2; 
print( foo + " = " + four );   // print( ) is a bsh command 
 
// do a loop 
for (i=0; i<5; i++) 
    print(i);   
 
// pop up an AWT frame with a button in it 
b = new JButton("My Button"); 
f = new JFrame("My Frame"); 
f.getContentPane( ).add(b, "Center"); 
f.pack( ); 
f.setVisible(true); 

B.3 BeanShell Commands 

BeanShell comes with a number of useful built-in commands (methods). These commands are 
implemented as BeanShell scripts, and are supplied in the bsh JAR file. You can make your own 
commands by defining new methods or adding scripts to your class path. See the BeanShell 
user's manual for more information. 

One important BeanShell command is print(), which displays values. print( ) does pretty 
much the same thing as System.out.println( ) except that it insures that the ouput always 
goes to the command line (if you have multiple windows open). print( ) also displays some 
types of objects (such as arrays) more verbosely than Java would. Another very useful command 
is show( ), which toggles on and off automatic print( )ing of the result of every line you type. 
(Turn this on if you want to see every result.) 

Here are a few other examples of BeanShell commands: 

source() , run( )  

Read a bsh script into this interpreter, or run it in a new interpreter 

frame( )  

Display an AWT or Swing component in a frame 

load() , save( )  

Load or save serializable objects (such as Java Beans) 

cd() , cat() , dir() , pwd( ) , etc.  

Unix-like shell commands 

exec( )  

Run a native application 

See the BeanShell user's manual for a full list of commands. 



B.4 Scripted Methods and Objects 

You can declare and use methods in BeanShell, just as you would inside a Java class: 

int addTwoNumbers( int a, int b ) { 
    return a + b; 
} 
 
sum = addTwoNumbers( 5, 7 );  // 12 
 
BeanShell methods may also have dynamic (loose) argument and return 
types. 
add( a, b ) { 
    return a + b; 
} 
 
foo = add(1, 2);                // 3 
foo = add("Hello ", "Kitty");   // "Hello Kitty" 

In BeanShell, as in JavaScript and Perl, method closures take the place of scripted objects. You 
can turn the results of a method call into an object reference by having the method return the 
special value this. You can then use the this reference to refer to any variables which were 
set during the method call. An object is useful only if it has methods; so in BeanShell, methods 
may also contain methods at any level. Here is a simple example: 

foo( ) { 
    print("foo"); 
    x=5; 
 
    bar( ) { 
        print("bar"); 
    } 
 
    return this; 
} 
 
myfoo = foo( );    // "foo" 
print( myfoo.x ); // "5" 
myfoo.bar( );      // "bar" 

B.5 Learning More . . . 

BeanShell has many more features than I've described here. With BeanShell, you can script 
event handling and threads. You can embed BeanShell into your applications as a lightweight 
scripting engine; passing live Java objects into and out of scripts. You can even run BeanShell in 
a remote server mode, which lets you work in a shell inside of your running application, for 
debugging and experimentation. 

BeanShell is small (only about 175KB) and it's free, under the GNU Library Public License. You 
can learn more by checking out the full user's manual and FAQ on the web site. If you have 
ideas, bug fixes, or improvements, please consider joining the developer's mailing list. 



As a final caveat, I should say that you do get what you pay for and BeanShell is still somewhat 
experimental. So you will certainly find bugs. Please feel free to send feedback, using the book's 
web page, http://www.oreilly.com/catalog/learnjava. Enjoy! 

Colophon 

Our look is the result of reader comments, our own experimentation, and feedback from 
distribution channels. Distinctive covers complement our distinctive approach to technical topics, 
breathing personality and life into potentially dry subjects.  

The image on the cover of Learning Java is a tigress with her cubs. 

Nicole Arigo was the production editor for Learning Java. Nancy Kotary was the copyeditor, and 
Norma Emory proofread the book. Darren Kelly, Colleen Gorman, and Jane Ellin provided quality 
control. Ellen Troutman wrote the index. The colophon was written by Clairemarie O'Leary. 

Edie Freedman designed the cover of this book using an image from the Dover Pictorial Archive. 
The cover layout was produced by Emma Colby with Quark XPress 3.3 using the Bodoni Black 
font from URW Software. The CD label was designed by Emma Colby. 

Alicia Cech designed the interior layout based on a series design by Nancy Priest. The heading 
font is Bodoni BT; the text font is New Baskerville. Mike Sierra implemented the design in 
FrameMaker 5.5. The illustrations that appear in the book were produced by Robert Romano and 
Rhon Porter using Macromedia FreeHand 8 and Adobe Photoshop 5. 

Whenever possible, our books use RepKover™, a durable and flexible lay-flat binding. If the page 
count exceeds RepKover's limit, perfect binding is used.  

 

 


	Table of Contents
	Preface
	Chapter 1. Yet Another Language?
	1.1 Enter Java
	1.2 A Virtual Machine
	1.3 Java Compared with Other Languages
	1.4 Safety of Design
	1.5 Safety of Implementation
	1.6 Application and User-Level Security
	1.7 Java and the World Wide Web
	1.8 Java as a General Application Language
	1.9 A Java Road Map

	Chapter 2. A First Application
	2.1 HelloJava1
	2.2 HelloJava2: The Sequel
	2.3 HelloJava3: The Button Strikes!
	2.4 HelloJava4: Netscape's Revenge

	Chapter 3. Tools of the Trade
	3.1 The Java Interpreter
	3.2 Policy Files
	3.3 The Class Path
	3.4 The Java Compiler
	3.5 Java Archive (JAR) Files

	Chapter 4. The Java Language
	4.1 Text Encoding
	4.2 Comments
	4.3 Types
	4.4 Statements and Expressions
	4.5 Exceptions
	4.6 Arrays

	Chapter 5. Objects in Java
	5.1 Classes
	5.2 Methods
	5.3 Object Creation
	5.4 Object Destruction

	Chapter 6. Relationships Among Classes
	6.1 Subclassing and Inheritance
	6.2 Interfaces
	6.3 Packages and Compilation Units
	6.4 Visibility of Variables and Methods
	6.5 Arrays and the Class Hierarchy
	6.6 Inner Classes

	Chapter 7. Working with Objects and Classes
	7.1 The Object Class
	7.2 The Class Class
	7.3 Reflection

	Chapter 8. Threads
	8.1 Introducing Threads
	8.2 Threads in Applets
	8.3 Synchronization
	8.4 Scheduling and Priority
	8.5 Thread Groups

	Chapter 9. Basic Utility Classes
	9.1 Strings
	9.2 Math Utilities
	9.3 Dates
	9.4 Timers
	9.5 Collections
	9.6 Properties
	9.7 The Security Manager
	9.8 Internationalization

	Chapter 10. Input/Output Facilities
	10.1 Streams
	10.2 Files
	10.3 Serialization
	10.4 Data Compression

	Chapter 11. Network Programming with Sockets
	11.1 Sockets
	11.2 Datagram Sockets
	11.3 Simple Serialized Object Protocols
	11.4 Remote Method Invocation (RMI)

	Chapter 12. Programming for the Web
	12.1 Uniform Resource Locators (URLs)
	12.2 The URL Class
	12.3 Web Browsers and Handlers
	12.4 Talking to CGI Programs and Servlets
	12.5 Implementing Servlets

	Chapter 13. Swing
	13.1 Components
	13.2 Containers
	13.3 Events
	13.4 Event Summary
	13.5 Multithreading in Swing

	Chapter 14. Using Swing Components
	14.1 Buttons and Labels
	14.2 Checkboxes and Radio Buttons
	14.3 Lists and Combo Boxes
	14.4 Borders
	14.5 Menus
	14.6 The PopupMenu Class
	14.7 The JScrollPane Class
	14.8 The JSplitPane Class
	14.9 The JTabbedPane Class
	14.10 Scrollbars and Sliders
	14.11 Dialogs

	Chapter 15. More Swing Components
	15.1 Text Components
	15.2 Trees
	15.3 Tables
	15.4 Desktops
	15.5 Pluggable Look-and-Feel
	15.6 Creating Custom Components

	Chapter 16. Layout Managers
	16.1 FlowLayout
	16.2 GridLayout
	16.3 BorderLayout
	16.4 BoxLayout
	16.5 CardLayout
	16.6 GridBagLayout
	16.7 Nonstandard Layout Managers
	16.8 Absolute Positioning

	Chapter 17. Drawing with the 2D API
	17.1 The Big Picture
	17.2 The Rendering Pipeline
	17.3 A Quick Tour of Java 2D
	17.4 Filling Shapes
	17.5 Stroking Shape Outlines
	17.6 Using Fonts
	17.7 Displaying Images
	17.8 Using Drawing Techniques

	Chapter 18. Working with Images and Other Media
	18.1 Implementing an ImageObserver
	18.2 Using a MediaTracker
	18.3 Producing Image Data
	18.4 Filtering Image Data
	18.5 Working with Audio
	18.6 Working with Movies

	Chapter 19. Java Beans
	19.1 What's a Bean?
	19.2 Building Beans
	19.3 Hand-Coding with Beans
	19.4 Putting Reflection to Work
	19.5 BeanContext and BeanContextServices
	19.6 The Java Activation Framework
	19.7 Enterprise JavaBeans

	Chapter 20. Applets
	20.1 The JApplet Class
	20.2 The <APPLET> Tag
	20.3 Using the Java Plug-in
	20.4 Using Digital Signatures

	Chapter 21. Glossary
	Appendix A. Content and Protocol Handlers
	A.1 Writing a Content Handler
	A.2 Writing a Protocol Handler

	Appendix B. BeanShell: Simple Java Scripting
	B.1 Running BeanShell
	B.2 Java Statements and Expressions
	B.3 BeanShell Commands
	B.4 Scripted Methods and Objects
	B.5 Learning More . . .

	Colophon

